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ABSTRACT 

Article History: 
Extreme events are events that rarely occur but they cause substantial losses. Insurance 

companies need to take extreme events into account in risk management because extreme 

events can have a negative impact on the company's financial health. As a result, insurance 

companies need an appropriate loss model that matches the empirical data from these 
extreme events. A distribution that is heavy-tailed and skewed to the right is a good 

distribution for modeling the magnitude of losses from extreme events. In this paper, two 

distributions with heavy tails and skew to the right will be used to model the magnitude of 

losses from extreme events, namely the lognormal distribution and the Pareto distribution 
type I. The parameters of these distributions are estimated using two inferences, namely the 

frequentist and Bayesian inferences. In the frequentist inference, two methods are applied, 

namely the moment method and maximum likelihood. On Bayesian inference, two prior 
distributions are used, namely uniform and Jeffrey. Test model suitability is carried out by 

visually comparing the model distribution function with the empirical distribution function, 

as well as by comparing the Root Mean Square Error (RMSE) value. The visualization 

results of the distribution function and RMSE values show that in general, the Bayesian 
inference is better at estimating parameters than the frequentist inference. In the frequentist 

inference, the maximum likelihood method can provide better estimated values than the 

moment method. In the Bayesian inference, the two prior distributions show a relatively 

similar fit to the data and tend to be better than the frequentist inference. 
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1. INTRODUCTION 

Risk is the possibility of experiencing various kinds of losses, such as financial losses that can be 

controlled or those that cannot be controlled [1]. The financial loss is caused by a detrimental event. Risk can 

be transferred from one party to another party through an insurance agreement that follows legal rules and 

the application of related principles in accordance with the agreement of the parties involved. An insurance 

agreement between the insurer, namely the insurance company and the insured party, is usually also called a 

policy. The insured party needs to pay the cost of risk coverage, called a premium, to the insurance company 

because the insurance company has taken over the risk from the insured party. 

Insurance companies cover various risks that tend to be uncertain, especially in cases where the amount 

of loss is relatively large and the frequency of occurrence is relatively small. This case can be said to be an 

extreme case. The characteristics of extreme cases can be captured by heavy-tailed distributions because these 

distributions take into account greater probability values at relatively large loss values compared to light-

tailed distributions. Even though relatively large losses tend to occur rarely, the probability value of this event 

still needs to be observed because it can have a large loss impact on the insurance company if it is not 

estimated properly. Some parametric distributions with heavy tails are lognormal, Pareto type I, Weibull, and 

Cauchy distributions. In this paper, the two most frequently used heavy-tailed distributions will be used, 

namely the lognormal distribution [2] and Pareto type I [3]. 

Distribution models can be obtained by estimating the parameters of each distribution used. There are 

two inferences that can be used to estimate parameters, namely the frequentist and Bayesian inferences. The 

frequentist inference is an inference whose distribution parameters are constant, while the Bayesian inference 

is an inference whose parameters follow a certain distribution. In research [4], it has been discussed regarding 

parameter estimation from the Weibull distribution using the maximum likelihood method, variance and 

covariance estimation, Bayesian inference, Laplace approximation, and Lindley approximation. Several 

studies related to parameter estimation of the Weibull distribution using those methods have also been 

conducted by [5]-[19] In this research, other distributions are used, namely the lognormal and Pareto type I 

distributions using a frequentist inference with moment and maximum likelihood methods, as well as a 

Bayesian inference with uniform and Jeffrey prior distributions. Results of parameter estimation using various 

methods will be compared by applying large loss data. The estimated results will be compared with the actual 

data used to see the distribution and inference that best estimates the parameters for estimating the amount of 

loss. 

This research refers to several previous studies that discussed parameter estimation with the Pareto 

type I distribution using a frequentist inference and a Bayesian inference. The frequentist inference uses the 

moment and maximum likelihood methods, while the Bayesian inference uses a uniform prior distribution. 

Then, the obtained parameter estimates are compared using data simulation. This paper will discuss the Pareto 

type I distribution using a Bayesian inference with a non-informative prior distribution, namely the Jeffrey 

prior distribution [20], and discuss parameter estimation with a lognormal distribution using a Bayesian 

inference where the prior distribution used is a uniform prior distribution. In this paper, development will be 

carried out using a non-informative prior distribution, namely the Jeffrey prior [21]. By developing the 

methods used to estimate parameters, this paper will also use large-loss data to analyze methods that can 

estimate parameters well.  

 

2. RESEARCH METHODS 

This research is quantitative research using lognormal distribution modeling and the Pareto I 

distribution. The parameters of this distribution are estimated using two inferences, namely the frequentist 

and Bayesian inferences. In the frequentist inference, the moment and maximum likelihood methods are 

applied. Then, the Bayesian inference uses two prior distributions, namely uniform and Jeffrey. The model 

suitability test was carried out by visually comparing the model distribution function with the empirical 

distribution function, as well as by comparing the Root Mean Square Error (RMSE) value. 
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2.1 Probability Density Function (PDF) 

In this research, we utilize two distributions characterized by heavy tails. The first distribution is based 

on the assumption that the random variable  follows a lognormal distribution, with a scale parameter  and 

shape parameter . The probability density function for this distribution is given by: 

𝑓(𝑥;,) =  
1

𝑥𝜎√2𝜋
𝑒

−
1
2(

ln(𝑥)−𝜇
𝜎 )

2

(1) 

with 𝑥 > 0; −∞ < 𝜇 < ∞;  𝜎 > 0. The second distribution is the Pareto type I distribution, characterized by 

a shape parameter  and location parameter 𝑘. The probability density function for this distribution is 

expressed as follows: 

𝑓(𝑥;,) =  
𝛼𝑘𝛼

𝑥𝛼+1
(2) 

with 0 < 𝑘 < 𝑥 < ∞;  𝛼 > 0.  

 

2.2 Fisher Information  

Fisher information is a way to measure the amount of information provided by the observed random 

variable 𝑋 about unknown parameters. If the parameter is at the endpoint of the random variable interval, 

then the parameter value will be fixed and known so that Fisher information cannot be calculated [22]. We 

suppose that the parameter you want to estimate is 𝜃 and the parameter is not at the endpoint of the interval 

of the random variable. 

 

2.3 Bayesian Inference 

The Bayesian inference is an inference that combines information from sample data and information 

from previous data, thereby producing a conclusion. In the Bayesian inference, there is a prior distribution 

and a posterior distribution [23]. The posterior distribution is a distribution that combines the prior 

distribution and the likelihood function. In this research, two non-informative prior distributions will be used, 

namely the Jeffrey prior distribution and the uniform prior distribution. 

The first prior distribution applied is Jeffrey's prior, which is derived using the formula 

 

𝜋(𝑎) ∝ √𝐼(𝑎) = √−𝐸 (
𝜕2 ln 𝑓(𝑥; 𝑎, 𝑏)

𝜕𝑎2 ) , (3) 

with the assumption that only parameter 𝑎 is unknown. The second prior distribution used is the uniform 

distribution with 𝑎 = 0 and 𝑏 = 1, resulting in the following expression for the prior distribution: 

 

𝜋(𝑎) ∝ 1. (4) 

2.4 Root Mean Square Error (RMSE) 

Root Mean Square Error (RMSE) in Equation (5) is the root of the average squared difference between 

observed or actual data and predicted data.  

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

𝑛
 (5) 

𝑛: the number of data, 𝑦𝑖: observation data point 𝑖, �̂�𝑖: estimation data point 𝑖. 

The value of RMSE can measure how good the prediction results produced by a model are. With the 

resulting RMSE value getting smaller, it can be concluded that the model can predict the observed data nicely. 
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2.5 Parameters Estimation of the Lognormal Distribution with the Frequentist Inference Using Method 

of Moments   

The application of the method of moments yielded Equation (6) and Equation (7) for parameters 

estimation in the lognormal distribution:  

�̂� = 2 ln (∑ 𝑥𝑖

𝑛

𝑖=1

) − 
ln(∑ 𝑥𝑖

2𝑛
𝑖=1 )

2
−

3

2
ln 𝑛 (6) 

�̂� = ln (∑ 𝑥𝑖
2

𝑛

𝑖=1

) −  2 ln (∑ 𝑥𝑖

𝑛

𝑖=1

) + ln 𝑛 (7) 

 

 

𝑛: the number of data, 𝑥𝑖: observation data point i.  

 

2.6 Parameters Estimation of the Lognormal Distribution with the Frequentist Inference Using 

Maximum Likelihood Method 

The parameters of the lognormal distribution were estimated using the maximum likelihood method, 

resulting in Equation (8) and Equation (9): 

�̂� =
∑ ln 𝑥𝑖

𝑛
𝑖=1  

2
 (8) 

�̂�2 =
∑ (ln 𝑥𝑖 − �̂�)2𝑛

𝑖=1  

𝑛
   (9) 

𝑛: the number of data, 𝑥𝑖: observation data point i.  

 

2.7 Parameters Estimation of the Lognormal Distribution with a Bayesian Inference Using Uniform 

Prior Distribution 

Estimation of the parameters of the lognormal distribution using the Bayesian inference with a uniform 

prior distribution yielded Equation (10) and Equation (11): 

�̂� =
∑ ln 𝑥𝑖

𝑛
𝑖=1  

2
 (10) 

�̂�2 =
𝛽

𝑛 − 5
  (11)  

𝛽 is defined in Equation (12): 

𝛽 =  ∑(ln 𝑥𝑖)2

𝑛

𝑖=1

−
(∑ ln 𝑥𝑖

𝑛
𝑖=1  )2

𝑛
   (12) 

𝑛: the number of data, 𝑥𝑖: observation data point 𝑖.  

2.8 Parameters Estimation of The Lognormal Distribution with a Bayesian Inference Using Jeffrey 

Prior Distribution 

Estimation of the parameters of the lognormal distribution using the Bayesian inference with Jeffrey's 

prior distribution yielded Equation (13) and Equation (14): 

�̂� =
∑ ln 𝑥𝑖

𝑛
𝑖=1  

𝑛
 (13) 

�̂�2 =
𝛽

𝑛 − 2
 (14) 

𝑛: the number of data, 𝑥𝑖: observation data point i, and 𝛽 is defined in Equation (12).  



BAREKENG: J. Math. & App., vol. 19(1), pp. 0141- 0152, March, 2025.   145 

 

 

2.9 Parameters Estimation of the Pareto Type I Distribution with the Frequentist Inference Using 

Method of Moments 

The application of the method of moments yielded Equation (15) and Equation (16) for parameters 

estimation in the Pareto type I distribution: 

�̂� =
𝑛�̅� − 𝑥𝑚𝑖𝑛

𝑛(�̅� − 𝑥𝑚𝑖𝑛)
 (15) 

�̂� =
𝑥𝑚𝑖𝑛(𝑛𝛼 − 1)

𝑛𝛼
  (16) 

 

𝑛: the number of data, 𝑥𝑚𝑖𝑛: the minimum value of the observation data, �̅�: the mean value of the data.   

 

2.10 Parameters Estimation of the Pareto Type I Distribution with the Frequentist Inference Using 

the Maximum Likelihood Method and Bayesian Inference Using Jeffrey Prior Distribution 

The parameters of the Pareto type I distribution were estimated using the maximum likelihood method, 

resulting in Equation (17): 

�̂� =
𝑛

∑ ln 𝑥𝑖
𝑛
𝑖=1  −  𝑛 ln 𝑘

  (17) 

 

We assume that the parameter �̂� is already known and defined in Equation (18): 

�̂� = min(𝑥1, … , 𝑥𝑛) (18) 

𝑛: the number of data, 𝑥𝑖: observation data point i.  

 

2.11 Parameters Estimation of the Pareto Type I Distribution with a Bayesian Inference Using 

Uniform Prior Distribution 

Estimation of the parameters of the Pareto type I distribution using the Bayesian inference with uniform 

prior distribution yielded Equation (19): 

�̂� =
𝑛 + 1

∑ ln 𝑥𝑖
𝑛
𝑖=1  −  𝑛 ln �̂�

   (19) 

 

𝑛: the number of data, 𝑥𝑖: observation data point i, and �̂� is defined in Equation (18).  

 

3. RESULTS AND DISCUSSION 

3.1 Big Data Losses 

The results of this research will present two datasets containing large loss data from two extreme events 

that have occurred previously. The data will later be modeled using two distributions, namely the lognormal 

distribution and Pareto type I. Meanwhile, the first data presented in Table 1 is data on large losses from 

natural disasters caused by wind in the United States in 1977 in millions of US dollars [24]. 

Table 1. Large Losses Caused by Natural Disasters are Related to Wind 

2 2 2 2 2 2 2 2 

2 2 2 2 3 3 3 3 

4 4 4 5 5 5 5 6 

6 6 6 8 8 9 15 17 

22 23 24 24 25 27 32 43 

 

Based on the data in Table 1, the following is a histogram of the data: 
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     Figure 1. First Data Histogram of Loss Size 

 

Based on Figure 1, it is known that the histogram is skewed to the right, where a large frequency of 

events results in small losses and a small frequency of events results in large losses. From this data, the 

average value of the data stated in �̅� is 9.225 and the variance of this data is 102.1744. Then, for the second 

data, we will present data on the magnitude of losses from fire incidents in Norway in 1975 in units of 

thousands of Norwegian krone [25]. 

Table 2. Large Losses Caused by Fire 

500 500 500 502 515 515 528 530 530 530 540 544 

550 550 551 552 557 558 570 572 574 579 583 584 

586 593 596 596 600 600 600 605 610 610 613 615 

620 622 632 635 635 640 650 650 650 650 672 674 

680 700 725 728 736 737 740 748 752 756 756 777 

798 800 800 800 826 835 862 885 900 900 910 912 

927 940 940 948 957 1000 1002 1009 1013 1020 1024 1033 

1038 1041 1104 1108 1137 1143 1180 1243 1248 1252 1280 1285 

1291 1293 1298 1300 1305 1327 1387 1455 1475 1479 1485 1491 

1515 1519 1587 1700 1708 1820 1822 1848 1906 2110 2251 2362 

2497 2690 2760 2794 2886 2924 2953 3289 3860 4016 4300 4397 

4585 4810 6855 7371 7771 7834 13000 13484 17237 526000   

 

Based on the data in Table 2, the following histogram of the data is presented: 

 
     Figure 2. Second Data Histogram of Loss Size 
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Figure 2 shows that the data has characteristics skewed to the right where the frequency of occurrence 

of small losses has a higher frequency than large losses. From this data, the average of the data stated in �̅� is 

5,351 and the variance is 1,928,048,222. 

 

3.2 Parameter Estimation Results Using First Data 

Based on the data presented in Table 1, the parameters were estimated for both distributions through 

various methods.   

Table 3. Parameter Estimation Results from Lognormal and Pareto Type I Distributions with Frequentist and 

Bayesian Inferences Using First Data 

Distribution Parameter Frequentist Inference Bayesian Inference 

Moment 

Method 

Maximum 

Likelihood Method 

Distribution 

Prior Uniform 

Distribution 

Prior Jeffrey 

Lognormal �̂� 1.8275 1.7174 1.7174 1.7174 

�̂�2 0.7887 0.9345 1.0681 0.9837 

Pareto Type I �̂� 1.2699 0.9763 1.0007 0.9763 

�̂� 1.9606 2 2 2 

 

Based on the equation calculations that have been carried out through parameter estimates that have 

been determined in sub-chapters 2.4 to 2.10, it is known that the results of the parameter estimation from the 

Lognormal and Pareto Distribution type I with the Frequentist and Bayesian Inference using the first data are 

shown in Table 3. 

3.3 Parameter Estimation Results Using Second Data 

Based on the data presented in Table 2, the parameters were estimated for both distributions through 

various methods.   

Table 4. Parameter Estimation Results from Lognormal and Pareto Type I Distributions with Frequentist and 

Bayesian Inferences Using Second Data 

Distribution Parameter Frequentist Inference Bayesian Inference 

Moment 

Method 

Maximum 

Likelihood Method 

Distribution 

Prior Uniform 

Distribution 

Prior Jeffrey 

Lognormal �̂� 6.4731 7.0521 7.0521 7.0521 

�̂�2 4.2242 0.8294 0.8597 0.8413 

Pareto Type I �̂� 1.1023 1.1940 1.2024 1.1940 

�̂� 496.8057 500 500 500 

 

Based on the equation calculations that have been carried out through the parameter estimates that have 

been determined in sub-chapters 2.4 to 2.10, it is known that the results of the parameter estimation from the 

Lognormal and Pareto Distribution type I with the Frequentist and Bayesian Inference using the second data 

are shown in Table 4. 
 

3.4 Model Fit Test Using Distribution Function 

Following this, the visual representation of the model distribution function will be juxtaposed with the 

empirical data distribution function to enable further analysis. 
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(a) (b) 

     Figure 3. This Figure Compares the Distribution Functions for the First Dataset Using 

 (a) the Lognormal Distribution and (b) the Pareto Type I Distribution 

 

From the empirical data and model in Figure 3, the model uses lognormal and Pareto type I 

distributions so that the differences in each model visualization result can be seen. In the visualization results 

of a model with a lognormal distribution using the maximum likelihood method, it is clear that the maximum 

likelihood method can obtain results that are closer to empirical data than the moment method. Based on this 

visualization, the differences between the Bayesian inference with uniform and Jeffrey prior distributions are 

not clearly visible so it is difficult to determine a better prior distribution, however, the Bayesian inference 

still shows better results when compared to the frequentist inference with the method of moments. The model 

with the Pareto distribution type I using a frequentist inference that is closest to empirical data is the model 

that uses the maximum likelihood method. The model with the Pareto distribution type I using the Bayesian 

inference does not show a significant difference. The frequentist inference uses the maximum method 

likelihood, but the Bayesian inference shows better results than the frequentist inference with the method of 
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moments. Therefore, it can be concluded that the frequentist inference with the moment method provides the 

worst model parameter estimation results. 

 

 
 

(a) (b) 

     Figure 4. This Figure Compares the Distribution Functions for the Second Dataset Using 

 (a) the Lognormal Distribution and (b) the Pareto Type I Distribution 

Based on the model visualization results in Figure 4, you can see the model visualization results of the 

lognormal and Pareto type I distributions using the frequentist and Bayesian inferences. In the lognormal 

distribution with a frequentist inference using the maximum likelihood method, it can be seen that the 

distribution function of this model can approximate the distribution function of the actual data better than the 

frequentist inference using the moment method. In the visualization results of the model with a lognormal 

distribution using the Bayesian inference, it is not clear which prior distribution is better. However, the 

Bayesian inference with both prior distributions remains better compared to the sequential inference using 

the method of moments and does not show much difference with the frequentist inference using the maximum 

likelihood method. In the visualization results of the model with Pareto type I distribution, it is shown that 
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the frequentist inference with the maximum likelihood method is also better when compared to the moment 

method. This can be seen because the lines of the distribution function of the empirical data and the model 

coincide with each other in the model with frequentist inference using the maximum likelihood method. The 

results of model visualization with the Pareto type I distribution using the Bayesian inference show quite 

small differences from the two prior distributions used, but the Bayesian inference produces better model 

parameter estimates when compared to the frequentist inference using the moment method. 

 

3.5 Test Model Suitability by Comparing RMSE Values 

Based on the previously obtained parameter estimation results, the adequacy of the estimates is 

evaluated by comparing the values derived from parameter estimation in Table 3 and Table 4 with the actual 

values in Table 1 and Table 2, resulting in the calculation of the RMSE as defined in Equation 5.  

Table 5. Comparison of RMSE Values from Each Distribution with Frequentist and Bayesian Inferences Using 

First Data 

 Frequentist Inference Bayesian Inference 

Moment 

Method 

Maximum Likelihood 

Method 

Distribution 

Prior Uniform 

Distribution 

Prior Jeffrey 

Lognormal Distribution 0.0739 0.0567 0.0530 0.0552 

Pareto Type I Distribution 0.0722 0.0558 0.0566 0.0558 

Based on Table 5, the parameter estimation results using the frequentist inference are performed better 

by the maximum likelihood method, which is indicated by the RMSE value with the lognormal and Pareto 

type I distribution which is smaller in the maximum likelihood method compared to the moment method. For 

the Bayesian inference, the estimation results with the uniform prior distribution are better than the Jeffrey 

prior distribution for the lognormal distribution. The estimation results with the Bayesian inference using the 

Jeffrey prior distribution are better than the uniform prior distribution when estimating parameters from the 

Pareto type I distribution. Overall, the Bayesian inference can estimate parameters better than the frequentist 

inference. So, the lognormal distribution with a Bayesian inference using a uniform prior distribution 

produces the best model for the first data. 

 
Table 6. Comparison of RMSE Values from Each Distribution with Frequentist and Bayesian Inferences Using 

Second Data 

 Frequentist Inference Bayesian Inference 

Moment 

Method 

Maximum Likelihood 

Method 

Distribution 

Prior Uniform 

Distribution 

Prior Jeffrey 

Lognormal Distribution 0.1694 0.0921 0.0928 0.0924 

Pareto Type I Distribution 0.0301 0.0165 0.0156 0.0165 

 

Based on Table 6, the frequentist inference using the maximum likelihood method can estimate 

parameters better when compared to the moment method. The RMSE value of the parameter estimates from 

the lognormal distribution with a Bayesian inference using two prior distributions has relatively small 

differences, but Jeffrey's prior distribution is slightly better. In the Pareto type I distribution using the 

Bayesian inference, the parameter estimation results were performed better using the uniform prior 

distribution even though it did not show a relatively large difference with the Jeffrey prior distribution. 

Parameter estimation with a lognormal distribution for the second data is best carried out by a frequentist 

inference using the maximum likelihood method even though the RMSE value has a relatively small 

difference when compared with the RMSE value from the parameter estimation results using the Bayesian 

inference. Parameter estimation with a Pareto type I distribution is best carried out by Bayesian inference 

with a uniform prior distribution where the parameter estimates produce a model the best for the second 

data. 
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4. CONCLUSIONS 

Conclusions that can be drawn from this research include the following: 1) The frequentist inference 

carried out using the moment and maximum likelihood methods shows that the maximum likelihood method 

is better than the moment method. The Bayesian inference can estimate parameters better when compared to 

the frequentist inference using the moment method. The Bayesian inference with uniform and Jeffrey prior 

distributions has relatively small differences because the prior distribution depends on the data used. 2) The 

model visualization results show that the results of the model using the Bayesian inference and the frequentist 

inference using the maximum likelihood method show relatively small differences with empirical data. For 

the first data, the Bayesian inference for lognormal and Pareto type I distributions does not show much 

difference from the results obtained by the frequentist inference using the maximum likelihood method. In 

general, the Bayesian inference produces better parameter estimates compared to the frequentist inference, 

although there are conditions where the lognormal distribution model with the frequentist inference using the 

maximum likelihood method is better than the Bayesian inference on the second data. 3) The first large loss 

data can be modeled best by a lognormal distribution with a Bayesian inference using a uniform prior 

distribution, while the second large loss data can be best modeled by a Pareto type I distribution with a 

Bayesian inference using a uniform prior distribution. So, the two large loss data used are best modeled with 

two different distributions using the same inference and prior distribution. 
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