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ABSTRACT 

Article History: 
Hybrid ARIMA-NN is a combined approach of the ARIMA model used to capture linear 
patterns in time series data and Artificial Neural Networks (ANN) to handle non-linear and 

stochastic patterns. Using a gradient descent algorithm, backpropagation adjusts synaptic 

weights based on the error between the network's prediction and actual training data 

values. In this study, a comparison was made between the Backpropagation method and 
Hybrid ARIMA-NN in forecasting rainfall in Makassar City. Rainfall data in Makassar City 

uses data from the rainfall measuring station at the Paotere Maritime Meteorological 

Station in Makassar. The activation functions used are ReLU and Leaky ReLU with epoch 

parameters set at 350, and learning rates of 0.01, 0.001, 0.0001, and 0.00001. The two best 
methods selected for further evaluation are Backpropagation with architecture 12-32-16-

8-1 and Hybrid ARIMA-NN (ARIMA [4,0,1]-NN 12-256-128-64-1). The ARIMA model 

(4,0,1) with AIC values of 1303.4 and RMSE 162,369 is the best compared to other models, 

which aligns with the advantages of backpropagation architecture. The results showed that 
the Backpropagation method excelled with an RMSE value of 137.320 or 0.1149, indicating 

high accuracy in forecasting changes in seasonal trends and patterns. Hybrid ARIMA-NN 

gives good results with RMSE 145.834, as residues contain better nonlinearity compared to 
ARIMA models (4,0,1), although it shows a slightly higher error rate compared to 

Backpropagation. 
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1. INTRODUCTION 

Artificial Neural Networks (ANNs) are a popular machine learning technique that simulates the 

learning mechanism in biological organisms [1]. Artificial neural networks are capable of learning from data 

and adapting to changing conditions, as well as capturing nonlinear relationships. Additionally, ANNs consist 

of several simple processing units called neurons, which are interconnected via synaptic weights and adjust 

their synaptic weights through the learning process [2] Synaptic weights are trained using the 

Backpropagation algorithm following the Gradient Descent Method. The common learning method used in 

ANNs is backpropagation, which utilizes a gradient descent algorithm to optimize synaptic weights to 

minimize the error between the expected output and the generated output [3]. 

Despite having advantages such as handling non-linear data, the backpropagation method also has 

limitations, such as being prone to overfitting and sensitivity to the initial values of synaptic weights and 

learning rate [4]. To overcome these limitations, one approach that can be taken is to combine the 

backpropagation method with other methods that have different characteristics or complement each other. 

One method that can be combined with backpropagation is the ARIMA-NN (Autoregressive Integrated 

Moving Average-Neural Network) method, which is a hybrid approach that combines the ARIMA model 

with ANN [5]. The ARIMA model captures linear patterns in time series data through its two main 

components: the autoregressive (AR) component, which models the linear relationship between the current 

value and past values, and the moving average (MA) component, which models the linear relationship 

between the current value and past prediction errors [6]. However, ARIMA only handles linear patterns and 

cannot capture nonlinear dynamics in the data. To address this limitation, hybrid models combining ARIMA 

with models like ANN are employed, as ANN can manage the nonlinear and stochastic patterns that ARIMA 

cannot capture. The ARIMA-NN hybrid approach can improve the prediction accuracy of rainfall intensity 

in Makassar City by leveraging the strengths of both methods in addressing the different characteristics of 

time series data. 

Rainfall intensity is one of the important factors that affect human life and the environment, especially 

in Makassar City, which is vulnerable to climate change. High rainfall variability can disrupt various sectors, 

such as agriculture, transportation, and water availability [7]. Therefore, predicting rainfall intensity in 

Makassar City is an urgent need. Previous research has been conducted in the context of rainfall prediction 

using various methods, but this study aims to implement and compare the backpropagation model and the 

hybrid ARIMA-NN in predicting rainfall intensity in Makassar City. 

Previous studies have been conducted [8], regarding rainfall modeling in Banyuwangi using linear 

method ARIMA and non-linear method Feed Forward Neural Network (FFNN), along with hybrid ARIMA-

NN, aiming to compare the three methods in terms of accuracy, error, and computational time. Subsequently, 

there is research [9], utilizing the ARIMA method and JST method backpropagation in price forecasting, 

followed by research [10], focusing on modeling and prediction using the hybrid ARIMA-NN method, and a 

study [11], utilizing the JST backpropagation method in predicting monthly rainfall. However, this research 

is related to the implementation of JST backpropagation and hybrid ARIMA-NN in predicting rainfall 

intensity in Makassar City.  

This research will explore the training procedures and performance accuracy of the backpropagation 

model and the hybrid ARIMA-NN approach in the context of rainfall prediction in Makassar City. The use 

of the ARIMA-ANN method is justified by the nature of rainfall patterns, which exhibit both linear and 

nonlinear characteristics. The ARIMA model captures the linear components, while the ANN addresses the 

nonlinear aspects, making the hybrid approach well-suited for accurately modeling and predicting complex 

rainfall patterns. Thus, this research is expected to make a significant contribution to the understanding and 

development of more accurate and reliable rainfall prediction methods for disaster mitigation and natural 

resources. By combining the strengths of both methods, it is hoped that this research can make a significant 

contribution to the development of more accurate and reliable methods for predicting rainfall in Makassar 

City, with the potential for real-world applications that require a deep understanding of rainfall behavior in 

the city. 
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2. RESEARCH METHODS 

2.1 Data Source 

The type of research carried out is quantitative applied research by applying Neural Networks, 

Backpropagation algorithms, and Time Series Analysis ARIMA methods which are then carried out hybrid 

in the Backpropagation method so that it becomes a hybrid ARIMA-NN method. The data used is secondary 

data obtained from online data from the Meteorology, Climatology and Geophysics Agency (BMKG), 

dataonline.bmkg.go.id especially at the Paotere Maritime Station, Makassar which is monthly rainfall data 

with a time interval of 9 years. The initial observation data from January 2014 to December 2022 consisted 

of 3,286 daily records, which were then aggregated into 108 monthly records. These monthly records 

represent the number of rainy days in each month. The training data comprises 96 monthly rainfall records 

from January 2014 to December 2021, while the testing data consists of 12 monthly rainfall records from 

January 2022 to December 2022. 

 

2.2 Analysis Technique 

The research procedures applied to achieve the objectives of this study are as follows: 

1. Conducting a literature review related to the Backpropagation model and hybrid ARIMA-NN model, as 

well as the applications used in predicting rainfall intensity. 

2. Collecting historical monthly rainfall data in Makassar City from 2014 to 2022 obtained from the BMKG 

online website. 

3. Normalizing data to the [0,1] scale rescales values so that they fall between 0 and 1. This is achieved by 

subtracting the minimum value and dividing by the data range (maximum minus minimum), ensuring 

consistency and comparability across features. 

4. Dividing the dataset into training and testing data is 96 data for training the model and 12 data for testing 

the model's performance.  

5. Forming the model using the Backpropagation method. 

a. Determining the input and output or target, consisting of 12 inputs representing data from the past 

12 months and 1 output representing data for the next month, thus predicting rainfall for 1 month 

using data from the previous 12 months. 

b. Determining the network architectures. This involves selecting the number of layers (including 

hidden layers), the number of neurons in each layer, and the activation functions used.  

c. Conducting the model training process, followed by model evaluation using testing data. 

d. Selecting the best model with the smallest error value. 

6. Forming the model using the Hybrid ARIMA-NN method. 

a. Before using the hybrid model, create an ARIMA model by determining the input based on the ACF 

and PACF plots of the ARIMA model residuals. 

b. Training the ARIMA model with training data as the main component in the hybrid model. 

c. Designing the neural network model to be used and determining the number of neurons and hidden 

layers. 

d. Initiating the training process using the Backpropagation algorithm hybridized with the ARIMA 

model. Selecting the best model with the smallest error value. 

7. Testing both models after learning by calculating their error values using Root Mean Squared Error 

(RMSE) and selecting the best model based on the two selected models, namely the Backpropagation 

model or the hybrid ARIMA-NN model. The use of RMSE is chosen because RMSE provides a greater 

penalty for larger errors, making it more sensitive to outliers and particularly useful in prediction cases 

such as rainfall where large errors need to be minimized. Although Mean Absolute Percentage Error 

(MAPE) can be used as an alternative, RMSE is more suitable for data with consistent and non-negative 

scales like rainfall, which is the focus of this study. 

8. Denormalizing the data to its original format. 

9. Predicting rainfall using the best model to obtain rainfall predictions for the coming years. 
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2.2.1 Backpropagation 

The backpropagation method is a type of ANN that utilizes supervised learning algorithms, involving 

three layers: input, hidden, and output each layer has specific functions within the network. The input layer 

is responsible for inputting data into the network, the hidden layer serves as the location for processing data 

and determining how data is propagated through the network, and the output layer provides the final output 

based on the input [9]. The equations for the backpropagation algorithm in artificial neural networks are as 

follows: 

1. Compute Output Error: Calculate the error for each output neuron 𝑗 in the output layer using the 

derivative of the error function 𝐸 concerning the output of the neuron 𝑎𝑗: 

𝛿𝑗 =
𝜕𝐸

𝜕𝑎𝑗
(1) 

2. Propagate Error to Hidden Layers: Calculate the error for each neuron 𝑖 in the hidden layers using the 

error signal from the next layer weighted by the synaptic weights connecting the current layer to the 

next: 

𝛿𝑖 =
𝜕𝐸

𝜕𝑎𝑖
= ∑ 𝛿𝑘 ∙

𝜕𝑎𝑘

𝜕𝑎𝑖𝑘
(2) 

3. Update Weights: Update the weights of the network using the calculated errors and the learning rate 𝜂: 

𝛥𝑤𝑗𝑖 = −𝜂 ∙ 𝛿𝑗 ∙
𝜕𝑧𝑗

𝜕𝑤𝑗𝑖
(3) 

4. Update Biases: Modify the biases of the network using the computed errors and the learning rate 𝜂: 

𝛥𝑏𝑗 = −𝜂 ∙ 𝛿𝑗 (4) 

With: 

𝛿𝑗, 𝛿𝑖    : The error signal for neuron 𝑗 and neuron 𝑖 

𝐸 : Error Function 

𝑎𝑗  : Output of neuron 𝑗 

𝑤𝑗𝑖  : Weight of the connection from neuron 𝑖 to neuron 𝑗 

𝑧𝑗 : Weighted sum of inputs to the neuron 𝑗 

 

2.2.2 Autoregressive Integrated Moving Average (ARIMA) 

The most traditional method of non-stationary time series analysis is ARIMA, which allows the 

explanation of variables depending on previous values through an autoregressive component (AR), a 

differencing component (I), and a moving average component (MA). ARIMA requires data that has been 

stationary, where component I is used to make the time series stationary through differencing [12]. The 

ARIMA equation (p, d, q) is as follows: 

𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑍𝑡 = 𝜃0 + 𝜃𝑞(𝐵)𝑎𝑡 (5) 

If an ARIMA model has a seasonal pattern, the general form of the model is as follows: 

Φ𝑝(𝐵𝑠)(1 − 𝐵𝑠)𝐷𝑍𝑡 = 𝛩𝑄(𝐵𝑠)𝑎𝑡 (6) 

This form of the seasonal ARIMA model is suitable for time series data that exhibit seasonal patterns 

or periodic fluctuations. In the model equation (5) represents the non-seasonal ARIMA model, where the 

time series 𝑍𝑡 is modeled as a function of its past values and the white noise error term 𝑎𝑡. This equation 

includes the autoregressive (AR) component 𝜙𝑝(𝐵), the differencing operator (1 − 𝐵)𝑑, and the moving 

average (MA) component 𝜃𝑞(𝐵). On the other hand, model equation (6) depicts the seasonal ARIMA model, 

extending the non-seasonal model to account for seasonal patterns. It introduces seasonal counterparts to the 

AR, differencing, and MA components, represented by Φ𝑝(𝐵𝑠), (1 − 𝐵𝑠)𝐷, and 𝛩𝑄(𝐵𝑠) respectively, where 

𝑠 denotes the seasonal period. This allows the model to capture both non-seasonal and seasonal dynamics 

present in the time series data. 
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2.2.3 Hybrid ARIMA-NN 

 Hybrid ARIMA-NN modeling is conducted because rainfall data may exhibit both linear and non-

linear patterns. Therefore, the combination of both models is expected to better capture the characteristics of 

rainfall data. Generally, the hybrid ARIMA-NN model can be formulated as follows: 

𝑍𝑡 = �̂�𝑡 + �̂�𝑡 (7) 

 Where �̂�𝑡 represents the linear component modeled using ARIMA, and �̂�𝑡 represents the non-linear 

component modeled using Neural Network [10]. 

 

2.2.4 Error Calculation 

1. Root Mean Squared Error (RMSE), is the square root of  Mean Square Error (MSE) and is often used 

because it has the same units as the variable being measured [13]. MSE, calculated as the average of the 

squared differences between the predicted (𝑦𝑖) and observed (𝑥𝑖) values. 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑛
∑ |𝑥𝑖 − 𝑦𝑖|

2
𝑛

𝑖=1
(8) 

With: 

𝑛   : The number of observations or data points 

𝑥𝑖   : The observed value for the 𝑖𝑡ℎ data point   

𝑦𝑖   : The predicted value for the 𝑖𝑡ℎ data point   

2. Akaike’s Information Criterion (AIC) is a statistical measure used for model selection, particularly in 

the context of regression analysis. 

𝐴𝐼𝐶 = 𝑛 ln(�̂�𝜀
2) + 2(𝑝 + 𝑞 + 1), �̂�𝜀

2 =
𝑆𝐸𝐸

𝑛
(9) 

𝑆𝐸𝐸 =
∑ (𝑥𝑖 − 𝑥1)2𝑚

𝑖=1

𝑛
, 𝑚 < 𝑛 (10) 

With: 

𝑛   : The number of observations or data points 

�̂�𝜀
2   : An estimate of the variance of the error terms (𝜀), calculated as the sum of squared errors (SEE) 

divided by the number of observations 

𝑆𝐸𝐸   : Calculated as the sum of squared differences between observed (𝑥𝑖) and predicted (𝑥𝑖) values 

𝑝   : The number of predictors or independent variables in the model 

𝑞   : The number of parameters in the model 

3. Bayesian Information Criterion (BIC), is a metric used in statistical analysis to compare different 

statistical models based on the number of observations and the number of parameters in each model. 

BIC aids in selecting the most appropriate model for the data by considering the trade-off between model 

accuracy and complexity [14]. 

𝐵𝐼𝐶 = 𝑛𝐿𝑛(�̂�2) + 𝑘𝐿𝑛(𝑛) (11) 
With: 

𝑛   : The number of observations or data points 

�̂�2   : An estimate of the variance of the error terms 

𝑘   : The number of parameters in the model 

 

3. RESULTS AND DISCUSSION 

3.1 Backpropagation Method 

3.1.1 Data Normalization 

In this study, the Backpropagation Artificial Neural Network algorithm employs a binary sigmoid 

activation function with values ranging from 0 to 1. The choice of the binary sigmoid activation function is 

due to its non-linear nature, which enables the model to capture complex relationships between input and 

output, such as those present in rainfall data. Additionally, the function maps input values to the [0, 1] range, 
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which aligns well with the need to normalize monthly rainfall data. This normalization is crucial to prevent 

neuron saturation and ensure that the output remains within a realistic and consistent range. Moreover, the 

binary sigmoid function's easy differentiability is vital for the backpropagation process, allowing efficient 

gradient calculations necessary for updating the network's weights. Therefore, monthly rainfall data needs to 

be normalized or transformed to [0, 1] to reduce redundancy and ensure data consistency [15]. The 

normalization results can be observed in Table 1. 

 
Table 1. Rainfall Data After Normalization 

Month 
Year 

2014 2015 2016 2017 2018 2019 2020 2021 2022 

January 0.700 0.805 0.322 0.615 0.659 0.533 0.479 1.000 0.640 

February 0.262 0.297 0.608 0.339 0.598 0.198 0.451 0.363 0.553 

March 0.260 0.256 0.187 0.375 0.480 0.372 0.221 0.569 0.198 

April 0.236 0.171 0.101 0.188 0.140 0.290 0.084 0.360 0.053 

May 0.088 0.088 0.037 0.063 0.027 0.050 0.156 0.054 0.258 

June 0.112 0.046 0.039 0.164 0.101 0.051 0.061 0.063 0.088 

July 0.025 0.000 0.012 0.019 0.041 0.002 0.008 0.036 0.007 

August 0.005 0.000 0.000 0.044 0.001 0.000 0.013 0.054 0.035 

September 0.000 0.000 0.066 0.057 0.001 0.000 0.019 0.096 0.040 

October 0.000 0.000 0.356 0.076 0.010 0.000 0.045 0.090 0.326 

November 0.098 0.124 0.126 0.384 0.131 0.069 0.208 0.275 0.282 

December 0.563 0.518 0.458 0.799 0.718 0.235 0.773 0.807 0.629 

  Data Source: Data Online BMKG (After Normalization) 

3.1.2 Training and Testing Process 

After normalization, monthly rainfall data is divided into two parts: training data used to train the 

model and testing data to evaluate the performance of the model after the training process. In this scenario, 

the data is divided into two time periods: 2014-2022 with a total of 96 data points for training, and testing 

data for the year 2022 consisting of 12 data points. The network used is a Multilayer Network for predicting 

rainfall using feedforward learning methods, comprising three types of layers: input, hidden, and output layers 

[16]. For the input, 12 neurons representing the 12 months of data are selected, while for the output, 1 neuron 

representing the subsequent data point is chosen, as shown in Figure 1. There are three types of architectures 

used: Multilayer Network with one hidden layer, two hidden layers, and three hidden layers. 

 

 
Figure 1. The Architecture of The Network is 12-8-1 

In the study, neural network models are trained with uniform parameters: each model undergoes 350 

epochs of training, utilizing different learning rates (0.01, 0.001, 0.0001, and 0.00001). The models 

incorporate Rectified Linear Unit (ReLU) and Leaky ReLU activation functions to introduce non-linearity, 

following reference [17]. ReLU is chosen for its computational efficiency and ability to mitigate the vanishing 

gradient problem, which helps accelerate the training of deep networks. However, to address the potential 

issue of "dying ReLUs," where neurons can become inactive, Leaky ReLU is also employed, allowing a 
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small, non-zero gradient when the input is negative. To control the model complexity, L2 regularization is 

applied to all layers except the output layer, with a regularization parameter of 0.01. 

The process of determining the initial weights is crucial for the training of neural networks. 

Specifically, the initial weights from the input layer to the hidden layer (𝑣𝑖𝑗) and from the hidden layer to the 

output layer (𝑤𝑗𝑘) are specified. This setup ensures that each model starts training with a known set of 

weights, which helps in comparing the impact of different learning rates and activation functions on the 

training performance. 

Table 2. Rainfall Data After Normalization 

 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟒 𝒛𝟓 𝒛𝟔 𝒛𝟕 𝒛𝟖 

𝑥1 0.188 0.179 -0.061 0.142 -0.375 -0.203 -0.005 -0.296 

𝑥2 -0.086 -0.136 0.403 0.144 0.326 0.128 -0.126 -0.004 

𝑥3 -0.542 0.078 -0.246 0.439 -0.481 0.448 0.445 0.231 

𝑥4 -0.248 -0.320 0.507 -0.397 -0.163 0.389 0.137 -0.440 

𝑥5 0.370 -0.360 -0.103 0.446 -0.397 0.182 0.152 -0.192 

𝑥6 -0.495 0.053 0.128 -0.508 -0.362 -0.445 -0.186 -0.017 

𝑥7 0.417 0.213 0.045 -0.165 -0.154 -0.404 0.254 -0.270 

𝑥8 -0.501 0.130 0.376 0.221 0.210 0.200 0.112 -0.009 

𝑥9 -0.240 -0.342 0.482 0.433 0.007 -0.121 -0.249 0.464 

𝑥10 -0.284 0.262 -0.486 -0.144 0.263 0.416 0.226 0.409 

𝑥11 -0.174 0.287 -0.011 -0.438 0.291 -0.113 0.438 0.155 

𝑥12 -0.359 -0.028 -0.446 -0.325 0.245 0.035 -0.277 0.072 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 2 presents the normalized rainfall data, which is essential for training neural networks, as 

normalization ensures that each feature contributes equally to the learning process. Normalization transforms 

the data into a consistent scale, which helps in speeding up the training process and improving the model's 

performance. Each column in Table 2 corresponds to a different feature (𝑧1 𝑡𝑜 𝑧8), representing various 

attributes of the rainfall data, such as temperature, humidity, wind speed, etc. Each row corresponds to a 

different data point (𝑥1 𝑡𝑜 𝑥12), representing observations collected over different periods or locations. This 

structured representation of data facilitates the neural network in learning complex patterns and relationships 

between the input features and the target variable, ultimately enhancing its predictive accuracy. By ensuring 

that no single feature disproportionately influences the training process, normalization contributes to the 

stability and convergence of the neural network model.  

Table 3. Initial Weights of Hidden-Output Layer 

 Y 

𝑧1 0.593 

𝑧2 -0.391 

𝑧3 0.585 

𝑧4 0.325 

𝑧5 0.607 

𝑧6 -0.019 

𝑧7 0.769 

𝑧8 -0.304 

1 0 

Table 3 provides the initial weights from the hidden layer to the output layer before the training begins. 

These weights (from 𝑧1 𝑡𝑜 𝑧8) are crucial as they influence the initial predictions made by the neural network. 

Proper initialization of these weights is essential as it sets the starting point for the training process, impacting 

how quickly and effectively the model converges to an optimal solution. Understanding these initial weights 

helps in analyzing how the network's performance evolves over the training epochs and provides insight into 

the model's learning dynamics. The training process of the neural network is conducted for each pair of 

training data using the updated weights from the previous iteration as the initial weights. This means that 

after processing one pair of training data, the weights are adjusted based on the error between the predicted 

and actual outputs, and these updated weights are then used as the starting point for the next iteration. It is an 

iterative process where after training on one pair of training data, one epoch is considered complete [18]. This 
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approach ensures that the model incrementally improves its performance with each epoch by progressively 

minimizing the error. The results of this extensive training process, presented in the subsequent table, evaluate 

the model's performance based on different activation functions and learning rates, providing valuable 

insights into the effectiveness of various training configurations.  

Table 4. Comparison of RMSE Value with Backpropagation Model Activation 

RMSE of Activation Function 

Architecture 
ReLu Leaky ReLu 

0.01 0.001 0.0001 0.00001 0.01 0.001 0.0001 0.00001 

12-8-1 165.2 170.2 151.8 350.3 165.1 161.5 156.5 298.2 

12-16-1 182.6 172.0 156.2 214.5 182.5 168.7 153.3 242.1 

12-32-1 172.7 174.2 156.5 169.1 173.1 180.7 161.2 177.5 

12-64-1 182.9 160.1 159.9 172.5 182.2 166.8 160.4 165.6 

12-128-1 162.4 181.4 162.9 170.8 162.3 177.1 160.3 160.0 

12-256-1 168.5 153.9 162.5 167.0 172.0 161.7 166.2 164.4 

12-8-8-1 177.9 166.4 157.3 168.1 162.6 165.7 153.3 140.4 

12-16-16-1 153.8 164.8 155.4 162.2 153.7 161.6 159.4 149.2 

12-32-32-1 166.1 166.7 159.7 157.3 163.7 166.3 157.6 146.7 

12-64-32-1 162.7 173.8 162.4 153.2 174.8 172.4 164.4 144.8 

12-128-64-1 146.7 163.2 158.1 152.2 147.3 159.9 158.2 151.0 

12-256-128-1 170.5 171.6 158.8 157.1 160.1 169.6 159.0 157.6 

12-8-8-8-1 181.3 157.4 164.0 160.8 178.5 158.5 151.8 165.0 

12-16-16-16-1 198.5 175.5 154.3 163.9 194.4 170.5 155.5 195.1 

12-32-16-8-1 238.3 164.4 137.3 373.7 231.8 158.4 156.9 165.2 

12-64-32-16-1 191.3 159.2 154.2 153.3 272.1 153.7 152.5 145.4 

12-128-64-32-1 187.8 166.4 156.4 156.4 179.9 166.2 154.0 151.2 

The results of RMSE measurements across various neural network configurations demonstrate 

performance variations. Generally, lower RMSE values are observed with larger numbers of neurons and 

layers, along with the ReLU activation function. However, excessive complexity can lead to overfitting [19]. 

Variations in the learning rate also affect model performance, with smaller values tending to yield better 

results. For example, in the architecture (12-32-16-8-1) with ReLU and a learning rate of 0.01, a high RMSE 

of 238.336 is observed, indicating excessive complexity or a learning rate that is too large. The choice of 

activation function is also crucial. Leaky ReLU can address the issue of dying neurons, but in some cases, 

ReLU performs better. For instance, in the architecture (12-32-16-8-1) with ReLU and a learning rate of 

0.0001, the lowest RMSE of 137.320 is achieved, indicating optimal performance. The importance of 

selecting the activation function and architecture configuration in neural network development underscores 

the need for a balance between model complexity and performance. Even models with simple architectures 

can compete with complex ones if chosen carefully. 

 
(a) (b) 

Figure 2. Training and Validation MSE, RMSE of Model (12-32-16-8-1) 

(a) Train and Val RMSE, (b) Train and Val MSE 

The evaluation results in Figure 2 indicate that the model with the architecture (12-32-16-8-1) and 

350 epochs does not suffer from overfitting or underfitting. The small difference between the training MSE 

(0.025) and validation MSE (0.023) signifies the model's ability to generalize patterns effectively from the 
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training data to the validation data. Similarly, the small difference between the training RMSE (0.139) and 

validation RMSE (0.132) demonstrates the model's capability to make accurate predictions for both datasets. 

Therefore, the model can be relied upon to comprehend complex patterns within the dataset and provide 

accurate predictions. 

 

3.2 Hybrid ARIMA-NN Method 

3.2.1 Identification of ARIMA Model 

The initial step performed before obtaining an ARIMA model is to test the stationarity of the data to 

observe the presence of any unit roots in the variables. Stationarity testing is conducted using the unit root 

test, often referred to as the Augmented Dickey-Fuller Test (ADF Test) [20]. 

Table 5. Model Parameter Estimation 

   𝒕-statistic Prob 

Augmented Dickey-Fuller test statistics  -3.490 0.048 

Test critical values: 1% -3.503  

 5% -2.89  

  10% -2.584   

 

From the stationarity test results in Table 5, it is shown that the rainfall data produces an ADF statistic 

value of -3.49 with a probability value of 0.048 or < 0.05 and |𝑡-statistic| < |test critical values| [8]. The 

negative ADF value indicates that the data exhibits stationary tendencies, while the 𝑝-value lower than 0.05 

suggests statistical significance, leading to the rejection of the null hypothesis: 𝛾 = 0. Therefore, it can be 

concluded that the rainfall data is stationary within the tested time range, providing a solid basis for modeling 

using methods such as ARIMA, which requires stationarity assumptions in the modeling process. Further 

model identification is conducted by examining the lags that experience cutoffs in the ACF plot and PAC 

plot. 

 
(a) (b) 

Figure 3. Plot of ACF and PACF on Monthly Rainfall Data 

(a) ACF, (b) PACF 

Figure 3 shows the presence of seasonal spikes at multiples of lag 12, which are more prominent 

compared to others in the ACF plot. Estimation of the parameters ∅1 and 𝜃1 for each ARIMA model is based 

on the ACF and PACF functions. A model is considered adequate if the probability values for all variables 

are less than or equal to 0.05, and the absolute values of the 𝑡-statistics for all variables exceed the critical 

value from the 𝑡-table [21]. Here are some possible ARIMA models that are formed. 

Table 6. Model Parameter Estimation 

    AR 1 AR 2 AR 3 AR 4 AR 5 MA 1 MA 2 

Jarque-

Bera 

(JB) 

Ljung-

Box 

(L1) 

Result 

ARIMA 

(1,0,0) 0.000       0.05 0.31 Significant 

(0,0,1)      0.000  0.05 0.26 Significant 

(2,0,0) 0.000 0.006      0.05 0.59 Significant 

(3,0,0) 0.000 0.289 0.409     0.00 0.48 Insignificant 

(2,0,1) 0.000 0.000    0.000  0.02 0.38 Insignificant 

(1,0,1) 0.001     0.006  0.05 0.72 Significant 
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    AR 1 AR 2 AR 3 AR 4 AR 5 MA 1 MA 2 

Jarque-

Bera 

(JB) 

Ljung-

Box 

(L1) 

Result 

(3,0,1) 0.920 0.745 0.746   0.474  0.00 0.60 Insignificant 

(4,0,1) 0.000 0.006 0.001 0.044  0.013  0.06 0.81 Significant 

(4,0,0) 0.000 0.108 0.241 0.031    0.04 0.42 Insignificant 

(5,0,1) 0.000 0.026 0.240 0.301 0.989 0.065  0.01 0.80 Insignificant 

(4,0,2) 0.118 0.669 0.660 0.045  0.48 0.858 0.04 0.76 Insignificant 

(5,0,0) 0.000 0.169 0.334 0.255 0.489   0.03 0.60 Insignificant 

(5,0,2) 0.847 0.989 0.986 0.802 0.948 0.959 0.91 0.04 0.75 Insignificant 

The significance of the parameter is seen from the absolute value of the 𝑡𝑣𝑎𝑙𝑢𝑒 > of the 𝑡𝑡𝑎𝑏𝑙𝑒 [22]. 

Based on Table 6, it is obtained that 5 ARIMA models have significant parameters met and 8 insignificant 

models. After obtaining a significant ARIMA model, the next step is to select the ARIMA model based on 

the lowest Akaike Information Criterion (AIC) value. The selected ARIMA model will be used to perform 

ARIMA-NN hybrid modeling of the best ARIMA residuals in the form of ARIMA which obtained the 

smallest AIC and BIC values. 

Table 7. ARIMA Model AIC, BIC, and RMSE Value 

No ARIMA (p, d, q) AIC BIC RMSE 

1 (1,0,0) 1323.706 1331.399 235.580 

2 (0,0,1) 1325.29 1332.889 233.752 

3 (2,0,0) 1321.226 1331.483 208.583 

4 (1,0,1) 1321.582 1331.937 214.408 

5 (4,0,1) 1303.491 1321.442 162.369 

Based on Table 7 it can be seen that the ARIMA model (4,0,1) is the best because it has the lowest 

AIC, BIC, and RMSE values. The ARIMA model equation (4,0,1) is as follows. 

 𝑌𝑡 = 261.99 + 1.17 𝑌𝑡−1 − 0.539 𝑌𝑡−2 + 0.249 𝑌𝑡−3 − 0.351 𝑌𝑡−4 − 0.6110 ∈𝑡−1+∈𝑡 (11) 

 

3.2.2 Hybrid ARIMA-NN 

Hybrid modeling using the ARIMA model (4,0,1) which is used as ANN input using residual results 

in the model. The residuals used then determine the input, hidden layer, and output on the neural network. 

The architecture used is similar to the architecture in the backpropagation method and the residuals used as 

inputs are normalized at scale [0,1]. The results of the evaluation using RMSE as an indicator of model 

accuracy. 

Table 8. Comparison of RMSE Value with Hybrid Model Activation 

RMSE Activation Function 

ARMA Architecture Hybrid (4,0,1)-NN ReLU Leaky ReLU 

NN 0.01 0.001 0.0001 0.00001 0.01 0.001 0.0001 0.00001 

12-8-1 145.9 159 147.6 1051.7 147.8 158.4 185.2 368.4 

12-16-1 148.8 161 168.4 202.9 147.2 149.5 153.8 569.7 

12-32-1 182.1 159 153 183.1 153.1 148.7 232 194.8 

12-64-1 163 159 148.9 363.1 160.5 150.9 146.3 169.9 

12-128-1 175.9 169 146.5 177.4 159.6 149.2 145.9 151.6 

12-256-1 154.7 158 145.8 152.7 161.2 147.7 146.5 148.5 

12-8-8-1 156 162 147.6 961.9 146 146.3 180.5 314.6 

12-16-16-1 152.8 158 145.8 486.1 160.4 147.6 145.8 298.3 

12-32-32-1 155.5 159 146.1 328.5 153.7 148.4 147.4 227.2 

12-64-32-1 149.5 161 147 236.4 145.9 146 146.5 206 

12-128-64-1 153.7 164 145.8 148.3 155.5 147.4 147.4 149.6 
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RMSE Activation Function 

ARMA Architecture Hybrid (4,0,1)-NN ReLU Leaky ReLU 

NN 0.01 0.001 0.0001 0.00001 0.01 0.001 0.0001 0.00001 

12-256-128-1 150.1 162 146.4 146 151.3 147.2 147.1 149 

12-8-8-8-1 148.2 157 148.8 445.4 148.1 146.7 161.7 150.6 

12-16-16-16-1 148.2 162 175.4 421.8 148.2 147.5 146.8 174.6 

12-36-16-8-1 148.3 162 154.7 321.7 148.2 147.2 146.4 149.2 

12-64-32-16-1 148.2 163 145.9 159.2 148.3 147.5 146 147.8 

12-256-128-64-1 148.4 163 146.2 146.2 148.9 148.3 145.8 148 

From the RMSE measurement results on the Hybrid ARIMA-NN architecture with ReLU activation 

function, it is evident that there is significant variation in model performance depending on the architecture 

configuration and learning rate used. The utilization of the ReLU activation function in Table 8 indicates that 

some configurations outperform others. For instance, in the architecture (12-256-1) with a learning rate of 

0.00001, an RMSE of 145.837 is obtained, indicating the model's ability to provide more accurate 

predictions. However, there are also cases where increasing model complexity, such as increasing the number 

of neurons or layers, does not always result in improved performance and may even lead to a decrease in 

RMSE. Meanwhile, when using the Leaky ReLU activation function, the results also exhibit significant 

performance variation depending on the architecture configuration and learning rate. In some cases, Leaky 

ReLU outperforms ReLU, especially in configurations with smaller learning rates. For example, in the 

architecture (12-256-128-64-1) with a learning rate of 0.0001, an RMSE of 145.834 is obtained, 

demonstrating the potential of Leaky ReLU to provide more accurate predictions. Based on Table 8 the 

𝐿𝑡 model can be formulated as follows: 

𝐿𝑡 = 𝑊3 ∙  𝜎2(𝑊2  ∙  𝜎1(𝑊1 ∙  𝑌 + 𝑏1) + 𝑏2) + 𝑏3 (12) 

With: 

𝑊1, 𝑊2, 𝑊3  : Weights for each layer 

𝑏1, 𝑏2, 𝑏3     : Biases for each layer 

𝜎1, 𝜎2     : Activation function for each layer 

𝑌    : Input (lag of 𝑌𝑡 or other variable) 

The model 𝐿𝑡 is the output of a neural network that uses specific inputs, such as lags of 𝑌𝑡, to predict 

residuals. Unlike the ARIMA model, which has a clear linear equation, 𝐿𝑡 is generated through a complex 

neural network process. The network used has an architecture of 12-256-128-64-1, consisting of 12 input 

neurons, three hidden layers with 256, 128, and 64 neurons respectively, and one output neuron. The selected 

activation function is Leaky ReLU. 

From the testing results, it can be observed that there is performance variation among different Hybrid 

ARIMA-NN architectures. Increasing the number of neurons in the hidden layers has a significant impact in 

some cases. There is a tendency that increasing the number of neurons in the hidden layers may help improve 

model performance. However, it should be noted that this increase does not always result in a significant 

decrease in RMSE. Some complex architectures may lead to overfitting, indicating that too many parameters 

can adversely affect model performance on test data [23]. It is important to consider the trade-off between 

model complexity and performance. 

Table 9. Method Comparison Based on the Lowest RMSE 

Method Best Model RMSE 

Backpropagation 12-32-16-8-1 137.320 

Hybrid ARIMA-NN ARIMA (4, 0, 1) - NN 12-256-128-64-1 145.834 

In this research, the Backpropagation method with the 12-32-16-8-1 model yielded a Root Mean 

Square Error (RMSE) value of 137.320. This result indicates that the model is capable of providing 

predictions that closely approximate the true values with a relatively low level of error. The utilization of 

neural network architectures like 12-32-16-8-1 demonstrates the model's ability to capture complex patterns 

in the data, and the deep layers can assist in extracting relevant features. The forecasting results from the 

Hybrid ARIMA-NN model can offer more accurate estimates for cases where the data patterns are difficult 

to explain by a single linear statistical model [23]. Meanwhile, the Hybrid ARIMA-NN method with the 
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combination of ARIMA (4, 0, 1) and the NN model 12-256-128-64-1 resulted in an RMSE of 145.834. The 

slightly higher RMSE value compared to Backpropagation indicates that although this approach combines 

the advantages of ARIMA models and neural networks, there may be some trade-offs between the model's 

ability to capture trends and seasonality and the complexity introduced by the neural network. From these 

results, it can be concluded that the Backpropagation method with the 12-32-16-8-1 model has slightly better 

accuracy compared to the hybrid ARIMA-NN method on the dataset used for evaluation. Here are the rainfall 

forecasts for the years 2023-2025. 

Table 10. Rainfall Forecasting Results for 2023-2025 

Month 
Year 

2023 2024 2025 

January 598.084 472.490 410.273 

February 424.047 366.405 330.517 

March 282.017 269.728 254.743 

April 198.416 198.097 195.939 

May 163.554 143.966 149.323 

June 92.237 107.420 116.554 

July 70.451 90.547 102.152 

August 91.677 105.152 119.494 

September 126.041 160.063 186.531 

October 296.453 292.228 294.373 

November 416.387 398.312 374.710 

December 534.214 445.064 401.838 

 

In January 2023, predictions show a value of 598.084 mm. The value then decreased steadily until July 

2023 whereas after that it steadily increased until December, and the pattern of decline in value remains 

stable in general. Backpropagation models can adjust to the general trend of data, despite some noise. 

Predictions for the following years (2024-2025) also show a consistent downward trend. The data also 

fluctuates at the end of 2023 which has increased again. This is following frequent rain patterns. 

 

4. CONCLUSIONS 

The ARIMA-NN Hybrid training process and the Backpropagation method on Neural Networks have 

similarities in three main stages, namely feedforward, error calculation, and parameter modification. The 

forecasting results show that the model of the best Backpropagation method is a model with an architecture 

of 12-32-16-8-1 with an RMSE value of 137.320 or 0.1149 while the model of the best ARIMA-NN hybrid 

method is the ARIMA model (4, 0, 1) with an NN architecture (12-256-128-64-1) and an RMSE of 145.834 

or 0.195. Through both models of the method, the RMSE value is calculated which results in the 

Backpropagation method with the architecture 12-128-64-1 having the smallest RMSE value. Thus, the 

Backpropagation method with the 12-128-64-1 architecture gives better results compared to the ARIMA-NN 

hybrid method with the ARIMA (4, 0, 1) – NN (12-256-128-64-1) model. 
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