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ABSTRACT 

Article History: 
A method commonly employed to solve integer programming problems is the Branch and 

Bound. In this article, maximizing the number of matches held on the first day of pencak 

silat tournaments is essential because it can impact the overall dynamics and results of the 

competition. The model used to maximize the number of match sessions in pencak silat 
competitions is a variant of the Bounded Knapsack Problem (BKP), belonging to the 

category of integer programming models. The result obtained using the Branch and Bound 

method ensures that the maximum number of match sessions can be conducted. The 

objective value obtained using the Branch and Bound method decreases as it descends, 
indicating a decreasing maximum value. 
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1. INTRODUCTION 

The Knapsack Problem (KP) is commonly encountered in two scenarios: firstly, when maximizing the 

utilization of space by selecting items based on their values; and secondly, when dividing space into sections 

with varying values to achieve the highest possible value cuts [1]. The goal of KP is to maximize overall 

satisfaction by choosing a subset of items from a given set with specific weights and values without exceeding 

certain capacity constraints. The KP can be formulated as either an integer or binary programming, depending 

on the context [2]. The variations of the Knapsack Problem include the Binary Knapsack Problem (KP01), 

Bounded Knapsack Problem (BKP), and Unbounded Knapsack Problem (UKP) [3].  

The Binary Knapsack Problem (KP01) is characterized by solutions represented as either 0 or 1, where 

0 indicates not specifying an item and 1 indicates including an item in the knapsack [4], [5]. KP01 revolves 

around selecting a combination of items that produces the highest possible profit value while remaining 

within the knapsack's weight capacity [6]. The Bounded Knapsack Problem (BKP) generalizes the concept 

of KP01 by allowing for a bounded quantity of each type of item to be available [7], [8] The Unbounded 

Knapsack Problem (UKP) aims to determine the quantity of each type of item to be chosen to maximize the 

total profit while ensuring that the total weight does not exceed the capacity [9]. The Unbounded Knapsack 

Problem (UKP) is a problem where a set of item types is given without any limit on their quantity. Each item 

type has a weight (𝑤𝑖) and value (𝑣𝑖), which are the same for all items of that type [10]. The KP is widely 

acknowledged as a significant challenge in combinatorial optimization. It has numerous real-world 

applications, including budget allocation [11, 12], location determination [13, 14], resource distribution [15, 

16, 17], and management [18, 19]. The KP, along with its various variations and practical applications, 

continues to be extensively researched. Based on the application of the KP in several problems, the KP will 

be applied to maximize of pencak silat match session on the first day. 

There are several methods for solving the Knapsack Problem such as Greedy Algorithm [20], Branch 

and Bound method [21, 22], and Dynamic Programming [23, 24]. Due to the Knapsack problem being a type 

of Integer Programming, it can be resolved by utilizing the Branch and Bound method [25]. Branch and 

Bound (B&B) is a fundamental methodology for solving exact optimization problems. This method computes 

solutions by storing subproblems in a tree structure and recursively dividing the solution space into smaller 

regions (branching). Rules are used to trim regions that are proven to be suboptimal (bounding). Once the 

tree is explored, the best solution is returned. It's a family of algorithms that share the same core solution 

procedure. [26]. In the initial stage of the Branch and Bound method, Linear Programming (LP) Relaxation 

is performed, where eliminating the integer constraints [27]. The solution from this LP is then obtained to 

ensure that the results are in fractional or integer form. If the solution is fractional, the next step is to perform 

branching. The branching process involves splitting the fractional solution value into higher and lower integer 

values. The results are then inserted into the initial problem constraints and tested to obtain the solution [28]. 
This branching process continues until an optimal solution with integer values is obtained [29, 30]. 

Pencak Silat is a martial art inherited from ancestors and is part of Indonesia's cultural heritage, thus it 

requires preservation, cultivation, and development [31]. In Pencak Silat competitions, the duration of match 

sessions differs between Tanding and Artistic categories [32]. For each tournament, many bouts need to be 

organized, considering factors such as the number of participants, competition categories, arena availability, 

as well as the needs of athletes and coaches. Effective scheduling is crucial to ensure the smooth running of 

tournaments and to avoid potential conflicts or unfairness during matches. In creating the match schedule, 

the total number of match sessions will be allocated across the days of the competition. In the creation of 

pencak silat match schedules, the main objective is to conduct match sessions with optimal timing and 

maximize the number of match sessions that can be held. This requires balancing between time efficiency 

and the number of match sessions conducted. Therefore, schedule planning must consider arrangements that 

minimize the time between matches while ensuring that as many match sessions as possible can be held 

within the available timeframe.  

In the District-level Pencak Silat Championship in Sleman Regency in 2023, the optimization of match 

sessions is necessary because the number of match sessions exceeds the initial planning. The first day of this 

competition is optimized using the KP because this approach allows for the selection of a combination of 

matches that will provide maximum value within the available time constraint. Therefore, the use of this 

approach aids in creating an efficient and optimal schedule for the first day of the competition. The KP used 

to maximize the number of match sessions in pencak silat competitions is the Bounded Knapsack Problem. 

This problem will be solved using the Branch and Bound method 
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2. RESEARCH METHODS 

The main aim of this research is to solve the model formulation to maximize the number of pencak 

silat match sessions on the first day using the Branch and Bound method. The model formulation for 

maximizing the number of pencak silat match sessions takes the form of a Bounded Knapsack Problem. The 

software LINDO 6.1 is employed in implementing the Branch and Bound method. 

2.1 Bounded Knapsack Problem 

Given a collection of item types 𝑵 = {𝟏, … , 𝒏}, where each item of type 𝒋 (𝒙𝒋)  has a value (𝒗𝒋) and 

weight (𝒘𝒋). There are 𝒃𝒋 items of type 𝒋. The formulation of the Bounded Knapsack Problem (BKP) is 

described as follows [27]:  

𝐦𝐚𝐱 ∑ 𝒗𝒋𝒙𝒋

𝒏

𝒋=𝟏

 (𝟏) 

 subject to:  

∑ 𝒘𝒋𝒙𝒋 ≤ 𝑾

𝒏

𝒋=𝟏

 (𝟐) 

𝒙𝒋 ≤ 𝒃𝒋;   𝒋 = 𝟏, 𝟐, … , 𝒏 (𝟑) 

𝒙𝒋 ∈ 𝑵𝟎;   𝒋 = 𝟏, 𝟐, … , 𝒏 (𝟒) 

 

2.2 Branch and Bound Method 

The branch and Bound method is typically represented using enumeration trees [28]. For example, 

suppose the solution in 𝑳𝑷 with the value of 𝒙𝟐 = 𝟑. 𝟒 is a fraction, then branching is conducted by creating 

new constraints, namely 𝒙𝟐 ≤ 𝟑 and 𝒙𝟐 ≥ 𝟒. After obtaining solutions for 𝑨 and 𝑩, they are re-evaluated. If 

the value of 𝒙𝟏 is a fractional number, then new constraints are created with integers below and above it. The 

process ends when integer solutions are obtained for each branch. Figure 1 depicted below showcases the 

settlement procedure employing the Branch and Bound.  

 

 
Figure 1. Branch and Bound Method Representation with Enumeration Trees 

The steps in the Branch and Bound Method are as follows:  

1. LP Relaxation. The KP is part of Integer Linear Programming (ILP). ILP is transformed into LP. LP 

is solved using the Simplex Method to obtain a solution. If the obtained solution is a fraction, branching 

is then initiated. 

𝐿𝑃 

𝐴 𝐵 

𝑥2 ≤ 3 𝑥2 ≥ 4 

𝐶 𝐷 

𝑥1 ≤ 0 𝑥1 ≥ 1 

𝐸 𝐹 

𝑥1 ≤ 0 𝑥1 ≥ 1 

𝐺 𝐻 
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2. Branching. Fractional solutions are branched into integer values above and below them. These integer 

values are then inserted into the constraints of the original problem and the solutions are checked. If a 

fractional value is obtained, branching continues until an optimal integer value is achieved. 

The search strategy in the Branch and Bound Algorithm determines the order in which unexplored 

subproblems in the enumeration tree are explored. One of the search strategies that can be used is Breadth-

First Search (BrFS) [29]. BrFS can find the optimal solution closest to the root. In this article, it is described 

how to obtain an integer solution from the subproblem closest to the root. For other solutions, the process can 

be continued in the same way until all integer solutions are found using the Branch and Bound method. 

In this article, parts of the enumeration trees in the Branch and Bound method are highlighted in red to 

indicate no feasible solution, while those highlighted in yellow represent a feasible solution. "No feasible 

solution" means that there is no solution that satisfies all the constraints in the given model. Unhighlighted 

parts imply that the obtained result is not an integer. 

2.3 Data 

The research data for this study utilized information from the pencak silat championship in the District-

level Pencak Silat Championship in Sleman Regency in 2023. The acquired data includes the match 

categories, number of match sessions, duration of each match session, and the match schedule for the first 

day. There are 2 arenas, each arena is allocated 450 minutes for matches on the first day, resulting in a total 

of 900 minutes. The competition comprises three levels: Elementary School (SD), Junior High School (SMP), 

and Senior High School (SMA). Each level consists of two categories: Tanding and Artistic. Details regarding 

the number of match sessions and the duration of each match session can be found in Table 1. 

Table 1. Number and Duration of Each Match Categories 

Match Categories Number of Matches Duration of Match 

Elementary School 
Tanding 154 5 minutes 

Artistic 32 6 minutes 

Junior High School 
Tanding 237 8 minutes 

Artistic 13 6 minutes 

Senior High School 
Tanding 187 8 minutes 

Artistic 12 9 minutes 

 

2.4 Formulation of Bounded Knapsack Problem 

We assume that the notations utilized in formulating the maximization problem of the number of 

pencak silat match sessions are as follows. 

𝒙𝟏 : Tanding category for Elementary School  

𝒙𝟐 : Artistic category for Elementary School  

𝒙𝟑 : Tanding category for Junior High School  

𝒙𝟒 : Artistic category for Junior High School  

𝒙𝟓 : Tanding category for Senior High School  

𝒙𝟔 : Artistic category for Senior High School  

𝒘𝒋 : Duration for each match session of 𝒙𝒋; 𝒋 = 𝟏, 𝟐, … , 𝟔  

𝒃𝒋 : Availability of 𝒙𝒋; 𝒋 = 𝟏, 𝟐, … , 𝟔 

𝒗𝒋 : Value of 𝒙𝒋; 𝒋 = 𝟏, 𝟐, … , 𝟔. In this case 𝒗𝟏 = 𝒗𝟐 = ⋯ = 𝒗𝟔 = 𝟏. 

𝑾 : Match time on the first day 

 

The BKP formulation of maximizing the number of pencak silat match sessions can be seen as follows: 

𝐦𝐚𝐱(𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 + 𝒙𝟒 + 𝒙𝟓 + 𝒙𝟔) (𝟓)
subject to: 

𝟓𝒙𝟏 + 𝟔𝒙𝟐 + 𝟖𝒙𝟑 + 𝟔𝒙𝟒 + 𝟖𝒙𝟓 + 𝟗𝒙𝟔 ≤ 𝟗𝟎𝟎 (𝟔) 

𝒙𝟏 ≤ 𝟏𝟓𝟒 (𝟕) 

𝒙𝟐 ≤ 𝟑𝟐 (𝟖) 

𝒙𝟑 ≤ 𝟐𝟑𝟕 (𝟗) 
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𝒙𝟒 ≤ 𝟏𝟑 (𝟏𝟎) 

𝒙𝟓 ≤ 𝟏𝟖𝟕 (𝟏𝟏) 

𝒙𝟔 ≤ 𝟏𝟐 (𝟏𝟐) 
𝒙𝒋 ∈ 𝑵𝟎 (𝟏𝟑) 

 

3. RESULTS AND DISCUSSION 

In this section, we discuss the solution of maximizing the number of match sessions in pencak silat 

competitions using the Branch and Bound method. The solution to the model maximizing the number of 

pencak silat match sessions on the first day begins by formulating the LP relaxation of the model as follows: 

Maximizing Equation (5), subject to Equation (6)-(12) and  

𝒙𝒋 ∈ ℝ (14) 

The solution of the LP relaxation using LINDO 6.1 is obtained, 𝑥1 = 154, 𝑥2 = 21.667, 𝑥3 = 0, 𝑥4 =
0, 𝑥5 = 0, 𝑥6 = 0 and 𝑍 = 175.667. The result obtained is not an integer, so the next step is adding 

constraints: 𝑥2 ≤ 21 for part A and 𝑥2 ≥ 22 for part B. This is done to obtain all potential solutions to the 

problem. The solutions in parts A and B were executed using LINDO 6.1. The solution diagram for the 

Branch and Bound method can be seen in Figure 2. 

 
Figure 2. The Solution Diagram for the Initial Branching Step in the Branch and Bound method. 

 

Based on the diagram in Figure 2, the solutions for parts A and B are not integers. In part A, an 

additional constraint of 𝑥2 ≤ 8 for part C and 𝑥2 ≥ 9 for part D is added. In part B, an additional constraint 

of 𝑥1 ≤ 153 for part E and 𝑥1 ≥ 154 for part F is added. The solutions in parts C, D, E, and F were 

executed using LINDO 6.1. The solution diagram for the Branch and Bound method can be seen in Figure 

3. 

  
(a) (b) 

Figure 3. The Solution Diagram for the Second Branching Step in the Branch and Bound method, 

(a) Diagram for part A, (b) Diagram for part B. 

 
Based on the diagram in Figure 3, the solutions for parts C, D, and E are not integers. Constraints are 

then added to these sections following the same procedure as earlier. The addition of these constraints results 

in parts G, H, I, J, K, and L. These parts are executed using LINDO 6.1. The solution diagram for the Branch 

and Bound method can be seen in Figure 4. 

 

A. 𝑍 = 175.667 

𝑥1 = 154,  𝑥2 = 8.667 
 𝑥3 = 0,  𝑥4 = 13 
 𝑥5 = 0,  𝑥6 = 0 

C.  𝑍 = 175.5 

𝑥1 = 154,  𝑥2 = 8 
 𝑥3 = 0,  𝑥4 = 13 
 𝑥5 = 0.5,  𝑥6 = 0 

D.  𝑍 = 175.667 

𝑥1 = 154,  𝑥2 = 21 
 𝑥3 = 0,  𝑥4 = 0.667 

 𝑥5 = 0,  𝑥6 = 0 

𝑥2 ≤ 8 𝑥2 ≥ 9 

B.  𝑍 = 175.6 

𝑥1 = 153.6,  𝑥2 = 22 
 𝑥3 = 0,  𝑥4 = 13 
 𝑥5 = 0,  𝑥6 = 0 

E.  𝑍 = 175.5 

𝑥1 = 153,  𝑥2 = 22.5 
 𝑥3 = 0,  𝑥4 = 0 
 𝑥5 = 0,  𝑥6 = 0 

F.   

No Feasible Solution 

𝑥1 ≤ 153 𝑥1 ≥ 154 

𝑍 = 175.667 
𝑥1 = 154,  𝑥2 = 21.667 

 𝑥3 = 0,  𝑥4 = 0 
 𝑥5 = 0,  𝑥6 = 0 

A.  𝑍 = 175.667 

𝑥1 = 154,  𝑥2 = 8.667 
 𝑥3 = 0,  𝑥4 = 13 
 𝑥5 = 0,  𝑥6 = 0 

B.  𝑍 = 175.6 

𝑥1 = 153.6,  𝑥2 = 22 
 𝑥3 = 0,  𝑥4 = 13 
 𝑥5 = 0,  𝑥6 = 0 

𝑥2 ≤ 21 𝑥2 ≥ 22 
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(a) (b) 

 
(c) 

Figure 4. The Solution Diagram for the Third Branching Step in the Branch and Bound method, 

(a) Diagram for part C, (b) Diagram for part D, (c) Diagram for part E. 

Based on the diagram in Figure 4 the solutions for parts G, H, I, J, K, and L are not integers. In these 

sections, additional constraints are added following the same procedure as before. The outcome of adding 

these constraints leads to parts M, N, O, P, Q, R, S, T, U, V, W, and X. Subsequently, these parts are solved 

using LINDO 6.1. The solution diagram for the Branch and Bound method can be seen in Figure 5. 

 

  
(a) (b) 

  
(c) (d) 

G.  𝑍 = 175.5 

𝑥1 = 154,  𝑥2 = 8 
 𝑥3 = 0.5,  𝑥4 = 13 

 𝑥5 = 0,  𝑥6 = 0 

H.  𝑍 = 175.3 

𝑥1 = 154,  𝑥2 = 8 
 𝑥3 = 0,  𝑥4 = 12.33 

 𝑥5 = 1 𝑥6 = 0 

𝑥5 ≤ 0 𝑥5 ≥ 1 

C.  𝑍 = 175.5 

𝑥1 = 154,  𝑥2 = 8 
 𝑥3 = 0,  𝑥4 = 13 
 𝑥5 = 0.5,  𝑥6 = 0 

D.  𝑍 = 175.667 

𝑥1 = 154,  𝑥2 = 21 
 𝑥3 = 0,  𝑥4 = 0.667 

 𝑥5 = 0,  𝑥6 = 0 

I. 𝑍 = 175.5 
𝑥1 = 154,  𝑥2 = 21 
 𝑥3 = 0.5,  𝑥4 = 0 
 𝑥5 = 0,  𝑥6 = 0 

J. 𝑍 = 175.667 
𝑥1 = 154,  𝑥2 = 20.667 

 𝑥3 = 0,  𝑥4 = 1 
 𝑥5 = 0,  𝑥6 = 0 

𝑥4 ≤ 0 𝑥4 ≥ 1 

E.  𝑍 = 175.5 

𝑥1 = 153,  𝑥2 = 22.5 
 𝑥3 = 0,  𝑥4 = 0 
 𝑥5 = 0,  𝑥6 = 0 

K.  𝑍 = 175.5 

𝑥1 = 154,  𝑥2 = 22 
 𝑥3 = 0,  𝑥4 = 0.5 
 𝑥5 = 0,  𝑥6 = 0 

L. 𝑍 = 175.4 
𝑥1 = 152.4,  𝑥2 = 23 

 𝑥3 = 0,  𝑥4 = 0 
 𝑥5 = 0,  𝑥6 = 0 

𝑥2 ≤ 22 𝑥2 ≥ 23 

M. 𝑍 = 175.444 

𝑥1 = 154,  𝑥2 = 8 
 𝑥3 = 0,  𝑥4 = 13 

 𝑥5 = 0,  𝑥6 = 0.444 

N. 𝑍 = 175.33 

𝑥1 = 154,  𝑥2 = 8 
 𝑥3 = 1,  𝑥4 = 12.33 

 𝑥5 = 0,  𝑥6 = 0 

𝑥3 ≤ 0 𝑥3 ≥ 1 

G.  𝑍 = 175.5 

𝑥1 = 154,  𝑥2 = 8 
 𝑥3 = 0.5,  𝑥4 = 13 

 𝑥5 = 0,  𝑥6 = 0 

H.  𝑍 = 175.3 

𝑥1 = 154,  𝑥2 = 8 
 𝑥3 = 0,  𝑥4 = 12.33 

 𝑥5 = 1 𝑥6 = 0 

O. 𝑍 = 175.25 

𝑥1 = 154,  𝑥2 = 8 
 𝑥3 = 0.25,  𝑥4 = 12 

 𝑥5 = 1,  𝑥6 = 0 

P. 𝑍 = 175.333 

𝑥1 = 154,  𝑥2 = 7.333 

 𝑥3 = 0,  𝑥4 = 13 

 𝑥5 = 1,  𝑥6 = 0 

 

𝑥4 ≤ 12 𝑥4 ≥ 13 

Q. 𝑍 = 175.5 

𝑥1 = 154,  𝑥2 = 21 
 𝑥3 = 0,  𝑥4 = 0 

 𝑥5 = 0.5,  𝑥6 = 0 

R. 𝑍 = 175.333 

𝑥1 = 154,  𝑥2 = 20.333 
 𝑥3 = 1,  𝑥4 = 0 
 𝑥5 = 0,  𝑥6 = 0 

 

𝑥3 ≤ 0 𝑥3 ≥ 1 

I. 𝑍 = 175.5 
𝑥1 = 154,  𝑥2 = 21 
 𝑥3 = 0.5,  𝑥4 = 0 
 𝑥5 = 0,  𝑥6 = 0 

J. 𝑍 = 175.667 
𝑥1 = 154,  𝑥2 = 20.667 

 𝑥3 = 0,  𝑥4 = 1 
 𝑥5 = 0,  𝑥6 = 0 

 

S. 𝑍 = 175.667 

𝑥1 = 154,  𝑥2 = 20 

 𝑥3 = 0,  𝑥4 = 1.667 

 𝑥5 = 0,  𝑥6 = 0 

T.  𝑍 = 175.6 

𝑥1 = 153.6,  𝑥2 = 21 

 𝑥3 = 0,  𝑥4 = 1 

 𝑥5 = 0,  𝑥6 = 0 

 

𝑥2 ≤ 20 𝑥2 ≥ 21 
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(e) (f) 

Figure 5. The Solution diagram for the fourth branching step in the Branch and Bound method, 

(a) Diagram for part G, (b) Diagram for part H, (c) Diagram for part I, (d) Diagram for part J, (e) 

Diagram for part K, (f) Diagram for part L. 

 
Based on the diagram in Figure 5, the solutions for parts M, N, O, P, Q, R, S, T, U, V, W, and X are 

not integers. Additional constraints are introduced in these sections following the same steps as previously. 

These constraints result in the creation of parts Y, Z, AA, AB, AC, AD, AF, AG, AH, AI, AJ, AK, AL, AM, 

AN, AO, AP, AQ, AR, AS, and AT. These parts are then resolved using LINDO 6.1. The solution outcomes 

from the branch and bound method are in Figure 6. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

U. 𝑍 = 175.375 

𝑥1 = 153,  𝑥2 = 22 

𝑥3 = 0,  𝑥4 = 0 

𝑥5 = 0.375,  𝑥6 = 0 

V. 𝑍 = 175.4 

𝑥1 = 152.4,  𝑥2 = 22 

𝑥3 = 0,  𝑥4 = 1 

𝑥5 = 0,  𝑥6 = 0 

𝑥4 ≤ 0 𝑥4 ≥ 1 

K.  𝑍 = 175.5 

𝑥1 = 154,  𝑥2 = 22 
 𝑥3 = 0,  𝑥4 = 0.5 
 𝑥5 = 0,  𝑥6 = 0 

L. 𝑍 = 175.4 
𝑥1 = 152.4,  𝑥2 = 23 

 𝑥3 = 0,  𝑥4 = 0 
 𝑥5 = 0,  𝑥6 = 0 

W. 𝑍 = 175.33 

𝑥1 = 152,  𝑥2 = 23.33 

𝑥3 = 0,  𝑥4 = 0 

𝑥5 = 0 𝑥6 = 0 

X. No Feasible Solution 

𝑥1 ≤ 152 𝑥1 ≥ 153 

Y. 𝑍 = 175 

𝑥1 = 154,  𝑥2 = 8 

𝑥3 = 0,  𝑥4 = 13 

𝑥5 = 0,  𝑥6 = 0 

Z. 𝑍 = 175.167 

𝑥1 = 154,  𝑥2 = 8 

 𝑥3 = 0,  𝑥4 = 12.167 

 𝑥5 = 0,  𝑥6 = 1 

𝑥5 ≤ 0 𝑥5 ≥ 1 

M. 𝑍 = 175.444 

𝑥1 = 154,  𝑥2 = 8 
 𝑥3 = 0,  𝑥4 = 13 

 𝑥5 = 0,  𝑥6 = 0.444 

N. 𝑍 = 175.33 

𝑥1 = 154,  𝑥2 = 8 
 𝑥3 = 1,  𝑥4 = 12.33 

 𝑥5 = 0,  𝑥6 = 0 

AA. 𝑍 = 175.25 

𝑥1 = 154,  𝑥2 = 8 

 𝑥3 = 1.25,  𝑥4 = 12 

 𝑥5 = 0,  𝑥6 = 0 

 

AB. 𝑍 = 175.33 

𝑥1 = 154,  𝑥2 = 7.333 

𝑥3 = 1,  𝑥4 = 13 

𝑥5 = 0,  𝑥6 = 0 

 

𝑥4 ≤ 12 𝑥4 ≥ 13 

AC. 𝑍 = 175.25 

𝑥1 = 154,  𝑥2 = 8 
 𝑥3 = 0,  𝑥4 = 12 

 𝑥5 = 1.25,  𝑥6 = 0 

AD. 𝑍 = 175 

𝑥1 = 154,  𝑥2 = 7 
 𝑥3 = 1,  𝑥4 = 12 
 𝑥5 = 1,  𝑥6 = 0 

𝑥3 ≤ 0 𝑥3 ≥ 1 

O. 𝑍 = 175.25 

𝑥1 = 154,  𝑥2 = 8 
 𝑥3 = 0.25,  𝑥4 = 12 

 𝑥5 = 1,  𝑥6 = 0 

P. 𝑍 = 175.333 

𝑥1 = 154,  𝑥2 = 7.333 

 𝑥3 = 0,  𝑥4 = 13 

 𝑥5 = 1,  𝑥6 = 0 

AE. 𝑍 = 175.25 

𝑥1 = 154,  𝑥2 = 7 
 𝑥3 = 0,  𝑥4 = 13 

 𝑥5 = 1.25,  𝑥6 = 0 

AF. 𝑍 = 175.2 

𝑥1 = 153.2,  𝑥2 = 8 
 𝑥3 = 0,  𝑥4 = 13 
 𝑥5 = 1,  𝑥6 = 0 

𝑥2 ≤ 7 𝑥2 ≥ 8 

AG. 𝑍 = 175,444 

𝑥1 = 154,  𝑥2 = 21 
 𝑥3 = 0,  𝑥4 = 0 

 𝑥5 = 0,  𝑥6 = 0.444 

AH. 𝑍 = 175.33 

𝑥1 = 154,  𝑥2 = 20.33 
 𝑥3 = 0,  𝑥4 = 0 
 𝑥5 = 1,  𝑥6 = 0  

𝑥5 ≤ 0 𝑥5 ≥ 1 

Q. 𝑍 = 175.5 

𝑥1 = 154,  𝑥2 = 21 
 𝑥3 = 0,  𝑥4 = 0 

 𝑥5 = 0.5,  𝑥6 = 0 

R. 𝑍 = 175.333 

𝑥1 = 154,  𝑥2 = 20.333 
 𝑥3 = 1,  𝑥4 = 0 
 𝑥5 = 0,  𝑥6 = 0 

AI. 𝑍 = 175.25 

𝑥1 = 154,  𝑥2 = 20 
 𝑥3 = 1.25,  𝑥4 = 0 

 𝑥5 = 0,  𝑥6 = 0 

AJ. 𝑍 = 175.2 

𝑥1 = 153.2,  𝑥2 = 21 
 𝑥3 = 1,  𝑥4 = 0 
 𝑥5 = 0,  𝑥6 = 0 

𝑥2 ≤ 20 𝑥2 ≥ 21 

AK. 𝑍 = 175.5 

𝑥1 = 154,  𝑥2 = 20 
 𝑥3 = 0.5,  𝑥4 = 1 
 𝑥5 = 0,  𝑥6 = 0 

AL. 𝑍 = 175.667 

𝑥1 = 154,  𝑥2 = 19.667 
 𝑥3 = 0,  𝑥4 = 0 
 𝑥5 = 1,  𝑥6 = 0 

𝑥4 ≤ 0 𝑥4 ≥ 1 

S. 𝑍 = 175.667 

𝑥1 = 154,  𝑥2 = 20 

 𝑥3 = 0,  𝑥4 = 1.667 

 𝑥5 = 0,  𝑥6 = 0 

 

T.  𝑍 = 175.6 

𝑥1 = 153.6,  𝑥2 = 21 

 𝑥3 = 0,  𝑥4 = 1 

 𝑥5 = 0,  𝑥6 = 0 

AM. 𝑍 = 175.5 

𝑥1 = 153,  𝑥2 = 21 
 𝑥3 = 0,  𝑥4 = 15 
 𝑥5 = 0,  𝑥6 = 0 

AN. No 

Feasible 
Solution 

𝑥1 ≤ 153 𝑥1 ≥ 154 

AO. 𝑍 = 175.375 

𝑥1 = 153,  𝑥2 = 22 
 𝑥3 = 0.375,  𝑥4 = 0 

 𝑥5 = 0,  𝑥6 = 0 

AP. 𝑍 = 175 

𝑥1 = 152,  𝑥2 = 22 
 𝑥3 = 0,  𝑥4 = 0 
 𝑥5 = 1,  𝑥6 = 0 

𝑥5 ≤ 0 𝑥5 ≥ 1 

U. 𝑍 = 175.375 

𝑥1 = 153,  𝑥2 = 22 

𝑥3 = 0,  𝑥4 = 0 

𝑥5 = 0.375,  𝑥6 = 0 
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(j) (k)  

Figure 6. The Solution Diagram for the Fifth Branching Step in the Branch and Bound Method, 

(a) Diagram for part M, (b) Diagram for part N, (c) Diagram for part O, (d) Diagram for part P, (e) Diagram 

for part Q, (f) Diagram for part R, (g) Diagram for part S, (h) Diagram for part T, (i) Diagram for part U, 

(j) Diagram for part V, (k) Diagram for part W. 

 

Based on the diagram in Figure 6, there are 3 feasible solutions. Next, each part that is not integer will 

be treated similarly to the previous ones. Overall, all parts are depicted as shown in Figure 7. 

 

 
Figure 7. Diagram for all Parts of Branch and Bound Method 

Based on the potential solutions in Figure 7, the potential solutions obtained are parts Y, AD, and AP 

with the maximum value 𝑍 = 175. In part Y, the solution is 𝑥1 = 154,  𝑥2 = 8,  𝑥3 = 0,  𝑥4 = 13,  𝑥5 =
0,  𝑥6 = 0. In part AD, the solution is 𝑥1 = 154,  𝑥2 = 7,  𝑥3 = 1,  𝑥4 = 12,  𝑥5 = 1,  𝑥6 = 0. In part AP, the 

solution is 𝑥1 = 152,  𝑥2 = 22,  𝑥3 = 0,  𝑥4 = 0,  and 𝑥5 = 1,  𝑥6 = 0. For the remaining parts that are not 

integers, the branching process continues until all solutions are integers. The resulting minimum value of Z 

obtained is 168. The problem can be solved using integer programming directly in LINDO. The output from 

the integer programming in LINDO will be part of the solution set generated by the Branch and Bound method 

 

 

 

V. 𝑍 = 175.4 

𝑥1 = 152.4,  𝑥2 = 22 

𝑥3 = 0,  𝑥4 = 1 

𝑥5 = 0,  𝑥6 = 0 

 

AQ. 𝑍 = 175.33 

𝑥1 = 152,  𝑥2 = 22 
 𝑥3 = 0,  𝑥4 = 1.33 

 𝑥5 = 0,  𝑥6 = 0 

AR. No Feasible 

Solution 

𝑥1 ≤ 152 𝑥1 ≥ 153 

W. 𝑍 = 175.33 

𝑥1 = 152,  𝑥2 = 23.33 

𝑥3 = 0,  𝑥4 = 0 

𝑥5 = 0 𝑥6 = 0 

AS. 𝑍 = 175.33 

𝑥1 = 152,  𝑥2 = 23 
 𝑥3 = 0,  𝑥4 = 0.33 

 𝑥5 = 0,  𝑥6 = 0 

AT. 𝑍 = 175.2 

𝑥1 = 151.2,  𝑥2 = 24 
 𝑥3 = 0,  𝑥4 = 0 
 𝑥5 = 0,  𝑥6 = 0 

𝑥2 ≤ 22 𝑥2 ≥ 23 
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4. CONCLUSIONS 

Based on the result, the conclusions that can be drawn specifically and generally from this study 

are as follows: 

1. The application of the Branch and Bound method in maximizing the number of pencak silat match sessions 

in the District-level Pencak Silat Championship in Sleman Regency in 2023 on the first day gets the 

optimal result. The first three combination solutions are obtained, namely sections Y, AD, and AP with a 

total of 175 match sessions. In part Y, the solutions are 154 matches of the Tanding category for 

Elementary School, 8 matches of the Artistic Category for Elementary School, and 13 matches of the 

Artistic Category for Junior High School. In part AD, the solutions are 154 matches of the Tanding 

category for Elementary School, 7 matches of the Artistic Category for Elementary School, 1 match 

Tanding Category for Junior High School, 12 matches Artistic Category for Junior High School, and 1 

match for the Tanding Category for Senior High School. In part AP, the solutions are 152 matches of the 

Tanding category for Elementary School, 22 matches the Artistic Category for Elementary School, and 1 

matches of the Tanding Category for Senior High School. Other combinations of solutions can be obtained 

by completing the branch and bound method, including the solution obtained from integer programming 

with LINDO. 

2. The problem of maximizing the number of pencak silat match sessions on the first day, modeled using the 

Bounded Knapsack Problem, can be addressed using the Branch and Bound method. The result obtained 

through the Branch and Bound method confirms the feasibility of conducting the maximum number of 

match sessions. The objective value obtained from the Branch and Bound method decreases as it descends, 

indicating a diminishing maximum value. This is attributed to the equal importance values across each 

category. Subsequent research may involve assigning different importance values to each matched 

category, applying it to other cases, or using other resolution methods. 
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