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ABSTRACT 

Article History: 
Hepatitis B is an infectious disease that causes inflammation of the liver due to infection 

with the Hepatitis B virus. Hepatitis B is divided into two phases: the acute phase and the 

chronic phase. Hepatitis B virus (HBV) can be prevented through vaccination and treatment 
of susceptible and infected individuals. The spread of the virus can be modeled using 

mathematical modeling of epidemics. In this study, the model used consists of four classes, 

namely vulnerable individuals (S), acute individuals (A), chronic individuals (C), and 

recovered individuals (R). The purpose of this study is to explain the formation of the 
Hepatitis B disease epidemic model, analyze the stability of the model, perform simulations, 

and conduct parameter sensitivity analysis on the basic reproductive number. The result of 

this study is the construction of an epidemic model of the spread of hepatitis B disease in 

the form of a SACR model. This model takes into account the transmission that occurs not 
only through interactions between susceptible individuals and chronic individuals but also 

through the birth process, which occurs in chronic subpopulations because babies born can 

be chronically infected (vertical transmission from mother to baby). The model produces 

two equilibrium points, the disease-free equilibrium and the endemic equilibrium. Both 
points were analyzed for stability using the linearization method and were found to be 

asymptotically stable. Furthermore, the model simulation was carried out using the fourth-

order Runge-Kutta method and sensitivity analysis of the basic reproduction number. From 

the results obtained, it can be concluded that the spread of hepatitis B disease can be 
minimized by reducing contact between susceptible and chronic individuals, increasing 

treatment of chronic individuals, and increasing the number of vaccinated individuals in 

susceptible populations. 
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1. INTRODUCTION 

Viral hepatitis is a systemic infection that predominantly affects the liver. Almost all cases of viral 

hepatitis are caused by one of the five types of viruses, namely Hepatitis A virus (HAV), Hepatitis B virus 

(HBV), Hepatitis C virus (HCV), Hepatitis D virus (HDV), and Hepatitis E virus (HEV). Other types of 

viruses transmitted post-transfusion, such as the Hepatitis G virus and TT virus, have been identified but have 

not been confirmed to be the same as other hepatitis. All types of hepatitis viruses that affect humans are 

RNA viruses, except the hepatitis B virus, which is a DNA virus [1]. 

 Hepatitis B is an infectious disease that causes inflammation of the liver from infection with the 

Hepatitis B virus. It should be noted that the hepatitis B virus (HBV) is not cell-destroying (cytopathic), but 

rather takes over the host system and produces cancer cells. Once inside the body, HBV infects hepatocyte 

cells in the liver. The immune system, in response to such an infection, causes inflammation of the liver. 

Most hepatitis B infections are caused by viruses, bacteria, or active exposure to alcohol and drugs. Usually, 

HBV infection has two stages: incubation and chronic. The former refers to the initial six months of HBV 

infection after exposure. During this phase, most immune systems are strong enough to clear the hepatitis B 

virus from the infected body, and as a result, one can recover in less than a year. For other individuals with 

weakened immunity, the infection spreads gradually and leads to a more severe phase of hepatitis B, i.e., the 

chronic stage [2].  Half of all hepatitis B patients are known to be unable to transmit the viral infection after 

7 weeks from the onset of symptoms. In addition, all patients who do not have chronic hepatitis B infection 

will become Hepatitis B Surface Antigen (HbsAg) negative within 15 weeks after the onset of symptoms. 

The incubation period in patients with hepatitis B generally occurs for a long time and is different from the 

incubation period of other viral diseases. WHO states that it takes about 30-60 days to detect the presence of 

the virus. Only then will symptoms appear for an average of 90 days, or a range of 60-150 days after exposure 

to the virus. The incubation period for hepatitis B (HBV) is 45-160 days. Please also note that the hepatitis B 

virus (HBV) can survive outside the body and can cause infection for approximately 7 days [3]. 

Hepatitis B is an infectious disease that is mostly transmitted from mother to child. The disease can be 

transmitted through blood, semen, breast milk, and other body fluids. Other than sexually, transmission can 

occur vertically in utero, which generally occurs due to antepartum hemorrhage and placental rupture, or 

through perinatal transmission by mothers who are seropositive with HBV viremia and transmit it to their 

babies during or shortly after delivery [4]. Data from Kementerian Kesehatan (Kemenkes) mentioned that 

there will be 50,744 pregnant women infected with hepatitis B in 2022. According to the provinces, the most 

hepatitis B-positive pregnant women came from East Java, with 8,269, or 16.3%, of the total hepatitis B-

positive pregnant women nationally last year. West Java was next, with 6,779 pregnant women infected with 

hepatitis B last year. This was followed by Central Java and East Nusa Tenggara [5].  

The spread of the hepatitis B virus can be built into a mathematical model in the form of ordinary 

differential equations [6]. Mathematical models used to determine the behavior of the spread of infectious 

diseases are called epidemic models [7]. The purpose of forming a mathematical model of the spread of the 

hepatitis B virus is to know and understand the dynamics of the spread of the virus. The dynamics of the 

spread of the disease can be known through the analysis of the stability of the equilibrium point of the hepatitis 

B virus epidemic model. In addition, the basic reproductive number can also provide information about the 

level of disease spread in a population and can be a parameter for the threshold for controlling a disease [8]. 

Many researchers have previously studied mathematical models of the hepatitis B virus. For example, 

Zhao, Xu, and Lu (2000) used partial differential equations to model the spread of the hepatitis B virus and 

concluded that vaccination coverage is the most important indicator to stop the spread of the virus [9]. Later 

research by Ullah, Khan, and Gómez-Aguilar [10], developed a mathematical model of hepatitis B virus 

infection with a population of hospitalized patients to explore the dynamics of this infection. The model is 

without control and all basic properties and results including local and global stability are presented. After 

that, the model was developed with a suitable optimal control strategy and explored the necessary optimality 

conditions using Pontryagin's maximum principle to minimize the spread of hepatitis B in the community. 

Khan, Ullah, Ali, and Zaman [11] explained the formulation of the hepatitis B epidemic model with a 

saturated incidence rate and concluded that in controlling the spread of the hepatitis B virus, it is necessary 

to isolate infected people, increase public awareness, and hospitalize treatment as control variables. 

Furthermore, the study was extended by Din, Li, and Liu [2]. Based on the mathematical model formed, it 

can be concluded that vaccination and treatment as control variables are very effective in controlling the 

spread of the hepatitis B virus.  Whereas in the research of Hasmani, Safi, and Das [12], the vulnerable 

https://www.youtube.com/watch?v=QgQeB3Pv_wQ
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subpopulation in the model formed consists of subpopulations aged less and equal to 5 years and 

subpopulations aged more than 5 years. This model discusses model parameter estimation and sensitivity 

analysis and presents simulations of the effect of several parameters on the number of subpopulations in the 

model.     

In this study, the author develops a hepatitis B model with an incubation period and considers vertical 

transmission from a pregnant mother to her baby. After the model is formed, the equilibrium point is 

determined, and the results of the model stability analysis are presented. The solution of the presented model 

is determined through the fourth-order Runge-Kutta method. This method has four function evaluations and 

has a higher solution accuracy than the previous order Runge Kutta method [13]. Finally, we will examine 

what efforts must be made to minimize the spread of the hepatitis B virus through sensitivity analysis of the 

parameters involved in the basic reproduction number and contour plot of the basic reproduction number. 

 

2. RESEARCH METHODS 

The research conducted is a type of theoretical study by reviewing the literature related to mathematical 

modeling that can be used to solve problems by first compiling the concepts as needed regarding differential 

equations, to form, analyze, and simulate an epidemic model of the hepatitis B virus in the form of a system 

of ordinary differential equations. 

In this research, the authors developed the SEIR (Susceptible, Exposed, Infected, Recovered) model 

based on the characteristics of the spread of hepatitis B. Hepatitis B virus infection has two phases, the first 

phase in the first six months of hepatitis B virus infection after exposure. In this phase, most people's immune 

systems are strong enough to recover in less than a year. Meanwhile, for other individuals with weakened 

immunity, the infection will spread gradually and lead to the more severe hepatitis B phase, the chronic 

stage. So this research was developed into a SACR model that is divided into four subpopulations: 

susceptible, denoted as (𝑺), which states the number of individuals who are healthy but susceptible to being 

infected with the hepatitis B virus; acute, denoted as (𝑨), which denotes the number of individuals infected 

with the hepatitis B virus during the incubation period (acute phase), chronic is denoted as (𝑪), which states 

the number of individuals infected with the hepatitis B virus in the chronic phase who can transmit the disease, 

and recovered is denoted as (𝑹), which states the number of individuals recovered from the hepatitis B virus. 

The steps taken in this research are as follows: 

1. Develop assumptions and explain the formation of the hepatitis B virus model based on the characteristics 

of the virus using the epidemic model. 

2. Determine the hepatitis B virus equilibrium point and basic reproduction number using the Next 

Generation Matrix method [14]  

3. Determine local stability analysis at the equilibrium point in the Hepatitis B virus epidemic model with 

the following stages: 

a. Perform linearization using the Jacobian matrix [15]. 

b. Determine the eigenvalues using the following formula: |𝑴 − 𝝀𝑰| = 𝟎 [15]-[16]. 

c. Analyzing stability using the Routh-Hurwiz Criteria approach [17]. 

4. Simulate the epidemic model of the hepatitis B virus using the fourth-order Runge-Kutta method [18]. 

5. Present the results of the sensitivity analysis using the sensitivity index of the parameters involved [19]-

[20], and [21]. 

 

3. RESULTS AND DISCUSSION 

3.1 Mathematical Model  

The assumptions in the mathematical model of the hepatitis B virus include, among others, that the 

natural death rate for each subpopulation is constant and has the same value, the vaccine is given to the 

susceptible subpopulation so that the individual becomes immune to the hepatitis B virus, and births that 

occur in each subpopulation are assumed to be susceptible subpopulations, except births occur in the chronic 

subpopulation because babies who are still in the womb or who have been born can become chronically 
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infected. This process involves the vertical transmission of the virus from a pregnant mother to her baby. The 

acutely affected subpopulation can recover naturally without any special treatment. If the chronic 

subpopulation interacts with the susceptible subpopulation, the susceptible subpopulation will become the 

acute subpopulation, and individuals in the acute subpopulation will become chronic individuals due to the 

development of the hepatitis B virus in the body. Every individual who recovers from hepatitis B virus 

infection in the chronic phase has permanent immunity and will not be infected again, and deaths due to 

hepatitis B virus can occur in the chronic subpopulation. Below is a flow diagram of the spread of the 

hepatitis B virus. 

 
 

Figure 1. Flow Diagram of the Hepatitis B Virus Epidemic Model 

Based on the flow diagram in Figure 1, it can be explained that the change in the number of susceptible 

subpopulations over time (
𝑑𝑆

𝑑𝑡
) will increase by Λ(1 − 𝜂𝐶), namely the number of babies born from the 

susceptible, acutely, and recovered subpopulations. Then the susceptible subpopulation decreases due to the 

interaction of susceptible individuals with individuals who have been infected in the chronic phase, so that 

susceptible individuals will move to the acute subpopulation of SB due to a natural death rate of 𝜇0 and a 

vaccination rate of 𝑣. Changes in the number of acute subpopulations over time (
𝑑𝐴

𝑑𝑡
)  will increase by 𝜃𝑆𝐶 

and decrease due to several factors. The first is caused by the rate of natural death, the second is caused by 

the rate of individuals recovering naturally (𝜌1) so that individuals will become recovered individuals, and 

the third is caused by the rate of development of the hepatitis B virus, which is denoted by 𝜎, so that 

individuals will become chronic individuals. The number of chronic subpopulations over time (
𝑑𝐶

𝑑𝑡
)  increases 

due to the rate of development of the hepatitis B virus and the number of babies born to the chronic 

subpopulation. Furthermore, the chronic subpopulation is reduced due to several factors: the first is caused 

by the natural death rate, the second is caused by the individual death rate due to the hepatitis B virus in the 

chronic phase (𝜇1), and the third is the individual recovery rate due to treatment in the chronic phase 

subpopulation (𝜌2). The number of recovered subpopulations over time (
𝑑𝑅

𝑑𝑡
) increases due to several factors, 

namely individuals in the susceptible subpopulation who are vaccinated against the hepatitis B virus with a 

vaccination rate of 𝑣, the natural recovery rate in the chronic subpopulation of 𝜌1, and the recovery rate due 

to treatment in the chronic subpopulation of 𝜌2. In addition, the recovered subpopulation decreases due to 

natural death at a rate of 𝜇0. 

From Figure 1, a mathematical model of the hepatitis B virus can be constructed as follows: 

𝑑𝑆

𝑑𝑡
= ⋀(1 − 𝜂𝐶) − 𝜃𝑆𝐶 − (𝑣 + 𝜇0)𝑆 

𝑑𝐴

𝑑𝑡
= 𝜃𝑆𝐶 − (𝜇0 + 𝜌1 + 𝜎)𝐴 

𝑑𝐶

𝑑𝑡
= 𝜎𝐴 − (𝜇0 + 𝜇1 + 𝜌2 − 𝜂⋀)𝐶 (1) 

𝑑𝑅

𝑑𝑡
= 𝜌1𝐴 + 𝜌2𝐶 − 𝜇0𝑅 + 𝑣𝑆 

with initial values: 𝑆(0) = 𝑆0 > 0, 𝐴(0) = 𝐴0 ≥ 0, 𝐶(0) = 𝐶0 ≥ 0, and 𝑅(0) = 𝑅0 > 0. 
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3.2 Equilibrium Point  

The equilibrium point is a point that can state that the model is in equilibrium [22], namely if the 

following conditions are met: 
𝑑𝑆

𝑑𝑡
= 0;

𝑑𝐴

𝑑𝑡
= 0;  

𝑑𝐶

𝑑𝑡
= 0;  

𝑑𝑅

𝑑𝑡
= 0 (2) 

Based on Equation (2), Equation (1) can be expressed as 

⋀(1 − 𝜂𝐶) − 𝜃𝑆𝐶 − 𝑤1𝑆 = 0 (3) 

𝜃𝑆𝐶 − 𝑤2𝐴 = 0 (4) 

𝜎𝐴 − 𝑤3𝐶 = 0 (5) 

𝜌1𝐴 + 𝜌2𝐶 − 𝜇0𝑅 + 𝑣𝑆 = 0 (6) 

Where 𝑤1 = 𝑣 + 𝜇0, 𝑤2 = 𝜇0 + 𝜌1 + 𝜎,𝑤3 = 𝜇0 + 𝜇1 + 𝜌2 − 𝜂Λ, and 𝜇0 + 𝜇1 + 𝜌2 > 𝜂Λ. 

3.2.1 Disease-Free Equilibrium Point  

The disease-free equilibrium point is a condition that shows that the value of the infected subpopulation 

is equal to zero. In this case, it states that in a population, there are no individuals infected with the hepatitis 

B virus in the incubation or chronic phase, namely 𝐴 = 𝐶 = 0. From Equation (3) – Equation (6), the 

disease-free equilibrium point is obtained as follows: 

𝑲𝟏 = (𝑆1, 𝐴1, 𝐶1, 𝑅1) = (
Λ

𝑤1
, 0,0,

𝑣Λ

𝜇0𝑤1
) 

3.2.2 Basic Reproduction Number  

The basic reproduction number states the level of transmission or spread of the virus, denoted by ℛ0. 

The stages in determining ℛ0 are as follows: 

a. The rate of change of the infected subpopulation over time is as follows: 

𝑑𝐴

𝑑𝑡
= 𝜃𝑆𝐶 − 𝑤2𝐴 

𝑑𝐶

𝑑𝑡
= 𝜎𝐴 − 𝑤3𝐶 (7) 

Equation (7) can be stated as follows. 

𝑑𝒙

𝑑𝑡
= (

𝑑𝐴

𝑑𝑡
𝑑𝐶

𝑑𝑡

) = 𝓕 − 𝓥 (8) 

Where  

𝒙 = (
𝐴
𝐶
) ∈ ℝ2,  𝓕 = (

ℱ1
ℱ2
) = (

𝜃𝑆𝐶
0
) and 𝓥 = (

𝒱1
𝒱2
) = (

𝑤2𝐴
𝑤3𝐶 − 𝜎𝐴

) 

b. The Jacobian matrix from the linearization results of Equation (8) is respectively, 

𝑫𝓕 = (

𝜕𝓕1

𝜕𝐴

𝜕𝓕1

𝜕𝐶
𝜕𝓕2

𝜕𝐴

𝜕𝓕2

𝜕𝐶

) = (
0 𝜃𝑆
0 0

)  and 𝑫𝓥 = (

𝜕𝓥1

𝜕𝐴

𝜕𝓥1

𝜕𝐶
𝜕𝓥2

𝜕𝐴

𝜕𝓥2

𝜕𝐶

) = (
𝑤2 0
−𝜎 𝑤3

).  

By considering the Jacobian of 𝑫𝓕 and 𝑫𝓥 at equilibrium point  𝑲𝟏, we get  

𝑭 = 𝑫𝓕|
𝐾1=(

Λ
𝑤1
,0,0,

𝑣Λ
𝜇0𝑤1

)
= (

0
𝜃Λ

𝑤1
0 0

) ;      𝑽 = 𝑫𝓥|
𝐾1=(

Λ
𝑤1
,0,0,

𝑣Λ
𝜇0𝑤1

)
= (

𝑤2 0
−𝜎 𝑤3

). 
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The next Generation Matrix can be determined as follows: 

𝑮 = 𝑭𝑽−𝟏 = (
0
𝜃Λ

𝑤1
0 0

)

(

 
 

1

𝑤2
0

𝜎

𝑤2𝑤3

1

𝑤3)

 
 
= (

𝜃Λ𝜎 

𝑤1𝑤2𝑤3

𝜃Λ 

𝑤1𝑤3
0 0

) 

c. The eigenvalues of the matrix 𝑮 are determined through the characteristic equation |𝑮 − 𝛽𝑰| = 0, thus 

obtained  𝛽1 = 0, atau 𝛽2 =
𝜃Λ𝜎 

𝑤1𝑤2𝑤3
. 

The basic reproduction number is defined as the dominant eigenvalue of the matrix 𝑮 [14]. Since the 

absolute value of 𝛽2 is greater than the absolute value of 𝛽1, the basic reproduction number is obtained 

as follows: 

ℛ0 =
𝜃Λ𝜎 

𝑤1𝑤2𝑤3
=

𝜃Λ𝜎 

(𝑣 + 𝜇0)(𝜇0 + 𝜌1 + 𝜎)(𝜇0 + 𝜇1 + 𝜌1 − 𝜂Λ)
 (9) 

3.2.3 Endemic Equilibrium Point  

The endemic equilibrium point is the point determined based on the solution of Equation (3) – 

Equation (6), with the condition that the number of individuals from the infected subpopulation is not equal 

to zero. In this case, the subpopulation infected with the hepatitis B virus is the acute phase and the chronic 

phase, namely 𝐴 ≠ 0, 𝐶 ≠ 0. The result of solving Equation (3) – Equation (6) obtained the endemic 

equilibrium point as follows: 

𝑲∗ = (𝑆∗, 𝐴∗, 𝐶∗, 𝑅∗) 
with 

𝑆∗ =
𝑤2𝑤3
𝜃𝜎 

 

𝐴∗ = (
𝑤1𝑤2𝑤3

2

𝜃𝜎[⋀𝜂𝜎 + 𝑤2𝑤3]
(ℛ0 − 1)) 

𝐶∗ = (
𝑤1𝑤2𝑤3

𝜃[⋀𝜂𝜎 + 𝑤2𝑤3]
(ℛ0 − 1) ) 

𝑅∗ =

(
𝑣𝑤2𝑤3
𝜃𝜎 

+ 𝜌1 (
𝑤1𝑤2𝑤3

2

𝜃𝜎[⋀𝜂𝜎 + 𝑤2𝑤3]
(ℛ0 − 1)) + 𝜌2 (

𝑤1𝑤2𝑤3
𝜃[⋀𝜂𝜎 + 𝑤2𝑤3]

(ℛ0 − 1) ))

𝜇0
 

 

3.3 Local Stability Analysis of the Model 

The local stability analysis of the Hepatitis B virus mathematical model is divided into two parts: local 

stability at the disease-free equilibrium point and local stability at the endemic equilibrium point. Equation 

(1) is linearized using the Taylor series to obtain the Jacobian matrix as follows: 

 𝑱 = (

−𝜃𝐶 − 𝑤1 0 −𝜂Λ − 𝜃𝑆 0

𝜃𝐶 −𝑤2       𝜃𝑆         0
0
𝑣

𝜎
𝜌1

     −𝑤3
        𝜌2

       0
  −𝜇0

) (10) 

 

3.3.1 Stability of Disease-free Equilibrium Point 

Based on Equation (10), the Jacobian matrix around the disease-free equilibrium point is obtained as 

follows: 
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𝑱𝐾1 =

(

  
 

−𝑤1 0 −𝜂Λ − 𝜃 (
Λ

𝑤1
) 0

0 −𝑤2        𝜃 (
Λ

𝑤1
)        0

0
𝑣

𝜎
𝜌1

       −𝑤3
          𝜌2

           0
      −𝜇0)

  
 

. 

The characteristic equation of matrix 𝑱𝐾1 is  

  |𝑱𝐾1 − 𝜆𝑰| = 0 

(−𝜇0 − 𝜆)(−𝑤1 − 𝜆) ((−𝑤2 − 𝜆)(−𝑤3 − 𝜆) − 𝜃 (
⋀

𝑤1
) (𝜎)) = 0. 

From the characteristic equation, the eigenvalues 𝜆1 = −𝜇0 < 0,  𝜆2 = −𝑤1 < 0 are obtained. As for 

the eigenvalues, they are determined through the following equation: 

(−𝑤2 − 𝜆)(−𝑤3 − 𝜆) − 𝜃 (
⋀

𝑤1
) (𝜎) = 0 (11) 

or 

𝑎0𝜆
2 + 𝑎1𝜆 + 𝑎2 = 0 (12) 

where, 

𝑎0 = 1, 𝑎1 = (𝑤2 + 𝑤3) and 𝑎2 = 𝑤2𝑤3(1 − ℛ0). 
 

Table 1. Routh-Hurwitz Polynomial of Order 2 

𝑎0𝜆
2 + 𝑎1𝜆 + 𝑎2 = 0 

𝜆2 𝑎0 𝑎2 

𝜆1 𝑎1 0 

𝜆0 𝑏1 =
𝑎1𝑎2−𝑎0𝑎3

𝑎1
  𝑏2 =

𝑎1𝑎4−𝑎0𝑎5

𝑎1
  

In Equation (12), the value of 𝑎𝑖 = 0 for 𝑖 = 3, 4, 5,… , 𝑛,  consequently the value of 𝑏2 = 0. Based 

on the Routh-Hurwitz criterion, if all terms in the first column of Table 1 are positive, then the eigenvalues 

of Equation (12) are negative or have negative real parts. So it must be shown that, 

𝑎0 > 0, 𝑎1 > 0, and 𝑎1𝑎2 − 𝑎0𝑎3 > 0 (13) 

Equation (13) is satisfied if the following conditions are obtained. 

(1) it is clear that a is positive (𝑎0 > 0) 

(2) 𝑎1 = 𝑤2 + 𝑤3 > 0 , where 𝑤2 = 𝑑0 + 𝛾1 + 𝜎 and 𝑤3 = 𝑑0 + 𝑑1 + 𝛾2 − 𝜂Λ 

if 𝑑0 + 𝑑1 + 𝛾2 > 𝜂Λ.  

(3) 𝑎1𝑎2 − 𝑎0𝑎3 = (𝑤2 +𝑤3)(𝑤2𝑤3(1 − ℛ0) > 0, if ℛ0 < 1 

 

Based on the Routh-Hurwitz criterion, it can be seen that the real parts of 𝜆3 and 𝜆4 in Equation (12) 

are negative. Since the real parts of 𝜆1, 𝜆2, 𝜆3,  and 𝜆4 are negative, the disease-free equilibrium point (𝑲𝟏) 

is locally asymptotically stable under the condition that ℛ0 < 1. 

 

3.3.2 Stability of Endemic Equilibrium Point  

Based on Equation (10), the Jacobian matrix around the endemic equilibrium point is obtained as 

follows: 

𝑱𝐾∗ =

(

  
 

−𝜃𝐶∗ −𝑤1 0 −𝜂Λ − 𝜃 (
𝑤2𝑤3
𝜃𝜎 

) 0

𝜃𝐶∗ −𝑤2      
𝑤2𝑤3
𝜎 

                  0

0
𝑣

𝜎
𝜌1

         −𝑤3  
            𝜌2

             0
        −𝜇0)
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The characteristic equation of matrix 𝑱𝐾∗ is   |𝑱𝐾∗ − 𝜆𝑰| = 0, thus 

(−𝜇0 − 𝜆) (((−𝜃𝐶
∗ − 𝑤1) − 𝜆)((−𝑤2 − 𝜆)(−𝑤3 − 𝜆) − 𝑤2𝑤3) + (𝜃𝐶

∗)(−𝜂Λ𝜎 − 𝑤2𝑤3)) = 0. 

From the characteristic equation, the eigenvalue 𝜆1 = −𝜇0 < 0 is obtained. As for the eigenvalues, 
they are determined by the following equation:  
 

𝑎0𝜆
3 + 𝑎1𝜆

2 + 𝑎2𝜆 + 𝑎3 = 0 (14) 
where 

𝑎0 = 1,  

𝑎1 = (𝜃𝐶
∗ +𝑤1 +𝑤2 +𝑤3) = (

𝑤1𝑤2𝑤3

Λ𝜂𝜎+𝑤2𝑤3
(ℛ0 − 1)) + 𝑤1 +𝑤2 +𝑤3,  

𝑎2 = (𝜃𝐶
∗ +𝑤1)(𝑤2 + 𝑤3) = (

𝑤1𝑤2𝑤3
Λ𝜂𝜎 + 𝑤2𝑤3

(ℛ0 − 1) + 𝑤1) (𝑤2 + 𝑤3), 

𝑎3 = (𝜃𝐶
∗) (𝜎𝜂Λ + 𝑤2𝑤3). 

The real part of the eigenvalues of 𝜆2, 𝜆3 and 𝜆4 in Equation (14) can be investigated using the following 
Routh-Hurwitz criteria.  

 
Table 2. Routh-Hurwitz Polynomial of Order 3 

𝑎0𝜆
3 + 𝑎1𝜆

2 + 𝑎2𝜆 + 𝑎3 = 0 

𝜆3 𝑎0 𝑎2 

𝜆2 𝑎1 𝑎3 

𝜆1 𝑏1 =
𝑎1𝑎2−𝑎0𝑎3

𝑎1
  𝑏2 =

𝑎1𝑎4−𝑎0𝑎5

𝑎1
  

𝜆0 𝑐1 =
𝑏1𝑎3−𝑎1𝑏2

𝑏1
  𝑐2 =

𝑏1𝑎5−𝑎1𝑏3

𝑏1
  

In Equation (14), the value of 𝑎𝑖 = 0 for 𝑖 = 4, 5, 6,… , 𝑛,  consequently the value of 𝑏2,  𝑏3, and 𝑐2 

equal to zero.  Based on the Routh-Hurwitz criterion, if all terms in the first column of Table 2 are positive, 

then the eigenvalues of Equation (14) are negative or have negative real parts. So it must be shown that, 

𝑎0 > 0, 𝑎1 > 0, 𝑎1𝑎2 − 𝑎0𝑎3 > 0, and 
𝑏1𝑎3 − 𝑎1𝑏2

𝑏1
= 𝑎3 > 0 (15) 

Equation (15) is satisfied if the following conditions are obtained. 

(1) it is clear that 𝑎0 = 1 is positive (𝑎0 > 0) 

(2) 𝑎1 = (
𝑤1𝑤2𝑤3

⋀𝜂𝜎+𝑤2𝑤3
(ℛ0 − 1)) + 𝑤1 +𝑤2 + 𝑤3 > 0 if ℛ0 > 1.  

(3) 𝑎1𝑎2 − 𝑎0𝑎3 

= (𝜃𝐶∗ +𝑤1 +𝑤2 +𝑤3)(𝜃𝐶
∗ + 𝑤1)(𝑤2 +𝑤3) − (𝜃𝐶

∗) (𝜎𝜂Λ + 𝑤2𝑤3)  

= (𝜃𝐶∗ +𝑤1 +𝑤2 +𝑤3)(𝜃𝐶
∗𝑤2 + 𝜃𝐶

∗𝑤3 +𝑤1𝑤2 + 𝑤1𝑤3) − (𝜃𝐶
∗) (𝜎𝜂Λ + 𝑤2𝑤3)  

= 𝜃𝐶∗(𝜃𝐶∗𝑤2 + 𝜃𝐶
∗𝑤3 + 2𝑤1𝑤2 + 2𝑤1𝑤3 + 𝑤2

2 + 2𝑤2𝑤3 +𝑤3
2 − 𝜎𝜂Λ − 𝑤2𝑤3) +  

     𝑤1(𝑤1𝑤2 +𝑤1𝑤3 + 𝑤2
2 + 2𝑤2𝑤3 +𝑤3

2)  

= 𝜃𝐶∗(𝜃𝐶∗𝑤2 + 𝜃𝐶
∗𝑤3 + 2𝑤1𝑤2 + 2𝑤1𝑤3 + 𝑤2

2 + 𝑤2𝑤3 + 𝑤3
2 − 𝜎𝜂Λ) +  

     𝑤1(𝑤1𝑤2 +𝑤1𝑤3 + 𝑤2
2 + 2𝑤2𝑤3 +𝑤3

2)  

= 𝜃𝐶∗(𝜃𝐶∗𝑤2 + 𝜃𝐶
∗𝑤3 + 2𝑤1𝑤2 + 2𝑤1𝑤3 + 𝑤2

2 + 𝑤2𝑤3 + 𝑤3
2) − 𝜃𝐶∗𝜎𝜂Λ +  

     𝑤1(𝑤1𝑤2 +𝑤1𝑤3 + 𝑤2
2 + 2𝑤2𝑤3 +𝑤3

2)  

= 𝜃𝐶∗�̃� − 𝜃𝐶∗𝜎𝜂Λ + 𝑤1�̃� > 0, if 𝜃𝐶∗�̃� + 𝑤1�̃� > 𝜃𝐶
∗𝜎𝜂Λ.  

Where, �̃� = (𝜃𝐶∗𝑤2 + 𝜃𝐶
∗𝑤3 + 2𝑤1𝑤2 + 2𝑤1𝑤3 +𝑤2

2 +𝑤2𝑤3 +𝑤3
2), and 

           �̃� = (𝑤1𝑤2 + 𝑤1𝑤3 +𝑤2
2 + 2𝑤2𝑤3 +𝑤3

2) 
(4) 𝑎3 = (𝜃𝐶

∗) (𝜎𝜂Λ + 𝑤2𝑤3) > 0, if ℛ0 > 1. 
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Based on the Routh-Hurwitz criterion, it can be seen that the real parts of 𝜆2, 𝜆3 and 𝜆4 in Equation 

(14) are negative. Since the real parts of 𝜆1, 𝜆2, 𝜆3,  and 𝜆4 are negative, the endemic equilibrium point (𝑲∗) 
is locally asymptotically stable under the condition that ℛ0 < 1 and 𝜃𝐶∗�̃� + 𝑤1�̃� > 𝜃𝐶

∗𝜎𝜂Λ. 

 

3.4 Numerical Simulation 

The numerical solution of the Hepatitis B virus mathematical model was determined using the fourth-

order Runge-Kutta method. Numerical simulation of the model consists of two parts: numerical simulation 

for the disease-free equilibrium point and numerical simulation for the endemic equilibrium point. The model 

parameter values for numerical simulations at each equilibrium point can be seen in Table 3. 

Table 3. Parameter Value 

Parameter Symbol 𝑲𝟏 𝑲∗ Source 

Contact rate of Susceptible subpopulation individuals with 

Chronic subpopulation (transmission rate) 
𝜃 0.05 0.03 [2] 

The rate of progression of the Hepatitis B virus 𝜎 0.1 0.07 [2], [10] 
Birth rate ⋀ 2 2 Assumed 

Rate of individuals infected before birth in the subpopulation 

Chronic 
𝜂 0.11 0.003 [2] 

Recovery rate 𝜌1 0.5 0.05 [2] 
Rate of individuals infected before birth in the subpopulation 

Chronic 
𝜌2 0.6 0.4 Assumed 

Natural death rate 𝜇0 0.015 0.009 Assumed 

Hepatitis B virus mortality rate in the chronic phase 𝜇1 0.02 0.08 Assumed 

Hepatitis B vaccination rate 𝑣 0.2 0.02 [2] 

In the simulation for the disease-free equilibrium point, the initial value (𝑆(0), 𝐴(0), 𝐶(0), 𝑅(0)) =
(100, 20, 10, 50), step ℎ = 0, and time interval [0, 600] are given. The results of the numerical solution of 

the model are presented in Table 4 and Figure 2. 

Table 4. Numerical Solution at the Disease-Free Equilibrium Point 

𝑡 
  (time) 

𝑆 𝐴 𝐶 𝑅 

0 100.000 20.000 10.000 50.000 

0.1 93.174 23.557 9.808 53.521 

1 50.299    35.323     9.146   84.349 

10 4.562 1.096     1.231   165.609 

50 9.300     0.000     0.000   145.483 

100 9.302    0.000     0.000   134.316 

150 9.302        0.000 0.000   128.817 

200 9.302    0.000     0.000   126.292 

250 9.302    0.000     0.000   125.099 

300 9.302    0.000 0.000  124.535 

350 9.302    0.000     0.000   124.269 

400 9.302    0.000     0.000   124.143 

450 9.302    0.000 0.000   124.084 

500 9.302    0.000     0.000   124.056 

550 9.302    0.000    0.000   124.043 

600 9.302    0.000    0.000   124.036 



2500 Yulida, et. al.     SACR  EPIDEMIC MODEL FOR THE SPREAD FOR THE SPREAD OF HEPATITIS B… 

 
Figure 2. Simulation Graph of Disease-Free Equilibrium Point (𝑲𝟏)  

Based on Table 4 and Figure 2, it can be seen that the model solution, from time to time, converges 

to point 𝑲𝟏 ≈ (9.30; 0; 0; 124.03). This supports the results obtained in Section 3.3.1 that the equilibrium 

point 𝑲𝟏 is locally asymptotically stable. 

In the simulation for the endemic point, the initial value (𝑆(0), 𝐴(0), 𝐶(0), 𝑅(0)) = (100, 30, 30, 20), 
step ℎ = 0, and time interval [0, 900] are given. The results of the numerical solution of the model are 

presented in Table 5 and Figure 3 below.  

Table 5. Numerical Solution at the Endemic Equilibrium Point 

𝑡 
(time) 

𝑆 𝐴 𝐶 𝑅 

0 100.000 30.000 30.000 20.000 

0.1 94.310 35.335 29.212 21.013 

1 46.747 75.628 21.826 34.158 

10 6.401 47.824 8.565 109.843 

50 27.229 6.551 0.972 146.201 

100 31.112 8.953 1.282 151.098 

200 29.759 8.748 1.267 163.563 

300 29.672 8.772 1.271 168.118 

400 29.669 8.775 1.271 169.948 

500 29.670 8.775 1.271 170.692 

600 29.669 8.775 1.271 170.995 

700 29.669 8.775 1.271 171.118 

800 29.672 8.772 1.272 171.167 

900 29.670 8.774 1.272 171.188 

 

 
Figure 3. Simulation Graph of Endemic Equilibrium Point (𝑲∗)  
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Based on Table 5 and Figure 3, it can be seen that the model solution, from time to time, converges 

to point 𝑲∗ ≈ (29.67;  8.77;  1.27;  171.20). This supports the results obtained in Section 3.3.2 that the 

equilibrium point 𝑲∗ is locally asymptotically stable. 

3.5 Sensitivity Index Values  

In this section, a sensitivity analysis is given to determine the parameters that affect the basic 

reproduction number. Sensitivity analysis is determined by calculating the sensitivity index values of the 

parameters involved in the basic reproduction number. The normalized sensitivity index [19]-[20] of the basic 

reproduction number is defined as follows:   

𝒮𝑝
ℛ0 =

𝜕ℛ0
𝜕𝑝

×
𝑝

ℛ0
 

The following is given as the value of the sensitivity index at the basic reproduction number using the 

parameter values in Table 6: 

Table 6. Sensitivity Index 

Parameters (𝑝) 
Sensitivity index values 

(𝒮𝑝
ℛ0) 

𝜃 1 

𝜎 0.837398374 

⋀ 1.530120482 

𝜂 0.603607125 

𝜌1 -0.813008129 

𝜌2 -1.445783132 

𝜇0 -0.130302264 

𝜇1 -0.048192771 

𝑣 -0.930232557 

Based on Table 6, the parameters Λ, 𝜃, 𝜎, and 𝜂 cause the sensitivity index value to be positive, 

meaning that if these parameters change (increase/decrease), then the value also changes ℛ0 

(increase/decrease). While the parameters 𝜌1, 𝜌2, 𝜇0, 𝜇1, and 𝑣 of the sensitivity index are negative, this means 

that if these parameters change (increase/decrease), there will be a change in value ℛ0 (decrease/increase). 

The effect of changing the values of parameters 𝜃, 𝜌2 and 𝑣 on the value of ℛ0 is presented in Figures 

4, 5, and 6, respectively. 
 

   

Figure 4. Graph of changes in 𝓡𝟎 

against changes in parameters 𝜽 

and 𝝆𝟐 

   

Figure 5. Graph of changes in 𝓡𝟎 

against changes in parameters 𝜽 

and 𝒗  

 

Figure 6. Graph of changes in 𝓡𝟎 

against changes in parameters 𝒗 

and 𝝆𝟐  
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Figure 7. Contour plot of the 

basic reproduction number when 

the pair of parameters 𝜽 and 𝝆𝟐  

Figure 8. Contour plot of the basic 

reproduction number when the 

pair of parameters 𝜽 and  𝒗  
 

Figure 9. Contour plot of the basic 

reproduction number when the 

pair of parameters 𝒗 and 𝝆𝟐 

The images above present contour plots of the basic reproduction number ℛ0 in relation to different 

pairs of parameters: 

Figure 7: This contour plot illustrates how ℛ0 changes based on variations in the pair of parameters 𝜃  

(contact rate) and 𝜌2  (rate of infection before birth in the chronic subpopulation). The darker colors represent 

higher values of ℛ0. From this image, it is evident that an increase in both 𝜃 and 𝜌2 leads to a higher ℛ0, 

indicating a greater potential for disease spread. 

Figure 8: This contour plot shows the relationship between ℛ0 and the pair of parameters 𝜃 and 𝑣 

(vaccination rate). The darker shades represent an increase in ℛ0. It is clear that while an increase in 𝜃 raises 

ℛ0, an increase in 𝑣 can lower ℛ0, emphasizing the importance of vaccination in reducing the potential for 

disease spread, even with a high contact rate. 

Figure 9: This contour plot depicts the changes in ℛ0 related to variations in the pair of parameters 𝑣 and 𝜌2. 

Darker colors indicate higher ℛ0 values. This figure shows that even with an increase in 𝜌2, an increase in 𝑣 

remains effective in reducing ℛ0, highlighting vaccination as a key factor in controlling the spread of the 

disease, even in situations of high infection risk. 

 

Overall, these three figures emphasize the importance of controlling parameters such as contact rate, infection 

before birth, and especially vaccination in lowering the basic reproduction number ℛ0 and managing the 

spread of Hepatitis B. 

 

4. CONCLUSIONS 

The Hepatitis B virus model is formed into four different subpopulations: namely susceptible, acute, 

chronic, and recovered. From this model, two equilibrium points (disease-free and endemic equilibrium 

points) and the basic reproduction number ℛ0 =
𝜃Λ𝜎 

𝑤1𝑤2𝑤3
 are obtained. The disease-free equilibrium point is 

locally asymptotically stable under the condition that ℛ0 < 1, and the endemic equilibrium point is locally 

asymptotically stable under the condition that ℛ0 > 1  and 𝐶∗�̃� + 𝑤1�̃� > 𝜃𝐶
∗𝜎𝜂Λ. This is supported by the 

results of numerical simulations using the fourth-order Runge-Kutta method, and graphical visualizations are 

presented for two equilibrium points, each of which is locally asymptotically stable. To control the spread of 

hepatitis B disease, things that can be done to minimize the spread of infection are reducing the rate of 

individual contact in the susceptible subpopulation with the chronic subpopulation, increasing the rate of 

recovery due to treatment in chronic individuals, and increasing the rate of vaccination in susceptible 

individuals. 
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