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ABSTRACT 

Article History: 
Soil moisture is one of the factors that has recently become the focus of research because it 

is strongly correlated with forest and land fires, where low soil moisture will increase 
drought and the incidence of forest and land fires. For this reason, this study aims to create 

a prediction model for soil moisture as an early prevention of fires in peatlands using the 

Random Forest Regressor (RFR) algorithm. RFR is used because of its ability to predict 

values and its resistance to overfitting and outliers. A dataset covering soil moisture, 
precipitation, temperature, maturity, and peat thickness was collected from August 2019 to 

December 2023. The data includes soil moisture, precipitation, temperature, maturity, and 

peat thickness. The data were divided into 80% for modeling and 20% for testing. Model 

performance was optimized through random search CV, resulting in significant prediction 
accuracy R-squared: 0.914, MAE: 0.0081, MSE: 0.0007, RMSE: 0 .0271, and MAPE: 

0.969. These findings demonstrate the effectiveness of RFR in soil moisture prediction and 

pave the way for more appropriate and timelier implementation of fire mitigation strategies. 
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1. INTRODUCTION 

Forest and land fires in Indonesia occur almost yearly, impacting public health, environmental damage, 

economic losses, and disrupting the global climate balance [1]. In particular, fires on peatlands such as those 

that occurred in Ogan Komiring Ilir Regency, South Sumatra Province, pose more complex challenges 

because peatlands are formed from dead plant remains and decompose slowly in water-saturated conditions 

[2]; peatlands are rich in organic materials and susceptible to damage and fire. Peatlands play an essential 

role in storing carbon in the atmosphere, which can reduce greenhouse gas emissions [3] [4], and are rich in 

biomass, oxygen production, and biodiversity [4] [5]. 

The cause of fires on peatlands often occurs due to drought exacerbated by the El Nino event [6]. When 

precipitation is low and temperatures are high, dryness in peatlands will increase. The thickness and maturity 

level of peat also influence fires in peatlands [7]. One natural factor that has recently become the focus of 

research and has been proven to have a significant relationship with the incidence of forest and land fires is 

soil moisture. 

Several previous studies researched to measure the relationship between soil moisture and forest and 

land fires, soil moisture and forest and land fires such as research [8] which has identified and predicted soil 

moisture conditions for forest fires in the Iberian Peninsula by using regression analysis with soil moisture, 

temperature, and forest fire data for each land cover in 2010 and 2014. The results show that increasing 

temperatures and prolonged drought cause more frequent and more extensive forest fires, the 𝑅-squared value 

= 0.68, and the accuracy of the prediction model is 83.3%. A study [9] Identifies the relationship between 

soil moisture conditions before the fire season in various land covers based on soil moisture data and historical 

forest fire events. The result was 𝑟 =  0.91, indicating that more significant fires occurred in the United 

States on soils with low soil moisture in sagebrush land cover. The Ocean Salinity and Soil Moisture Active 

Passive (SMAP) data were used to identify the risk of forest fires in Canada using statistical analysis [10]. 

The study's results show that soil moisture has the potential to be an indicator of increased fires, with a value 

of 𝑟 =  0.93. A delayed correlation analysis was conducted to determine the correlation between soil 

moisture levels and fire activity in Australia and California [11]. The results showed a negative correlation 

between soil moisture and forest fire incidents, where soil moisture decreased as fires increased. 

Previous research has shown that soil moisture, influenced by various environmental and climatic 

factors, is essential in the dynamics of forest and land fires. However, the models used to monitor and predict 

soil moisture are ineffective because they are limited to fundamental statistical analysis and have yet to be 

carried out on peatlands. 

Predictive approaches, primarily through machine learning technology, can identify complex and non-

linear patterns from data to obtain better and more dynamic prediction results. One algorithm in the machine 

learning method that can be used is Random Forest. The RF algorithm was first introduced in 2001 [12]. RF 

is used for regression and classification, usually called Random Forest Regressor (RFR) in predictions. RF 

has several advantages, namely reducing overfitting, handling extensive data, having good tolerance for 

missing or unbalanced data, being not sensitive to variable scales, and dealing with data that contains noise 

or outliers [13]. Research [14] uses RFR to predict global soil moisture in the context of the atmosphere and 

agriculture by combining soil moisture, climate, and vegetation index data. The results show that RFR 

successfully predicts soil moisture with an RMSE value of 0.05 and a correlation coefficient of 0.9. 

Based on the results of previous research, we obtained good results in predicting soil moisture with 

RFR. For this reason, this research aims to use RFR to predict soil moisture in peatlands using data features 

such as precipitation, temperature, peat maturity, and peat thickness. Hopefully, this research can contribute 

to the latest technology in the early prevention of forest and land fires by offering machine learning 

applications that can function as initial tools for policymakers in formulating land management strategies and 

improving environmental conservation efforts. 
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2. RESEARCH METHODS 

2.1 Dataset 

The data used in this research covers the area of Ogan Komering Ilir Regency, South Sumatra Province, 

which is one of the districts that frequently experiences forest and land fires. The data and data sources taken 

in this research are as follows: 

1. Soil moisture, precipitation, and temperature data from 1 June 2019 to 31 December 2022 were 

downloaded from the National Aeronautics and Space Administration (NASA) Power Larc page. 

2. Data on the thickness and maturity of peat in Ogan Komering Ilir Regency, South Sumatra Province, from 

the Center for Agricultural Land Resources Research and Development (BBSDLP) in 2019 

2.2 Research Stages 

This research consists of several stages: data collection, preprocessing, data partition, model creation, 

and model evaluation. The research stages can be seen in Figure 1. 

 
 

Figure 1. Research Stages 

 

2.2.1 Data Collection 

In the initial stage, spatial operations were carried out to obtain coordinate points, which would later 

be used for data collection at POWER NASA Langley Research Center (LaRC). Map data were processed to 

obtain peat maturity and thickness data based on coordinate points. This stage was carried out with the help 

of QuantumGIS. Data were collected from several sources, namely: soil moisture, rainfall, and temperature 

from June 1, 2019, to December 31, 2023, obtained from POWER LARC NASA 

(https://power.larc.nasa.gov/data-access-viewer). Meanwhile, peat maturity and peat thickness data were 

obtained from the peat maps of the Center for Agricultural Land Resources Research and Development 

(BBSDLP) in 2019. 

2.2.2 Data Preprocessing 

This stage aims to change the data structure according to the modeling needs. The preprocessing in this 

research begins with checking and removing outliers. Outlier checking is carried out using box plot 

visualization, while outlier removal is carried out using the IQR method. The IQR calculation uses Equation 

(1) [15]; when the value is outside the lower and upper limits, the value is considered an outlier and deleted. 
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Next, the deleted values are considered missing and filled in using the multiple imputation method. This is a 

powerful and flexible technique for producing more accurate estimates and reducing bias compared to more 

straightforward methods of filling in missing data, such as the mean or median [16] [17].  Missing data were 

filled in with the help of the sklearn impute library in Python, using IterativeImputer with Random Forest as 

an estimator. 

𝐼𝑄𝑅 =  𝑄3 – 𝑄1, 𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡: 𝑄1 − 1,5 × 𝐼𝑄𝑅, 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡: 𝑄3 + 1,5 × 𝐼𝑄𝑅. (1) 

 

In the following preprocessing stage, categorical data is transformed into a form that the machine 

learning model can understand data on peat maturity and peat thickness. In this research, the technique used 

is ordinal encoding. This technique converts categories into an ordinal scale based on a sequence assigned to 

an integer value for each category [18]. 

2.2.3 Dataset Partition  

Data division for modeling data is divided into training data and test data. The proportion used is 80% 

for training data and 20% for test data. Training data is used to carry out modeling using RFR while test data 

is used to evaluate the prediction model.  

2.2.4 Modeling Using RFR 

The Random Forest Regressor (RFR) modeling stage was carried out to obtain a model that can predict 

soil moisture as an early prevention of forest and land fires in Ogan Komering Ilir Regency. At the modeling 

stage, hyperparameter tuning is carried out using randomized searchCV to find the best parameters for RFR 

with various values of n_estimators, max_depth, min_samples_split, min_samples_leaf, max_features, and 

Bootstrap. Table 1 shows the clarity of the random forest parameters. 

Table 1. Random Forest Parameters 

Parameter Name Information 

n_estimators Number of trees to be built 

max_depth Maximum depth of tree 

min_samples_split Minimum number of samples to separate a node 

min_samples_leaf The minimum number of samples required to 

become a leaf node 

max_features The number of features considered when finding 

the best division at each node 

Bootstrapping Sampling technique to determine whether the 

sample to build each tree was taken with 

replacement or not 

Source: [19] 

Randomized search: Search for the best parameters with randomized research using the scikit-learn 

library in Python. Random Forest (RF) is a machine learning algorithm that belongs to the ensemble learning 

family. RF is a development of the decision tree concept where random forests combine trees existing in the 

decision tree into a random forest [13] for better classification and prediction results. The combination 

technique used is Bootstrap Aggregating or Bagging [12]. The advantage of the bagging method is that it 

produces individual models that vary from one bootstrap sample to another [20]. This variability reinforces 

the benefits of the aggregating process, which generally produces more accurate and stable predictions [21]. 

The final decision result is usually determined by calculating the average of the projections of all the trees in 

the ensemble [13]. The advantage of random forest is handling missing values, avoiding overfitting, and 

producing measures of important variables through importance scores [13]. The RF process structure can be 

seen in Figure 2. 
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Figure 2. Random Forest Regressor Structure (modification of [22]) 

 Figure 2 shows a schematic representation of the RFR prediction with 𝑁𝑡𝑟𝑒𝑒. The original dataset is 

used as input to build the RFR model. This dataset contains features that will be used to predict the target 

values. The formation of decision trees begins by splitting the dataset into several subsets through bootstrap 

sampling. Each subset is used to build one decision tree. Each tree in the forest is built by splitting the data 

at each node based on Mean Squared Error (MSE) to find the best split. At each root node (𝑣𝐿  and 𝑣𝑅), 

statistical measures are used to form homogeneous groups with data partitions (𝑃𝑖 ... 𝑃𝑗) allocated to each tree 

[22]. 𝑤𝐿 and 𝑤𝑅 are the proportions of samples decided to go to the left or right branch of the node during 

the split. These partitions continue to split until reaching terminal nodes (leaf nodes) shown in blue, then each 

tree provides a prediction of the target value based on the data passing through the nodes within that tree. For 

example, trees 𝑃𝑖 give predictions of 1 and 2 for a particular sample [22]. The predictions from all the trees 

are combined to provide the final prediction. In the case of regression, the final prediction is the average of 

all the tree predictions, which can be calculated using Equation (2) [22].  

�̂�𝑡 =  
1

𝑁𝑡𝑟𝑒𝑒
∑ �̂�𝑛

𝑁𝑡𝑟𝑒𝑒𝑠

𝑛=1

 (2) 

where:   

 �̂�𝑡          = prediction result 

𝑁𝑡𝑟𝑒𝑒𝑠 = the total number of trees used in the RFR  
 

2.2.5 Model Evaluation 

Model evaluation is carried out to evaluate the performance of the prediction model that has been 

created. Evaluation of the performance of the model used is the root determinant coefficient (𝑅2). 𝑅2 

measures how much variation in the target variable can be explained by features. For an optimal prediction 

model, the 𝑅2 value should be approached 1. 𝑅2 can be calculated using Equation (3) [23]. In addition, 

evaluating model performance also involves the use of error metrics, such as Mean Square Error (RMSE), 

Mean Absolute Error (MAE), and Mean Square Error (MSE). Values closer to 0 indicate better results, 

indicating higher prediction errors. Smaller. RMSE, MAE, and MSE can be calculated using Equations (4), 

(5), and (6) [24]. Mean Absolute Percentage Error (MAPE) is also used to assess error by calculating the 

average absolute value of the percentage difference between the predicted and actual values. MAPE is 

calculated by Equation (7) [24]. 
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𝑅2  =
∑ (𝑦𝑡 − �̅�)2𝑁

𝑡=1  −  ∑ (𝑦𝑡 − �̂�𝑡)2𝑁
𝑡=1

∑ (𝑦𝑡 − �̅�)2𝑁
𝑡=1

(3) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑡 − �̂�𝑡)2

𝑛

𝑡=1

(4) 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑡 −

𝑛

𝑖=1

 �̂�𝑡| (5) 

𝑀𝑆𝐸 =  
1

𝑛
  ∑(𝑦𝑡 − �̂�𝑡)2

𝑛

𝑖=1

(6) 

𝑀𝐴𝑃𝐸 =
1

𝑛
 ∑ |

𝑦𝑡 − �̂�𝑡

𝑦𝑡
|

𝑛

𝑡=1

  × 100% (7) 

where: 

yt =  actual value  

ŷt = predicted value  

y̅ = The average of the actual values 

𝑛 = number of predicted data 

 

3. RESULTS AND DISCUSSION 

3.1 Data Collection 

In the initial stage, spatial operations are carried out to obtain coordinate points, which will later be 

used for data collection. Formation of a grid according to the peatland map of Ogan Komering Ilir Regency 

using tools in Quantum GIS software. Each grid is represented as a region of size 10 km × 10 km. Next, the 

centroid of each grid is determined, and then the Intersection operation is carried out to find the centroid 

within the region. The intersection results show 58 centroid points in the peatland. The stages of grid 

formation to determine the centroid can be seen in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 
 

       (a)                          (b)    (c)   (d) 

Figure 3. (a) Peatland map of Ogan Komering Ilir Regency, (b) Grid 10 ×10, (c) Centroid for each grid, 

(d) Intersection centroid 
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Figure 3(d) shows the 58 coordinate points used for data collection (soil moisture, precipitation, and 

temperature) on NASA's Power Larc. The data were collected daily from August 1, 2019, to December 31, 

2023. Meanwhile, peat thickness and maturity data were taken from the 2019 BBSLDP Peat Land Map. Peat 

thickness and maturity can be seen in Figure 4. Then, the peat thickness and maturity type from each centroid 

point will be determined with the help of tools such as intersections in QGIS. After that, data on peat thickness 

and maturity were combined with data on soil moisture, precipitation, and temperature using Microsoft Excel 

365. The data were 93,621 rows and five columns (soil moisture, precipitation, temperature, peat maturity, 

and peat thickness). 

 

 

 

 

 

 

 

 

 

 

 

 
(a)      (b) 

Figure 4. (a) Peatland Map Based on Thickness and (b) Peatland Map Based on Maturity 

 

3.2 Data Preprocessing 

Data preprocessing includes checking for outliers using a boxplot (Figure 5), where outliers are 

removed using the Interquartile Range (IQR) technique and considered missing values. The proportion of 

missing values is shown in Table 2. Multiple imputation techniques were used with the help of the sklearn 

to deal with missing values. The impute library in Python uses IterativeImputer with Random Forest as an 

estimator. 
 

 

 

 

 

 

 

 

 

 

 

 
     (a)                   (b) 

Figure 5. (a) Boxplot of Temperature, (b) Boxplot of Precipitation 

 

Table 2. Presentation of Missing Value 

Variables Missing Value 

Precipitation 1.16% 

Temperature 12.90% 

Soil moisture 3.72% 

 

In the following preprocessing stage, categorical variables such as peat maturity and thickness require 

transformation using the Ordinal Encoding technique. Peat maturity levels were converted into ordinal values, 

with hemic = 0 and capric = 1, while thickness: shallow = 0, medium = 1, deep = 2, very deep = 3, and far 

very deep = 4. 



2512 Taihuttu, et. al.    SOIL MOISTURE PREDICTION MODEL IN PEATLAND USING RANDOM FOREST…  

 

3.3 Data Partition 

Data totaling 93,612 rows and five columns that have gone through preprocessing are then divided into 

80% training data and 20% test data. Training data is 74,489 and test data is 18,723; data distribution is done 

randomly. 

 

3.4 Predictive Modeling Using RFR 

The soil moisture prediction model using RFR was developed using the sci-kit-learn library in Python. 

This model involves four feature variables (x): temperature, precipitation, peat maturity, and peat thickness, 

with soil moisture as the target variable (y). For model parameter optimization, the Randomized SearchCV 

technique was used in the hyperparameter tuning process, which allows the identification of the best 

parameter combination through 100 random search iterations, supported by 5-fold cross-validation. Details 

of the parameters explored in this hyperparameter search are presented in Table 3. 

Table 3. Parameters in Hyperparameter Search 

Parameter Value 

n_Estimator 10 - 200 

max_depth 10,20, 30 

max_feature 'none', 'sqrt', 'log2' 

min_samples_split 2, 5, 10 

min_samples_leaf 1, 2, 4 

bootstrapping 'True', 'False' 

Based on the hyperparameter tuning process using RandomizedSearchCV, the Random Forest 

Regressor model has been identified with optimal parameters for soil moisture prediction. The best 

parameters found were as follows: n_Estimator, number of trees in a random forest of 185 with max_depth 

or maximum depth of each tree of 30, max_features set to 'none', which allows the model to automatically 

select the best number of features to partition on each node; min_samples_leaf is 1, which means each leaf 

must have at least one data sample; The min_sample node for splitting a node is set to 2, indicating splitting 

will only occur if there are at least two samples. The bootstrap method is 'true', meaning samples are selected 

with replacement when building each tree, thus adding more variation to the model. The prediction model 

with the best parameter results obtained an 𝑅2 value on test data of 96.1%, showing that the RF model used 

to predict soil moisture performs very well. A visualization of the comparison of expected results and actual 

values is presented in Figure 6. In contrast, Figure 7 compares the predicted results and actual values 

visualized based on coordinate points (latitude and longitude). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Comparison Plot of Actual and Predicted Values 
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(c)       (d) 

 

Figure 7.  Comparison Plot of Actual and Predicted Values Based on Coordinate Points (a) Coordinate 1, (b) 

Coordinate 2, (c) Coordinate 3, and (d) Coordinate 4 

Visualization of the comparison of the predicted and the actual value in Figure 6 and Figure 7 shows 

that the prediction results have followed the fluctuations in the exact value. However, some areas of the red 

line (prediction value) still need to align entirely with the blue line (actual value). 

3.5 Evaluation 

After the model is built, the model is evaluated using the 𝑅2 evaluation metric, MAPE, MSE, RMSE, 

and MAE. A comparison of evaluation metric values for training and test data can be seen in Figure 8 and 

Figure 9. 

 

 

 

 

 

  

 

 

 

 

 

 
 

 

Figure 8. R2 Value of Prediction Model     Figure 9. MAPE Value of Prediction Model 

on Training Data and Test Data                            on Training Data and Test Data 
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Based on Figure 8, the 𝑅² values for the training and testing data show that the model explains 

approximately 96.1% of the target variation in the training data, while for the testing data, it is 91.4%. This 

indicates that the model's ability to explain variability in the testing data is slightly reduced compared to the 

training data. However, the 𝑅² values for both datasets remain high. The high 𝑅² values for both the training 

and testing data indicate that the soil moisture prediction model using Random Forest Regressor (RFR) is 

very effective in capturing patterns in the data. The MAPE values for the training and testing data show that 

the relative error for the training data is 0.608% and for the testing data is 0.969% (Figure 9). The low MAPE 

values for both datasets also indicate that this model has very small prediction errors, making it highly 

accurate. Evaluation using other error metrics can be seen in Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. MAE, MSE, and RMSE Values on Training Data and Test Data 

 
Based on Figure 10,  MAE on training data (0.0051) and test data (0.0081) shows that the model's 

average absolute error is low. MSE on training data (0.0003) and test data (0.0007) and higher RMSE on test 

data (0.0186) compared to training data (0.0271) show that the prediction results are very close to the actual 

value and error variability is minimal. 

Overall, the RFR model performs excellently on both training and test data. On test data, the model 

maintains a high level of accuracy with a reasonable increase in error, indicating that the model generalizes 

well. The relatively small disparity between training and test data performance suggests that the model does 

not experience overfitting, and RFR successfully predicts soil moisture well. 

 

4. CONCLUSIONS 

This study successfully developed a soil moisture prediction model for peatlands using the Random 

Forest Regressor (RFR) algorithm, achieving an 𝑅-squared value of 0.914 with low prediction errors. This 

model is effective in predicting soil moisture as a crucial indicator for the early prevention of forest and land 

fires. It is highly relevant for peatland management and fire mitigation strategies, where soil moisture 

modeling can be integrated into early warning systems for forest fires. Although the results are promising, 

the model needs further testing across different types of peatlands and climatic conditions to ensure its 

generalizability. Future research could focus on integrating additional environmental variables and 

developing a soil moisture-based early warning system to provide real-time alerts and more effectively aid in 

forest fire mitigation. 
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