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 ABSTRACT    

Article History: 
Poverty modeling is a crucial economic and social development issue in various regions, 
including in East Nusa Tenggara (NTT) Province. This research proposes using the Mixed 

Geographically Weighted Regression (MGWR) model with an adaptive Bisquare weighting 

function to analyze variables influencing poverty levels in NTT Province. The MGWR model 

is an extension of the Geographically Weighted Regression (GWR), which allows some 
variables in the model to have local effects while others have global effects. The adaptive 

weighting function in the MGWR model enhances the analysis by providing different 

weights at each location according to its local characteristics, thus making the results more 

accurate and representative for each area. The data includes economic, social, and 
infrastructure variables from 22 districts/cities in NTT Province for 2023. The MGWR 

model with an adaptive weighting function is applied to model the relationship between 

these variables and poverty levels. The analysis integrates statistical software to manage 

and analyze spatial data. The study findings show that the MGWR model with an adaptive 
weighting function offers better estimates than the global regression and GWR models. The 

results revealed the smallest AIC value for the MGWR model at 104.1888, compared to the 

global regression model at 140.1427 and the GWR model at 117.6174. This model 

successfully identifies significant local and global variables and shows variations in 
influence at different locations in NTT Province. These findings provide valuable insights 

for policymakers and practitioners in designing and implementing more effective poverty 

alleviation strategies tailored to local conditions in NTT Province. 
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1. INTRODUCTION 

Poverty is among the most complex and challenging social issues in many countries, including 

Indonesia[1]. The poverty issue in the East Nusa Tenggara (NTT) province has become critically acute, given 

the unique geographical conditions and limited natural resources. Conventional approaches in poverty 

modeling and mapping often need to be revised to depict the actual conditions on the ground, especially in 

regions with significant geographical and socio-economic variations like NTT. 

East Nusa Tenggara is one of the provinces categorized as the poorest in Indonesia. The Central Bureau 

of Statistics recorded the number of poor people in East Nusa Tenggara in March 2023 at 20.99 percent, an 

increase compared to 2022, which was 20.90 percent (BPS, 2023). The poverty issue in East Nusa Tenggara 

is the high number or percentage and the very high disparity between regions. Comparisons between 

districts/cities show significant disparities. This inequality occurs due to the high poverty rates in certain 

areas. Given the diverse conditions, there are differences in each region in the East Nusa Tenggara Province, 

leading to spatial effect issues because geographical factors will influence. East Nusa Tenggara Province is 

one of the island provinces consisting of 22 districts and is the province with the highest poverty rate category. 

In addressing the challenges of poverty alleviation, especially in East Nusa Tenggara (NTT) Province, 

an innovative and locally sensitive approach is required. With its unique geographical and socio-economic 

characteristics, this province shows that conventional poverty modeling often needs to be revised. In this 

context, this research proposes the application of Mixed Geographically Weighted Regression (MGWR) with 

an adaptive weighting function. This methodology overcomes the limitations of traditional approaches in 

understanding the complex and diverse dynamics of poverty [2]. 

The Mixed Geographically Weighted Regression (MGWR) approach introduces the ability to combine 

regression analysis that considers specific locations, allowing for spatial variability in the data to be more 

effectively accounted for [3]. It represents a significant advancement, facilitating more accurate poverty 

modeling in NTT by acknowledging that determinants of poverty may vary significantly from one location 

to another. Using an adaptive weighting function in MGWR further enhances the model's flexibility, ensuring 

that local variability can be captured and understood with finer nuance [4]. 

Through the implementation of this methodology, this study aims to provide deeper insights into the 

patterns of poverty in NTT. The approach strives to identify regions with high poverty levels and understand 

the factors contributing to these conditions [5]. Consequently, this research collects and analyzes data from 

various sources, including population censuses, to build a model that can reveal the complex interactions 

between economic, social, and geographic factors. 

MGWR is a spatial regression approach that allows changes in regression parameters between different 

locations. In other words, MGWR enables the influence of independent variables on dependent variables to 

vary across geographic space [6]. It allows for more precise and accurate modeling in situations where 

location influence is highly variable. However, sustainability in developing geospatial analysis methods 

requires the introduction of innovations that can enhance the quality and flexibility of models. One of the 

latest innovations in MGWR is using an adaptive weighting function. The adaptive weighting function allows 

the model to adjust the weights given to observations based on the surrounding characteristics of each data 

point [7]. Thus, the model can provide more attention to more relevant and significant data in the analysis. 

The novelty that arises is using Mixed Geographically Weighted Regression (MGWR) as the primary 

analysis tool. MGWR is an approach that allows a better understanding of the relationship between dependent 

and independent variables in a spatial context [8]. It is achieved by modeling regression parameters locally, 

meaning that the influence of independent variables on dependent variables can vary across geographic space. 

It is one of the main advantages of MGWR in modeling phenomena that are highly influenced by spatial 

factors [9] . 

Moreover, the novelty presented in this journal is the use of an adaptive weighting function within 

MGWR. The adaptive weighting function enables MGWR to dynamically adjust the weights given to 

observations based on the surrounding characteristics of each data point. It is highly relevant when data 

exhibit significant spatial heterogeneity, where the surrounding environment's influence can vary from place 

to place. This adaptive weighting function enhances the model's ability to make more accurate decisions 

based on existing situations. 
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The implications of applying Mixed Geographically Weighted Regression (MGWR) with an adaptive 

weighting function are significant in geospatial analysis. They can positively impact several aspects, 

including research, decision-making, and policy planning. First, regarding research, using MGWR with an 

adaptive weighting function opens new opportunities to explore more subtle patterns and relationships within 

spatial data. It will result in a deeper understanding of local differences in factors affecting dependent 

variables [10]. Researchers can more accurately identify areas facing specific problems and detail the factors 

contributing to these issues. More precise research outcomes can lead to more effective and sustainable 

solutions to various regions' social, economic, and environmental issues. 

Secondly, in decision-making and policy planning, using MGWR with an adaptive weighting function 

provides policymakers with a more powerful tool to design targeted interventions. Policies can be tailored to 

different local conditions with a better understanding of spatial variability in the data. It reduces the risk of 

making decisions based on less relevant data or overly broad generalizations. In other words, the implication 

of using MGWR with an adaptive weighting function is an improvement in the efficiency and effectiveness 

of efforts to address issues at the regional or local level [11]. This also has the potential to lead to more 

judicious use of resources and overall improvement in community welfare. 

The adaptive weighting function in MGWR becomes a significant innovation in this study, allowing 

the model to be more flexible in adapting to local differences. It means that the model considers economic 

and social factors in poverty modeling and how these factors uniquely interact across different locations [12]. 
This approach is expected to yield a deeper understanding of the patterns and causes of poverty in NTT. 

This research aims to provide new insights into more detailed and location-specific mapping and 

analysis of poverty in NTT. By utilizing data from household surveys, population censuses, and other 

information-rich sources, this study strives to identify critical factors influencing poverty across different 

regions of NTT and how they interact within the geographical context. 

 

2. RESEARCH METHODS 

2.1 Data  

The data used in this study is the poverty data for the year 2022 obtained from the official website of 

the Central Bureau of Statistics of East Nusa Tenggara Province https://ntt.bps.go.id/, consisting of the 

response variable (Y), which is the percentage of the population living in poverty, and eight predictor 

variables, namely literacy rate (𝑋1), school participation rate (𝑋2), open unemployment rate (𝑋3), population 

consuming safe drinking water (𝑋4), population using their toilet facilities (𝑋5), population receiving non-

cash food assistance (𝑋6), population with higher education status (𝑋7), and expenditure per capita on food 

(𝑋8). The reason for using the eight independent variables in this study is that these eight variables 

demonstrate an influence on the phenomenon being studied and are also expected to show significant spatial 

variation. 

2.2 Regression Analysis 

The global regression equation, which is commonly defined using the Ordinary Least Square (OLS) 

method for estimating parameters, can generally be written in the following mathematical Equation (1) [13]: 

𝑦𝑖 = 𝛽𝑖0 + ∑ 𝛽𝑖𝑘𝑥𝑖𝑘
𝑝−1
𝑘=1 + 𝜀𝑖                                                  (1) 

where 𝛽0  is the constant, 𝛽𝑖 are the coefficient values of the explanatory variable 𝑥𝑖 , p is the number of 

explanatory variables used in the model, n is the number of observations (data), and e represents the random 

errors assumed to be normally distributed as N(0,𝜎2𝐼), with e = (𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛)  and I  is the identity matrix. 

By minimizing the sum of squared errors, the OLS estimator of the parameters in vector form is given as 

follows: 

�̂�𝒊 = [𝑿𝑻𝑿]−𝟏𝑿𝑻𝒀                                                    (2) 

where �̂� = �̂�0, �̂�1, …, �̂�𝑝 is a vector of p+1 as regression coefficients, X is the matrix of explanatory variables 

of size n x( p+1)  with the first column being 1 for the constant, and Y  is the vector of response variables. 
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2.3 Mixed Geographically Weighted Regression (MGWR) 

Mixed Geographically Weighted Regression (MGWR) is a hybrid model that combines global 

regression with the Geographically Weighted Regression (GWR) model, considering situations where some 

predictor variables affecting the response variable are global and other predictor variables are local. The 

MGWR model, with q predictor variables being local and p predictor variables being global, assumes that 

the model's intercept value is local. The MGWR model can be written as follows [14]: 

 

𝑦𝑖 = 𝛽0(𝑢𝑖 , 𝑣𝑖) + ∑ 𝛽𝑘
𝑞
𝑘=1 (𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘 + ∑ 𝛽𝑘𝑥𝑖𝑘

𝑝
𝑘=𝑞+1 + 𝜀𝑖, 𝑖 = 1,2,… , 𝑛   (3) 

 

With:  

𝑦𝑖  : response variable at the 𝑖 observation location 
(𝑢𝑖, 𝑣𝑖)  : geographic coordinates of the observation location 

 𝛽0(𝑢𝑖, 𝑣𝑖) : intercept value at the 𝑖-th observation location   

𝛽𝑘(𝑢𝑖 , 𝑣𝑖)  : regression coefficient of local predictor variables   

𝛽𝑘  : regression coefficient of global predictor variables   

 𝑥𝑖𝑘  : local predictor variable   

𝜀𝑖  : residual of the 𝑖-th observation, assumed to be normally distributed 
 

The Mixed Geographically Weighted Regression (MGWR) model uses the Weighted Least Squares 

(WLS) method to estimate parameters. Parameter estimation for the Mixed Geographically Weighted 

Regression model is conducted by first identifying variables that influence all observation locations (global) 

and variables that have an impact at specific locations based on their geographic position (local) [15]. The 

MGWR equation is then expressed in matrix form as follows: 

 𝑦𝑖 = 𝑿𝒍𝛽𝑙(𝑢𝑖, 𝑣𝑖) + 𝑿𝒈𝛽𝑔 + 𝜀  

with:  

𝑿𝒍 =

[
 
 
 
1 𝑥11 … 𝑥1𝑞

1 𝑥21 … 𝑥2𝑞

⋮ … ⋱ ⋮
1 𝑥𝑛1 … 𝑥𝑛𝑞]

 
 
 

, 𝑿𝒈 = [

x1(q+1) x1(q+2) … x1(q+p)

x2(q+1) x2(q+2) … x2(q+p)

⋮ … ⋱ ⋮
xn(q+1) xn(q+2) … xn(q+p)

] 

𝒚 = [

𝑦1

𝑦2

⋮
𝑦𝑛

], 𝛽(𝑢𝑖, 𝑣𝑖) =

[
 
 
 
𝛽0(𝑢𝑖, 𝑣𝑖)

𝛽1(𝑢𝑖, 𝑣𝑖)
⋮

𝛽𝑞(𝑢𝑖, 𝑣𝑖)]
 
 
 
, 𝛽𝑔 =

[
 
 
 
𝛽𝑞+1

𝛽𝑞+2

⋮
𝛽𝑝 ]

 
 
 

, 𝑖 = 1,2,… , 𝑛 

The first step to be taken is to express the MGWR model as a GWR model to find the parameter 

estimates for the MGWR model [11]: 

�̃� = 𝑦 − 𝑿𝒈𝛽𝑔 = 𝑿𝒍𝛽𝑙(𝑢𝑖, 𝑣𝑖) + 𝜀    (4) 

In the estimation of the GWR model, suppose the weight for each location (𝑢𝑖, 𝑣𝑖) is 𝑤𝑗(𝑢𝑖, 𝑣𝑖) where 

𝑗 = 1,2,… , 𝑛, then the parameter estimation by adding weights and then minimizing the sum of squared 

residuals from Equation (4) is as follows: 

∑𝑤𝑗(𝑢𝑖, 𝑣𝑖)

𝑛

𝑗=1

𝜀𝑗
2 = ∑𝑤𝑗(𝑢𝑖, 𝑣𝑖)

𝑛

𝑗=1

[𝑦𝑗 − 𝛽0(𝑢𝑖, 𝑣𝑖) − ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑗𝑘

𝑝

𝑘=1

]

2

 

If expressed in matrix form, the sum of squared residuals is as follows [15]: 

𝜀𝑇𝑾𝜀 = (𝑦 − 𝑿𝛽)𝑇𝑾(𝑦 − 𝑿𝛽)       

= 𝑦𝑇𝑾𝑦 − (𝑦𝑇𝑾𝑿𝛽)𝑇 − 𝛽𝑇𝑿𝑻𝑾𝑦 + 𝛽𝑇𝑿𝑻𝑾𝑿𝛽  

= 𝑦𝑇𝑾𝑦 − 2𝛽𝑇𝑿𝑻𝑾𝑦 + 𝛽𝑇𝑿𝑻𝑾𝑿𝛽     (5) 

then it is written as follows: 

𝑾(𝑢𝑖, 𝑣𝑖) = 𝑑𝑖𝑎𝑔[𝑤1(𝑢𝑖, 𝑣𝑖), 𝑤2(𝑢𝑖, 𝑣𝑖),… ,𝑤𝑛(𝑢𝑖, 𝑣𝑖)]  
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2.4 Spatial Weighting 

The spatial weighting function becomes crucial in the MGWR model because the weight values 

represent the spatial relationships between observation data points. The spatial weighting matrix (W) can be 

obtained based on distance information between neighbors or the distance between one region and another. 

This research uses an adaptive Gaussian weighting function because it involves continuous distance values 

between observation locations in constructing the weighting matrix. Therefore, each location will receive a 

weight based on distance from the observation locations [17].  

𝑤𝑖𝑗(𝑢𝑖, 𝑣𝑗) = exp (−
1

2
(

𝑑𝑖𝑗

ℎ𝑖(𝑝)
)
2

)      (6) 

 

Where 𝑑𝑖𝑗 is the distance between location 𝑖 and location 𝑗 using coordinate points. In the Bisquare 

weighting function, there is an Optimum bandwidth parameter. The optimum bandwidth is analogously 

considered as the radius of a circle so that an observation location within the circle's radius is still regarded 

as influential in determining the parameter at the 𝑖 observation location. Several methods can be used to select 

the optimum bandwidth, one of which is Cross Validation (CV). Mathematically, the Cross Validation (CV) 

method equation can be written as follows: 

𝐶𝑉 = ∑ (𝑦𝑖 − �̂�≠𝑖(ℎ))2𝑛
𝑖=1           (7) 

where: 

𝑛 : the number of observation locations 

𝑦𝑖 : the 𝑖-th observation 

�̂�≠𝑖(ℎ) : the estimated value of the 𝑖-th observation obtained without involving the 𝑖 -th observation location  

2.5 Moran’s I 

Moran's I coefficient is a development of the Pearson correlation for univariate data series. The Moran's 

I coefficient is used to test for spatial dependency or autocorrelation between observations or locations [18]. 

The hypothesis used is:  

H0: I = 0 (no autocorrelation between locations)  

H1: I ≠ 0 (there is autocorrelation between locations) 

With the test statistic being used [19] 

1 1

2

1 1

( )( )

( )

n n

ij i j

i i

n n

ij i

i i

n w x x x x

I

w x x

= =

= =

− −

=

−




                 (8) 

Information: 

ix   : data of the variable at location i ( 𝑖 =  1, 2, . . . , 𝑛)  

jx    : data of the variable at location 𝑗 ( 𝑗 =  1, 2, . . . , 𝑛)  

x    : average of the data 

w    : weighting matrix 

The value of the Moran's I index ranges between -1 and 1. if I > Io, the data exhibits positive autocorrelation. 

If I < Io, the data exhibits negative autocorrelation. 

2.6 Selection of the Best Model 

The best model selection is conducted to compare the prediction accuracy levels among several models. 

The Akaike Information Criterion (AIC) selects the best model. The best model is chosen by determining the 

model with the smallest AIC value [20]. The formula used is as follows: 

𝐴𝐼𝐶 = 𝑒
2𝑘

𝑛
∑ �̂�1

2𝑛
𝑖=1

𝑛
         (9)  
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where: 

𝑘 : the number of parameters estimated in the regression model 

𝑛 : the number of observations 

𝑢  : residual 

 

3. RESULTS AND DISCUSSION 

3.1 Regression Analysis 

Multiple linear regression analysis was conducted to determine the influence of predictor variables, 

namely literacy rates (𝑋1), school participation rates (𝑋2), open unemployment rates (𝑋3), population 

consuming potable water (𝑋4), population using private latrines (𝑋5), recipients of non-cash food assistance 

(𝑋6), population with higher education status (𝑋7), and per capita food expenditure (𝑋8) on the response 

variable without considering spatial effects. The analysis can be seen in the following Table 1: 

Table 1. Regression parameter values 

Parameter Estimate P-Value Decision 

Intercept 62.85676 0.1140  

𝑋1 -0.05710 0.8764 Not significant 

𝑋2 0.02374 0.8862 Not significant 

𝑋3 -3.33167 0.0392 significant 

𝑋4 -0.24588 0.0257 significant 

𝑋5 -0.00245 0.9830 Not significant 

𝑋6 0.03974 0.6455 Not significant 

𝑋7 -0.12308 0.7338 Not significant 

𝑋8 -0.13798 0.7050 Not significant 

 

The results in Table 1 show that the independent variables that significantly affecting the response 

variable, the poverty rate percentage, are the open unemployment rate (𝑋3) and the population consuming 

potable water (𝑋4). The results above do not incorporate spatial elements, suggesting a need for further 

investigation by adding spatial components to the analysis. 

3.2 Spatial Effect Testing 

In the regression analysis, spatial elements were not included. Thus, a study was performed using the 

mixed geographically weighted Poisson regression method. The spatial dependency test through Moran's I 

aim to observe the spatial effects on each variable by examining the p-value and comparing it with α. If the 

p-value < α, then there is a spatial effect on that variable. The Moran's I test values can be seen in Table 2. 

Table 2. Spatial dependency test 

Variable Moran I P-value 

𝑌 0.07999 0.03021 

𝑋1 0.22074 0.00004 

𝑋2 0.14562 0.00110 

𝑋3 0.11142 0.00321 

𝑋4 0.06840 0.04390 

𝑋5 0.23233 0.00002 

𝑋6 0.05995 0.01985 

𝑋7 0.06342 0.02718 

𝑋8 0.05340 0.01846 

 

From Table 2 above, it can be seen that there are all variables with a p-value < α=5%, which are the 

percentage of the poor population (Y), literacy rates (𝑋1), school participation rates (𝑋2), open unemployment 
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rates (𝑋3), population consuming potable water (𝑋4), population using private latrines (𝑋5), recipients of non-

cash food assistance (𝑋6), population with higher education status (𝑋7), and per capita food expenditure (𝑋8). 

Therefore, all eight variables have a spatial effect and can be further analyzed using the MGWR (Mixed 

Geographically Weighted Regression) model. 

3.3 Geographically Weighted Regression Model 

Several important steps must be taken to develop a Geographically Weighted Regression (GWR) 

model. The first is to determine the weights used in this study. The weights employed are Adaptive Bisquare. 

Adaptive Bisquare weights for poverty research in the province of East Nusa Tenggara involve a Bandwidth 

that is applied individually for each location. Subsequent analyses using GWR and MGWR are conducted. 

The analysis results yield a GWR model for each location, presented in Table 3. 

Table 3. GWR model beta coefficient 

Region 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝟒 𝜷𝟓 𝜷𝟔 𝜷𝟕 𝜷𝟖 

Alor -32.9104 1.2076 -0.2449 -2.5024 -0.3721 0.1909 0.0969 -0.4533 -0.3068 

Belu -32.1009 1.2557 -0.2650 -2.4282 -0.3915 0.1980 0.0971 -0.5077 -0.3448 

Ende 24.0187 0.6738 0.0778 -4.2687 -0.2707 -0.1260 0.0388 -0.1101 -0.1806 

East Flores -39.7903 1.2458 -0.2216 -2.9104 -0.3585 0.1316 0.1175 -0.2878 -0.2351 

Kupang City -30.8568 1.3213 -0.3012 -2.4663 -0.4139 0.1760 0.1208 -0.4950 -0.3602 

Kupang -31.7059 1.3009 -0.2883 -2.4471 -0.4070 0.1802 0.1134 -0.4901 -0.3482 

Lembata 35.5122 1.2289 -0.2428 -2.6158 -0.3721 0.1622 0.1101 -0.3786 -0.2706 

Malaka -31.9362 1.2618 -0.2679 -2.4239 -0.3939 0.1979 0.0979 -0.5122 -0.3490 

Manggarai 29.7266 0.0497 0.1112 -2.9799 -0.2389 -0.1091 -0.0133 0.1367 0.1879 

West Manggarai 31.2192 -0.0600 0.1057 -2.7526 -0.2399 -0.1066 -0.0205 0.1610 0.2431 

East Manggarai  28.9702 0.0773 0.1134 -3.0899 -0.2379 -0.1106 -0.0955 0.1244 0.1609 

Nagekeo 23.2465 0.2320 0.1098 -3.4559 -0.2518 -0.1130 0.0175 0.0911 0.0624 

Ngada 26.3625 0.1481 0.1121 -3.2554 -0.2463 -0.1109 -0.0528 0.1124 0.1169 

Rote Ndao -26.2626 1.3649 -0.3375 -2.6013 -0.4271 0.1642 0.1474 -0.5163 -0.4117 

Sabu Raijua 24.1337 0.3465 0.0271 -3.2930 -0.3317 -0.0471 0.0718 0.1690 0.1978 

Sikka -32.5820 1.4703 -0.1839 -3.9248 -0.3640 0.0492 0.1154 -0.1739 -0.2708 

West Sumba 33.0113 -0.0886 0.0824 -2.2324 -0.2671 -0.0920 -0.0438 0.2483 0.3663 

Southwest Sumba 33.0877 -0.0959 0.0820 -2.2039 -0.2646 -0.0933 -0.0436 0.2502 0.3731 

Central Sumba 32.7361 -0.0781 0.0843 -2.2804 -0.2671 -0.0922 -0.0426 0.2423 0.3550 

East Sumba 33.0243 -0.0495 0.0829 -2.4004 -0.2784 -0.0852 -0.0437 0.2290 0.3250 

South Central 

Timor 
-31.6096 1.2798 -0.2776 -2.4246 -0.4007 0.1920 0.1037 -0.5093 -0.3529 

North Central 

Timor 
-32.2096 1.2625 -0.2683 -2.4320 -0.3938 0.1930 0.1004 -0.4980 -0.3409 

 

Based on Table 3 above, a model for each location was obtained. The model formed for the Kupang 

City area is as follows: 

�̂�𝐾𝑢𝑝𝑎𝑛𝑔 𝐶𝑖𝑡𝑦 = −30.8568 + 1.3213𝑋1 − 0.3012𝑋2 − 2.4663𝑋3 − 0.4139𝑋4 + 0.1760𝑋5 + 0.1208𝑋6

− 0.4950𝑋7 − 0.3602𝑋8 

The model explains that the poverty rate in Kupang City will increase by 1.32 percent, 0.18 percent, 

and 0.12 percent if the variables literacy rate (X1), residents using private toilets (X5), and residents receiving 

non-cash food assistance (X6) increase by one percent, assuming other variables remain constant. The poverty 

rate in Kupang City will decrease by 0.30 percent, 2.47 percent, 0.41 percent, 0.50 percent, and 0.36 percent 

if there is an increase in the school participation rate (X2), open unemployment rate (X3), residents 

consuming safe drinking water (X4), residents with higher education (X7), and expenditure per capita on 

food (X8) by one percent, assuming other variables are constant. 
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Figure 1. GWR model prediction map using geoda 

 

Based on Figure 1, there is a significant variation in poverty levels across the regions shown. For 

example, Central Sumba and East Sumba are marked in red, indicating higher poverty levels. In contrast, 

other areas like East Flores are marked in green, indicating lower poverty levels. 

3.4 Mixed Geographically Weighted Regression Model 

After obtaining the GWR model, the next step is to develop a Mixed Geographically Weighted 

Regression (MGWR) model. The parameters for each location can be seen in the following Table 4: 

Table 4. Beta coefficient of MGWR model 

Region 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝟒 𝜷𝟓 𝜷𝟔 𝜷𝟕 𝜷𝟖 

Alor -32.0214 1.1359 -0.3708 1.7022 -0.5527 -0.0611 0.4286 -0.4564 -0.3485 

Belu -33.3109 1.4877 -0.4061 1.7022 -0.6741 -0.0600 0.4286 -0.7549 -0.6478 

Ende 21.5487 0.0827 -0.0618 1.7022 -0.1988 -0.0778 0.4286 0.0362 0.3207 

East Flores -45.1603 0.1516 -0.0787 1.7022 -0.2122 -0.0811 0.4286 0.0063 0.2637 

Kupang City -35.8568 0.2777 -0.0935 1.7022 -0.2552 -0.0835 0.4286 -0.0877 0.1661 

Kupang -36.7059 0.3186 -0.1044 1.7022 -0.2668 -0.0828 0.4286 -0.1090 0.1359 

Lembata 29.4122 0.2284 -0.0982 1.7022 -0.2355 -0.0794 0.4286 -0.0359 0.2080 

Malaka -33.1462 1.3680 -0.3774 1.7022 -0.6214 -0.0464 0.4286 -0.7250 -0.5982 

Manggarai 22.9366 -0.0578 -0.0428 1.7022 -0.1515 -0.0799 0.4286 0.1270 0.4358 

West Manggarai 33.0992 -0.1859 -0.0314 1.7022 -0.0967 -0.0961 0.4286 0.1930 0.5500 

East Manggarai 22.1802 -0.0324 -0.0456 1.7022 -0.1603 -0.0791 0.4286 0.1107 0.4137 

Nagekeo 21.2065 0.0523 -0.0576 1.7022 -0.1906 -0.0763 0.4286 0.0535 0.3465 

Ngada 24.1425 0.0282 -0.0543 1.7022 -0.1828 -0.0763 0.4286 0.0692 0.3662 

Rote Ndao -18.4426 0.2243 -0.0772 1.7022 -0.2409 -0.0848 0.4286 -0.0653 0.2045 

Sabu Raijua 29.0337 0.1075 -0.0667 1.7022 -0.2094 -0.0774 0.4286 0.0114 0.3082 

Sikka -33.7720 0.1186 -0.0690 1.7022 -0.2074 -0.0796 0.4286 0.0186 0.2918 

West Sumba 34.4513 -0.1745 -0.1539 1.7022 -0.0770 -0.1242 0.4286 -0.1196 0.7528 

Southwest Sumba 34.5277 0.1524 -0.6135 1.7022 0.0908 -0.4304 0.4286 -1.9798 1.3078 

Central Sumba 34.1761 -0.1608 -0.0709 1.7022 -0.1264 -0.0773 0.4286 0.1474 0.5972 

East Sumba 28.8643 -0.0134 -0.0594 1.7022 -0.1790 -0.0687 0.4286 0.0831 0.4238 

South Central 

Timor 
-36.6096 0.5642 -0.1523 1.7022 -0.3422 -0.0819 0.4286 -0.2705 -0.0567 

North Central 

Timor 
-33.4196 0.6965 -0.1988 1.7022 -0.3865 -0.0755 0.4286 -0.3283 -0.1367 
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Based on Table 4 above, the MGWR model for Kupang City can be described as follows: 

�̂�𝐾𝑢𝑝𝑎𝑛𝑔 𝐶𝑖𝑡𝑦 = −35.8568 + 0.2777𝑋1 − 0.0935𝑋2 + 1.7022𝑋3 − 0.2552𝑋4 − 0.0835𝑋5 + 0.4286𝑋6

− 0.0877𝑋7 + 0.1661𝑋8 

The model explains, assuming other variables remain constant, the poverty rate in Kupang City will 

increase by 0.28 percent, 0.43 percent, and 0.17 percent if the literacy rate (X1), residents receiving non-cash 

food assistance (X6), and expenditure per capita on food (X8) increase by one percent. The poverty rate in 

Kupang City will decrease by 0.09 percent, 1.70 percent, 0.26 percent, 0.08 percent, and 0.09 percent if there 

is an increase in the school participation rate (X2), open unemployment rate (X3), residents consuming safe 

drinking water (X4), residents using private toilets (X5), and residents with higher education (X7) by one 

percent.  

 
Figure 2. MGWR model prediction map using geoda 

 
Figure 2 above shows a variation in predicted poverty levels in East Nusa Tenggara Province. For 

example, Central Sumba and East Sumba are marked in red, indicating that these districts have very high 

poverty levels. Meanwhile, East Flores, Sikka, and Lembata are marked in green, indicating lower poverty 

levels. 

From the analysis of the MGWR model, significant variables were identified for each location on a 

partial basis. A grouping can be formed of districts/cities that have standard variables that significantly 

influence the percentage of the poor population, as seen in Table 5 below: 

Table 5. Significant variables for each district/city 

Significant Variable Regency/City 

𝑋4 Ende, Lembata, Manggarai, East Manggarai, Nagekeo, Ngada, Sabu Raijua, 

Central Sumba, East Sumba 

𝑋2, 𝑋4 Timor Tengah Selatan 

𝑋4, 𝑋5 Flores Timur, Kota Kupang, Kupang, Manggarai Barat, Rote Ndao, Sikka 

𝑋2, 𝑋4, 𝑋7 North Central Timor 

𝑋2, 𝑋4, 𝑋5 West Sumba 

𝑋2, 𝑋4, 𝑋7, 𝑋8 Malaka 

𝑋2, 𝑋4, 𝑋5, 𝑋7 Alor, Belu, Southeast Sumba 

3.5 Selection of the Best Model 

Determining the best model aims to identify the most suitable model for representing the data on the 

percentage of the poor population in each district/city in East Nusa Tenggara Province by comparing multiple 

linear regression, GWR, and MGWR models. The best model is determined based on the AIC value criteria, 

which are displayed in the following Table 6:  

Table 6. AIC and 𝑹𝟐 values 

Model AIC 𝑹𝟐 

Global Regression 140.1427 68.45% 

GWR Adaptive Bisquare 117.6174 81.94% 

MGWR Adaptive Bisquare 104.1888 91.88% 
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Based on Table 6, it is known that the MGWR model with adaptive bisquare weighting function is a 

better model for representing the percentage of poverty in East Nusa Tenggara Province, with a smaller AIC 

value of 104.1888 and a larger R-squared value of 91.88%. 

 

4. CONCLUSIONS 

The modeling results of the poverty percentage in East Nusa Tenggara Province show that the Mixed 

Geographically Weighted Regression model with an Adaptive Bisquare weighting function has a smaller AIC 

value than the GWR and Global Regression models. This result indicates that the MGWR model is better 

than the GWR and Global Regression models in modeling the percentage of the poor population in East Nusa 

Tenggara Province. These findings provide valuable insights for policymakers and practitioners in designing 

and implementing more effective poverty alleviation strategies tailored to local conditions in NTT Province. 

 

ACKNOWLEDGMENT  

We want to thank Brawijaya University for its support of this research. This research is a requirement 

for obtaining a Master's degree at the faculty level at Brawijaya University. 

 

REFERENCES 

[1] B. P. Statistik, “Profil Kemiskinan di Indonesia Maret 2018,” Jakarta Badan Pus. Stat., 2018. 

[2] W. Nurpadilah, I. M. Sumertajaya, and M. N. Aidi, “Geographically weighted regression with kernel weighted function on 
poverty cases in West Java province: Regresi terboboti geografis dengan fungsi pembobot kernel pada data kemiskinan di 

provinsi Jawa Barat,” Indones. J. Stat. Its Appl., vol. 5, no. 1, pp. 173–181, March 2021. 

[3] L. Liu, H. Yu, J. Zhao, H. Wu, Z. Peng, and R. Wang, “Multiscale effects of multimodal public facilities accessibility on 

housing prices based on MGWR: A case study of Wuhan, China,” ISPRS Int. J. Geo-Information, vol. 11, no. 1, p. 57, 
January 2022. 

[4] X. Hu and H. Xu, “Spatial variability of urban climate in response to quantitative trait of land cover based on GWR model,” 

Environ. Monit. Assess., vol. 191, pp. 1–12, February 2019. 

[5] W. Ngabu, H. Pramoedyo, R. Fitriani, and A. B. Astuti, “Spatial modeling of fixed effect and random effect with fast double 
bootstrap approach,” ComTech Comput. Math. Eng. Appl., vol. 14, no. 1, pp. 1–9, June 2023. 

[6] L. Chao, K. Zhang, Z. Li, Y. Zhu, J. Wang, and Z. Yu, “Geographically weighted regression based methods for merging 

satellite and gauge precipitation,” J. Hydrol., vol. 558, pp. 275–289, March 2018. 

[7] T. Feuillet et all, “A massive geographically weighted regression model of walking-environment relationships,” J. Transp. 
Geogr., vol. 68, pp. 118–129, April 2018. 

[8] H. Pramoedyo, W. Ngabu, S. Riza, and A. Iriany, “Spatial analysis using geographically weighted ordinary logistic 

regression (GWOLR) method for prediction of particle-size fraction in soil surface,” in IOP Conference Series: Earth and 

Environmental Science, IOP Publishing, 2024, p. 12005. 
[9] T. M. Oshan, Z. Li, W. Kang, L. J. Wolf, and A. S. Fotheringham, “mgwr: A Python implementation of multiscale 

geographically weighted regression for investigating process spatial heterogeneity and scale,” ISPRS Int. J. Geo-Information, 

vol. 8, no. 6, p. 269, June 2019. 

[10] C. Zhao, J. Jensen, Q. Weng, and R. Weaver, “A geographically weighted regression analysis of the underlying factors 
related to the surface urban heat island phenomenon,” Remote Sens., vol. 10, no. 9, p. 1428, September 2018. 

[11] A. Iriany, W. Ngabu, D. Arianto, and A. Putra, “Classification of stunting using geographically weighted regression-kriging 

case study: stunting in East Java,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 1, pp. 495–504, March 2023. 

[12] I. G. H. Karmana, L. P. I. Harini, K. Jayanegara, and I. P. E. N. Kencana, “Penerapan algoritma glowworm swarm 
optimization pada model geographically weighted regression dengan kernel adaptif,” E-Jurnal Matematika Vol. 9(1), pp.79-

84, January 2020. 

[13] I. Pardoe, Applied Regression Modeling. John Wiley & Sons, Inc, 2020. 

[14] H. Yang, T. Xu, D. Chen, H. Yang, and L. Pu, “Direct modeling of subway ridership at the station level: a study based on 
mixed geographically weighted regression,” Can. J. Civ. Eng., vol. 47, no. 5, pp. 534–545, May 2020. 

[15] N. S. Arniva, “Parameter estimation and statistical test in mixed model of geographically weighted bivariate poisson inverse 

gaussian regression,” in 2018 International Symposium on Advanced Intelligent Informatics (SAIN), IEEE, pp. 62–65, 
August 2018. 

[16] D. R. S. Saputro, H. N. Astuti, P. Widyaningsih, and R. Setiyowati, “Characteristics of parameter mixed geographically 

weighted regression model: global (a-group) and local (b-group),” in Journal of Physics: Conference Series, IOP Publishing, 

p. 12044, 2021. 
[17] C. Brunsdon, S. Fotheringham, and M. Charlton, “Geographically weighted regression,” J. R. Stat. Soc. Ser. D (The Stat., 

vol. 47, no. 3, pp. 431–443, 1998. 

[18] W. Ngabu, R. Fitriani, H. Pramoedyo, and A. B. Astuti, “Cluster fast double bootstrap approach with random effect spatial 



BAREKENG: J. Math. & App., vol. 18(3), pp. 2035- 2044, September, 2024.  2045 

 

 

modeling,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 2, pp. 945–954, June 2023. 

[19] J. Lee and D. W. S. Wong, Statistical Analysis with ArcView GIS. John Wiley & Sons, 2001. 

[20] S. D. Permai, A. Christina, and A. A. S. Gunawan, “Fiscal decentralization analysis that affect economic performance using 
geographically weighted regression (GWR),” Procedia Comput. Sci., vol. 179, pp. 399–406, January 2021. 

 

  



2046 Ola, et al.     MIXED GEOGRAPHICALLY WEIGHTED REGRESSION (MGWR) WITH ADAPTIVE …  

 

 


