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ABSTRACT 

Article History: 
We pose the following problem related to binary set operations on finite sets. Given a finite 

set 𝐹. Let a binary set operation ∗ and ℒ be a non-empty collection of non-empty subsets of 

𝐹. For a fixed subset 𝐴 of 𝐹, where |𝐴| ≥ max
𝑋∈ℒ

|𝑋|, how many subsets of 𝐹 which their 

operation ∗ with 𝐴 contains at least one element of ℒ?. In this paper, we give the solution of 

this problem, especially for the subsets of size |𝐴|, using the inclusion-exclusion principle, 

Corrádi’s lemma, and Bonferroni’s inequality. In this context, the problem is related to 
determining the degree of nodes in certain graphs, such as graphs constructed with the 

adjacency rule depends on ∗ and the node set is a hypergraph. 
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1. INTRODUCTION 

In set theory, one of the tools for determining the size of the set unions of finite sets is the inclusion-

exclusion principle. For any finite collection of finite sets {𝑋𝑖}𝑖∈𝐼,  

|⋃𝑋𝑖
𝑖∈𝐼

| = ∑ (−1)|𝐽|−1 |⋂𝑋𝑗
𝑗∈𝐽

|

∅≠𝐽⊆𝐼

 

It can be challenging to perform calculations involving a large number of distinct sets. In such cases, 

it might be sufficient to determine their bounds. Bonferroni’s inequality is a commonly used tool in 

combinatorics and probability theory to establish the upper bounds (see [1]). For any positive integer 𝑚, the 

classical Bonferroni’s inequality, with a measure 𝜇, is stated as follows: 

𝜇 (⋃𝑋𝑖
𝑖∈𝐼

) ≤ ∑ (−1)|𝐽|−1𝜇 (⋂𝑋𝑗
𝑗∈𝐽

)

𝐽⊆𝐼; 0<|𝐽|≤𝑞

 

if 𝑞 is odd, and we get the lower bound for the otherwise. In terms of probability measure (𝜇 = 𝐏), let 

{𝑋𝑖}𝑖∈𝐼 be a collection of events. When 𝑞 = 1, the inequality 𝐏(⋃ 𝑋𝑖𝑖∈𝐼 ) ≤ ∑ 𝐏(𝑋𝑖)𝑖∈𝐼  is known as the 

union bound or also as Boole’s inequality for finite events. We call Bonferroni’s inequality with measure 

‘Cardinality of set’ especially for 𝑞 = 1 as simplex Bonferroni’s inequality. Another useful tool is Corrádi’s 

lemma (see [2]), which provides the lower bound and is often optimal, especially in cases like a projective 

plane (see [3]). For the finite collection {𝑋𝑖}𝑖∈𝐼 , the lemma asserts as follows, if |𝑋𝑖| ≥ 𝑘 and |𝑋𝑖 ∩ 𝑋𝑗| ≤ 𝜆 

for all 𝑖, 𝑗 where 𝑖 ≠ 𝑗, then 

|⋃𝑋𝑖
𝑖∈𝐼

| ≥
|𝐼|𝑘2

𝑘 + (|𝐼| − 1)𝜆
. 

A couple of years ago, Li, Broersma, and Wang in [4] proved the generalized type of Corrádi’s 

lemma, which they applied to study the growth rates of the Erdős-Gyarfas function. However, it involves 

somewhat detailed assumptions and can lead to more complicated results. 

For brevity, we denote (
𝑋
𝑘
) as the collection of all subsets having 𝑘 elements of the set 𝑋. Let 𝐺 be a 

graph, denoted by 𝐺 = (𝑉𝐺 , 𝐸𝐺), with 𝑉𝐺 and 𝐸𝐺  as the node set and the edge set of 𝐺, respectively. The 

edge of 𝐺 is represented by a subset of (
𝑉𝐺
2
). The degree of node 𝑣, denoted by 𝑑𝐺(𝑣), represents the 

number of nodes in 𝐺 which are adjacent to 𝑣. The generalization of a graph 𝐺 is called a hypergraph, 

which was introduced by Claude Berge (see [5]). A hypergraph is a pair (𝑃, 𝒬) where 𝑃 is a set of nodes 

and 𝒬 is a collection of hyperedges (another name for edges in hypergraph) satisfying ∅ ≠ 𝑅 ⊆ 2𝑃 , for all 

𝑅 ∈ 𝒬, such that ⋃ 𝑅𝑅∈𝒬 ⊆ 𝑃. In other words, an ordinary graph and a hypergraph both differ in the form 

of their edges, where the edge of an ordinary graph connects exactly two nodes, but the edge of 

a hypergraph can connect more than one node. There has been extensive study on hypergraphs, for example 

[6]–[10]. 

Let 𝐺 be any graph. The non-uniform subset graph associated with 𝐺 was introduced in [11]. It is a 

graph whose node set is (
𝑉𝐺
𝑘
) and any two distinct nodes are joined by an edge if and only if their 

intersection contains at least one edge of 𝐺. Additionally, the author of [11] has studied various graph 

properties, including clique number, girth, bipartiteness, and hamiltonicity, or the non-uniform subset 

graph. On the other hand, there is the token graph of 𝐺 which was introduced by Fabila-Monroy et al. (see 

[12]). It is a graph whose node set is (
𝑉𝐺
𝑘
) and any two distinct nodes are joined by an edge if and only if 

their symmetric difference is an edge of 𝐺. The authors of [12] have studied various graph properties of the 

token graph, including chromatic number and hamiltonicity, and their research has been continued by other 

authors, for example [13]–[20]. It is clear that non-uniform subset graphs and token graphs are not 

hypergraphs themselves, but they can be associated with hypergraphs. 
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We pose the following problem related to binary set operations on finite sets. 

Problem 1. Given a finite set 𝐹. Let ∗ be a binary set operation and ℒ be a non-empty collection of non-

empty subsets of 𝐹. For a fixed subset 𝐴 of 𝐹, where |𝐴| ≥ max
𝑋∈ℒ

|𝑋|, how many subsets which their 

operation ∗ with 𝐴 contains at least one element of ℒ?. 

In general, when we are given two systems ℊ and ℋ, such that ℋ is depending on ℊ. There is also 

defined a relation ~ between elements of ℊ. For a fixed one element in ℊ, determine the number of other 

elements in ℊ which the relation ~ with the fixed one is well-defined in ℋ. For instance, determining the 

degree of every node on Cayley graphs. For a given finite group 𝐺′ and 𝑆 ⊂ 𝐺′, where 𝑆 = 𝑆−1, a Cayley 

graph of 𝐺′ is a graph where the node set is 𝐺′, and two distinct nodes 𝑥 and 𝑦 are adjacent if and only if 

𝑥𝑦−1 ∈ 𝑆. In this context, the relation ~ is defined as 𝑥 multiplies with the inverse of other elements in 𝐺′. 
However, this problem is easily solved, as it has been established that 𝑑Cayley group of 𝐺′(𝑥) = |𝑆| for every 

𝑥 ∈ 𝐺′. The research on Cayley graphs can be found, for example [21], [22]. Other examples are coprime 

graphs and non-coprime graphs. Those are introduced by Ma et. al. (2014) (see [23]) and Mansoori et al 

(2016) (see [24]), respectively. The coprime graph of the group 𝐺′ is a graph in which the node set is 𝐺′ and 

two distinct nodes are adjacent if and only if their orders is coprime (relatively prime). The non-coprime 

graph of the group 𝐺′ is a graph in which the node set is 𝐺′ − {𝑖}, where 𝑖 is the identity element of 𝐺′, and 

two distinct nodes are adjacent if and only if their orders are not coprime. These graphs make a connection 

between elements by the relation of their coprimality whether included in {(𝑎, 𝑏): 𝑎, 𝑏 ∈ ℕ, gcd(𝑎, 𝑏) = 1} 
or ℕ2 − {(𝑎, 𝑏): 𝑎, 𝑏 ∈ ℕ, gcd(𝑎, 𝑏) = 1}. The study of these graphs is quite lots see for example [23]–[25], 

and there was research that explains the connection between them (see [26]). Specifically, related to the 

systems consisting of sets, the problem is similar to determining the degree of every node in certain graphs, 

such as graphs constructed with the adjacency rule depends on ~ and the node set is a graph or even 

hypergraph since the elements of ℒ are not necessarily the same size. Examples of these graphs are uniform 

subset graphs, non-uniform subset graphs, and token graphs. 

In determining the problem's solution, we are using the principle of inclusion-exclusion, Corradi’s 

lemma, and simplex Bonferroni’s inequality, specifically placing the last two in the following moment. 

Corradi′s lemma ≤ 𝐒𝐢𝐳𝐞 𝐨𝐟 𝐮𝐧𝐢𝐨𝐧 𝐨𝐟 𝐬𝐨𝐦𝐞 𝐟𝐢𝐧𝐢𝐭𝐞 𝐬𝐞𝐭𝐬 ≤ Simplex Bonferroni′s inequality. 

The upper and lower bounds can be gained using Bonferroni’s inequality by tinkering values of 𝑞, but it 

does not quite match in this context since in the discussion, some calculations include binomial terms that 

do not hold for 𝑞 > 1.  

The purpose of this paper is to solve Problem 1 which focused on binary set operations such as 

union, intersection, difference, and symmetric difference, by using three supporting materials such as the 

inclusion-exclusion principle, Corrádi’s lemma, and simplex Bonferroni’s inequality. The solutions will be 

applicable to determine the degree of every node in certain graphs. For example, graphs constructed with 

the adjacency rule depend on the binary set operation and the node set is a graph or even hypergraph. 

 

2. RESEARCH METHODS 

This research uses a literature review methodology, drawing materials from various books and articles 

published in specific journals. The discussion groove in this research is solving the posed problem by 

employing the inclusion-exclusion principle, Corrádi’s lemma, and simplex Bonferroni’s inequality. 

 

3. RESULTS AND DISCUSSION 

Recall that in this paper, we just solve Problem 1, particularly for the subsets that will be searched 

to have the same size as the fixed subset. Before directly solving the problem, we re-state the assertion of 

Problem 1 into a more specific assertion as follows. 

Problem 2. Given a finite set 𝐹 of size 𝑓 > 0 and some integers 𝑘 ≥ 𝑚 ≥ 𝑛 > 𝑙 ≥ 0 where 𝑓 > 𝑘. Let ∗ be 

a binary set operation and 
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ℒ ≔ {𝐶 ⊆ 𝐹: 𝑛 ≤ |𝐶| ≤ 𝑚, |𝐶 ∩ 𝐶′| ≤ 𝑙}. 

For a fixed 𝐴 ∈ (
𝐹
𝑘
), how many 𝐵 ∈ (

𝐹
𝑘
) − {𝐴} such that 𝐵 ∗ 𝐴 contains at least one element of ℒ?. 

The question on Problem 2 means that the subset 𝐵 should satisfy 2𝐵∗𝐴 ∩ ℒ ≠ ∅. For brevity, we 

denote [𝐵 ∗ 𝐴]ℒ which represents the size of 2𝐵∗𝐴 ∩ ℒ, 𝑁∗(𝐴) represents the set of subsets 𝐵 such that 
[𝐵 ∗ 𝐴]ℒ ≠ 0, and #𝑁∗(𝐴) represents the size of 𝑁∗(𝐴). It is pretty clear that the set of all subset 𝐵 is 

included in (
𝐹
𝑘
), so we obtain #𝑁∗(𝐴) ≤ (

𝑓
𝑘
). For every 1 ≤ 𝑖 ≤ 𝑡, let 𝑆𝑖 ⊂ 𝐹 be any subsets of size less 

than or equal to 𝑘, we denote 𝐶𝑘(𝑆𝑖) be the collection of 𝐷 ∈ (
𝐹
𝑘
) containing 𝑆𝑖. The size of 𝐶𝑘(𝑆𝑖) must be 

(
𝑓 − |𝑆𝑖|

𝑘 − |𝑆𝑖|
) for every 1 ≤ 𝑖 ≤ 𝑡. It is easy to verify that ⋂ 𝐶𝑘(𝑆𝑖)1≤𝑖≤𝑡 = 𝐶𝑘(⋃ 𝑆𝑖1≤𝑖≤𝑡 ) and it has the size 

(
𝑓 − |⋃ 𝑆𝑖1≤𝑖≤𝑡 |

𝑘 − |⋃ 𝑆𝑖1≤𝑖≤𝑡 |
). To get 𝑁∗(𝐴), we can see how the interaction between 𝐴 and each element of ℒ, whether 

𝐴 contains some elements of ℒ or not. This interaction lets us divide the solution to the problem into two 

cases i.e., [𝐴]ℒ = 0 or [𝐴]ℒ ≠ 0. Now, first, consider the fact that ℒ is non-empty. If ∗=∪, then no matter 

what 𝐴 is, we must have 𝑁∗(𝐴) ≠ ∅. It also holds for ∗=△, since ℒ is non-empty, then there exists 𝐶 ∈ ℒ 

such that 𝑛 ≤ |𝐶| ≤ 𝑘. If 𝐶 ∩ 𝐴 ≠ ∅, then there exists 𝐵 ∈ (
𝐹
𝑘
) − {𝐴} and 𝐵 ⊃ 𝐶 − 𝐴 such that 𝐵 △ 𝐴 ⊃ 𝐶, 

so [𝐵 △ 𝐴]ℒ ≠ 0. If 𝐶 ∩ 𝐴 = ∅, then there exists 𝐵 ∈ (
𝐹
𝑘
) − {𝐴} and 𝐵 ⊃ 𝐶 such that 𝐵 △ 𝐴 ⊃ 𝐶, so 

[𝐵 △ 𝐴]ℒ ≠ 0. In other words, 𝑁△(𝐴) ≠ ∅ for any fixed 𝐴. Nevertheless, if ∗=∩, then 𝑁∩(𝐴) depends on 
[𝐴]ℒ, and also what the precise value of #𝑁△(𝐴) is also depending on [𝐴]ℒ. This is the reason why we are 

necessary to consider the cases [𝐴]ℒ = 0 or [𝐴]ℒ ≠ 0. 

Theorem 1. 

#𝑁∩(𝐴) =

{
 
 

 
 

−1 +∑(−1)𝑝−1

[𝐴]ℒ

𝑝=1

∑ (
𝑓 − 𝑟
𝑘 − 𝑟

) 𝛾𝑝,𝑟

𝑚𝑖𝑛{𝑘,𝑝 𝑚𝑎𝑥
𝐶∈2𝐴∩ℒ

|𝐶|}

𝑟=
𝑝𝑛2

𝑛+(𝑝−1)𝑙

  , [𝐴]ℒ ≠ 0

0,                                                                                       , [𝐴]ℒ = 0.

 

where 𝛾𝑝,𝑟 represents the number of subcollections {𝐶𝑖}1≤𝑖≤𝑝 of 2𝐴 ∩ ℒ satisfy |⋃ 𝐶𝑖1≤𝑖≤𝑝 | = 𝑟. 

Proof. If [𝐴]ℒ = 0, then all subsets 𝐵 satisfy [𝐵 ∩ 𝐴]ℒ = 0. So, 𝑁∩(𝐴) = ∅. Now, let [𝐴]ℒ ≠ 0. We 

determine #𝑁∩(𝐴) using the same method as in [11] (proof of Proposition 3.4). Consider 𝑁∩(𝐴) must 

consist of subsets containing the same element from ℒ i.e. 

𝑁∩(𝐴) = {𝐵 ∈ (
𝑋
𝑘
) − {𝐴} ∶ ∃𝐶 ∈ 2𝐴 ∩ ℒ, 𝐶 ⊆ 𝐵}. 

Therefore, 

𝑁∩(𝐴) = ( ⋃ 𝐶𝑘(𝐶)

𝐶∈2𝐴∩ℒ

) − {𝐴}. 

By the inclusion-exclusion principle, we have 

#𝑁∩(𝐴) = −1 + ∑ (−1)|𝐽|−1 |⋂𝐶𝑘(𝐶𝑗)

𝑗∈𝐽

|

∅≠𝐽⊆{1,2,…,[𝐴]ℒ}

= −1 + ∑ (−1)|𝐽|−1

(

 
 
 
 𝑓 − |⋃𝐶

𝑗∈𝐽

|

𝑘 − |⋃𝐶𝑗
𝑗∈𝐽

|

)

 
 
 
 

∅≠𝐽⊆{1,2,…,[𝐴]ℒ}

. 

Recall that |𝐶𝑖| ≥ 𝑛 and |𝐶𝑖 ∩ 𝐶𝑗| ≤ 𝑙 for all 𝑖, 𝑗 and 𝑖 ≠ 𝑗. For every 1 ≤ 𝑝 ≤ [𝐴]ℒ, by Corrádi’s lemma 

and simplex Bonferroni’s inequality, we have 
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𝑝𝑛2

𝑛 + (𝑝 − 1)𝑙
≤ | ⋃ 𝐶𝑗

𝑗∈𝐼; |𝐼|=𝑝

| ≤ 𝑝 max
𝐶∈2𝐴∩ℒ

|𝐶|. 

If there exists {𝐶𝑗
′: 𝑗 ∈ 𝐼, |𝐼| = 𝑝} such that 𝑘 < |⋃ 𝐶𝑗

′
𝑗∈𝐼; |𝐼|=𝑝 | ≤ 𝑝 max

𝐶∈2𝐴∩ℒ
|𝐶| satisfying 

(

 
 
 
 𝑓 − | ⋃ 𝐶𝑗

′

𝑗∈𝐼; |𝐼|=𝑝

|

𝑘 − | ⋃ 𝐶𝑗
′

𝑗∈𝐼; |𝐼|=𝑝

|

)

 
 
 
 

= 0, 

then we have 

𝑝𝑛2

𝑛 + (𝑝 − 1)𝑙
≤ | ⋃ 𝐶𝑗

𝑗∈𝐼; |𝐼|=𝑝

| ≤ min {𝑘, 𝑝 max
𝐶∈2𝐴∩ℒ

|𝐶|} (1) 

Therefore, 

The number of all elements of 𝑁∩(𝐴) 
containing 𝑝 elements of 2𝐴 ∩ ℒ = ∑ (

𝑓 − 𝑟
𝑘 − 𝑟

) 𝛾𝑝,𝑟

min{𝑘,𝑝 max
𝐶∈2𝐴∩ℒ

|𝐶|}

𝑟=
𝑝𝑛2

𝑛+(𝑝−1)𝑙

 (2) 

where 𝛾𝑝,𝑟 represents the number of subcollections {𝐶𝑖}1≤𝑖≤𝑝 of 2𝐴 ∩ ℒ satisfy |⋃ 𝐶𝑖1≤𝑖≤𝑝 | = 𝑟. By the 

inclusion-exclusion principle running for all 𝑝, we obtain 

#𝑁∩(𝐴) = −1 +∑(−1)𝑝−1

[𝐴]ℒ

𝑝=1

∑ (
𝑓 − 𝑟
𝑘 − 𝑟

) 𝛾𝑝,𝑟

min{𝑘,𝑝 max
𝐶∈2𝐴∩ℒ

|𝐶|}

𝑟=
𝑝𝑛2

𝑛+(𝑝−1)𝑙

. 

∎ 

The following Theorem 2 and Theorem 4 show the bounds of #𝑁△(𝐴). 

Theorem 2. If [𝐴]ℒ = 0, then 

#𝑁△(𝐴) ≤ ∑(−1)𝑝−1 ∑ (
𝑓 − 𝑟
𝑘 − 𝑟

)𝜙𝑝,𝑟

𝑚𝑖𝑛{𝑘,𝑝𝑚𝑎𝑥
𝐶∈ℒ

|𝐶−𝐴|}

𝑟=
𝑝(𝑚𝑖𝑛

𝐶∈ℒ
|𝐶−𝐴|)

2

𝑚𝑖𝑛
𝐶∈ℒ

|𝐶−𝐴|+(𝑝−1)𝑙

|ℒ|

𝑝=1

, 

where 𝜙𝑝,𝑟 represents the number of subcollections {𝐶𝑖}1≤𝑖≤𝑝 of ℒ satisfy |⋃ (𝐶𝑖 − 𝐴)1≤𝑖≤𝑝 | = 𝑟. 

Proof. Consider that for all 𝐶 ∈ ℒ, these satisfy 𝐶 ⊄ 𝐴 since [𝐴]ℒ = 0, but they are certainly satisfied either 

𝐴 ∩ 𝐶 = ∅ or 𝐴 ∩ 𝐶 ≠ ∅. If 𝐴 ∩ 𝐶 ≠ ∅, then 𝐶 − 𝐴 ≠ ∅. Also, if 𝐴 ∩ 𝐶 = ∅, then 𝐶 − 𝐴 = 𝐶. In other 

words, 𝑁△(𝐴) consists of 𝐵 ∈ (
𝐹
𝑘
) satisfies 𝐵 ⊇ 𝐶 − 𝐴, equivalently 

𝑁△(𝐴) ⊆⋃𝐶𝑘(𝐶 − 𝐴)

𝐶∈ℒ

. 
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Using the inclusion-exclusion principle, we have 

#𝑁△(𝐴) ≤ ∑ (−1)|𝐽|−1 |⋂𝐶𝑘(𝐶𝑗 − 𝐴)

𝑗∈𝐽

|

∅≠𝐽⊆{1,2,…,|ℒ}}

= ∑ (−1)|𝐽|−1

(

 
 
 
 𝑓 − |⋃(𝐶𝑗 − 𝐴)

𝑗∈𝐽

|

𝑘 − |⋃(𝐶 − 𝐴)

𝑗∈𝐽

|

)

 
 
 
 

∅≠𝐽⊆{1,2,…,|ℒ}}

. 

Let 𝑚∗ ≔ min{|𝐶 − 𝐴|: 𝐶 ∈ ℒ} and 𝑚∗ ≔max{|𝐶 − 𝐴|: 𝐶 ∈ ℒ}. Consider that |𝐶𝑖 − 𝐴| ≥ 𝑚∗ and 

|(𝐶𝑖 − 𝐴) ∩ (𝐶𝑗 − 𝐴)| = |(𝐶𝑖 ∩ 𝐴
𝑐) ∩ (𝐶𝑗 ∩ 𝐴

𝑐)| = |(𝐶𝑖 ∩ 𝐶) ∩ 𝐴
𝑐| ≤ |𝐶𝑖 ∩ 𝐶𝑗| ≤ 𝑙 

for all 𝑖, 𝑗 and 𝑖 ≠ 𝑗. For every 1 ≤ 𝑝 ≤ |ℒ|, using Corrádi’s lemma and simplex Bonferroni’s inequality, 

we have 

𝑝𝑚∗
2

𝑚∗ + (𝑝 − 1)𝑙
≤ | ⋃ (𝐶𝑗 − 𝐴)

𝑗∈𝐼; |𝐼|=𝑝

| ≤ 𝑝𝑚∗. 

If there exists {𝐶𝑗
′ − 𝐴: 𝑗 ∈ 𝐼, |𝐼| = 𝑝} such that 𝑘 < |⋃ (𝐶𝑗

′ − 𝐴)𝑗∈𝐼; |𝐼|=𝑝 | ≤ 𝑝𝑚∗ satisfying 

(

 
 
 
 𝑓 − | ⋃ (𝐶𝑗

′ − 𝐴)

𝑗∈𝐼; |𝐼|=𝑝

|

𝑘 − | ⋃ (𝐶𝑗
′ − 𝐴)

𝑗∈𝐼; |𝐼|=𝑝

|

)

 
 
 
 

= 0, 

then we have 

𝑝𝑚∗
2

𝑚∗ + (𝑝 − 1)𝑙
≤ | ⋃ (𝐶𝑗 − 𝐴)

𝑗∈𝐼; |𝐼|=𝑝

| ≤ min{𝑘, 𝑝𝑚∗}. 

Therefore, 

The number of all elements of 𝑁△(𝐴) 
containing 𝑝 elements of 2𝐴 ∩ ℒ 

= ∑ (
𝑓 − 𝑟
𝑘 − 𝑟

)𝜙𝑝,𝑟

min{𝑘,𝑝𝑚∗}

𝑟=
𝑝𝑚∗

2

𝑚∗+(𝑝−1)𝑙

, 

 

where 𝜙𝑝,𝑟 represents the number of subcollections {𝐶𝑖}1≤𝑖≤𝑝 of ℒ satisfy |⋃ (𝐶𝑖 − 𝐴)1≤𝑖≤𝑝 | = 𝑟. By the 

inclusion-exclusion principle running for all 𝑝, we obtain 

#𝑁△(𝐴) ≤ ∑(−1)𝑝−1 ∑ (
𝑓 − 𝑟
𝑘 − 𝑟

)𝜙𝑝,𝑟

min{𝑘,𝑝𝑚∗}

𝑟=
𝑝𝑚∗

2

𝑚∗+(𝑝−1)𝑙

|ℒ|

𝑝=1

. 

∎ 

Proposition 3. There is at least one subset 𝐵 ∈ (
𝐹
𝑘
) disjoints with all 𝐶 ∈ 2𝐴 ∩ ℒ if and only if 𝑘 ≤ 𝑓 −

|⋃ 𝐶𝐶∈2𝐴∩ℒ |. 
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Proof. It is trivial to know that if 𝑘 ≤ 𝑓 − |⋃ 𝐶𝐶∈2𝐴∩ℒ |, then (
𝑓 − |⋃ 𝐶𝐶∈2𝐴∩ℒ |

𝑘
) > 0. So, there is at least 

one subset 𝐵 ∈ (
𝐹
𝑘
) disjoining with all elements of 2𝐴 ∩ ℒ. Conversely, let 

𝑌 = {𝐵 ∈ (
𝐹
𝑘
) : 𝐵 ∩ 𝐶 = ∅, ∀𝐶 ∈ 2𝐴 ∩ ℒ} ≠ ∅. 

Take any element 𝐵 ∈ 𝑌. We have 𝐵 ∩ 𝐶1 = ∅, 𝐵 ∩ 𝐶2 = ∅, …, 𝐵 ∩ 𝐶[𝐴]ℒ = ∅. Consider the following. 

∅ = ∅ ∪ ∅ ∪ …∪ ∅ = (𝐵 ∩ 𝐶1) ∪ (𝐵 ∩ 𝐶2) ∪ …∪ (𝐵 ∩ 𝐶[𝐴]ℒ) = 𝐵 ∩ ( ⋃ 𝐶

𝐶∈2𝐴∩ℒ

). 

In other words, 𝐵 disjoint with the union of all elements of 2𝐴 ∩ ℒ. Therefore, (
𝑓 − |⋃ 𝐶𝐶∈2𝐴∩ℒ |

𝑘
) > 0 or 

equivalently, 𝑘 ≤ 𝑓 − |⋃ 𝐶𝐶∈2𝐴∩ℒ |. 
∎ 

Theorem 4. If [𝐴]ℒ ≠ 0, then 

#𝑁△(𝐴) ≥ ∑(−1)𝑝−1 ∑ (
𝑓 − 𝑟
𝑘

) 𝛾𝑝,𝑟

𝑝 𝑚𝑎𝑥
𝐶∈2𝐴∩ℒ

|𝐶|

𝑟=
𝑝𝑛2

𝑛+(𝑝−1)𝑙

[𝐴]ℒ

𝑝=1

, 

where 𝛾𝑝,𝑟 represents the number of subcollections {𝐶𝑖}1≤𝑖≤𝑝 of 2𝐴 ∩ ℒ satisfy |⋃ 𝐶𝑖1≤𝑖≤𝑝 | = 𝑟. 

Proof. Since [𝐴]ℒ ≠ ∅, then let 2𝐴 ∩ ℒ = {𝐶1, 𝐶2, … , 𝐶[𝐴]ℒ}. The set 𝐵 ∈ (
𝐹
𝑘
) which disjoints with at least 

one element of 2𝐴 ∩ ℒ, say 𝐶 ∈ 2𝐴 ∩ ℒ, satisfies 𝐵 △ 𝐴 ⊇ 𝐶. It follows that [𝐵 △ 𝐴]ℒ ≠ 0. So, 𝐵 ∈ 𝑁△(𝐴). 
Therefore, 

𝑁△(𝐴) ⊇ (⋃{𝐵 ∈ (
𝐹
𝑘
) : 𝐵 ∩ 𝐶𝑝 = ∅}

[𝐴]ℒ

𝑝=1

) 

or 

#𝑁△(𝐴) ≥ |⋃{𝐵 ∈ (
𝐹
𝑘
) :𝐵 ∩ 𝐶𝑝 = ∅}

[𝐴]ℒ

𝑝=1

|. 

By using the inclusion-exclusion principle, 

#𝑁△(𝐴) ≥ ( ∑ (−1)|𝐽|−1 |⋂{𝐵 ∈ (
𝐹
𝑘
) :𝐵 ∩ 𝐶𝑗 = ∅}

𝑗∈𝐽

|

∅≠𝐽⊆𝐼

) 

= ( ∑ (−1)|𝐽|−1 |{𝐵 ∈ (
𝐹
𝑘
) :𝐵 ∩ (⋃𝐶𝑗

𝑗∈𝐽

) = ∅}|

∅≠𝐽⊆𝐼

) 

#𝑁△(𝐴) ≥ ( ∑ (−1)|𝐽|−1(
𝑓 − |⋃𝐶𝑗

𝑗∈𝐽

|

𝑘

)

∅≠𝐽⊆𝐼

) 

Based on Equation (1) and Equation (2), we obtain 

#𝑁△(𝐴) ≥

(

 
 
∑(−1)𝑝−1 ∑ (

𝑓 − 𝑟
𝑘

) 𝛾𝑝,𝑟

𝑝 max
𝐶∈2𝐴∩ℒ

|𝐶|

𝑟=
𝑝𝑛2

𝑛+(𝑝−1)𝑙

[𝐴]ℒ

𝑝=1

)

 
 
. 

∎ 
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The following Theorem 5 and Theorem 6 show the size of 𝑁∪(𝐴). 

Theorem 5.  #𝑁∪(𝐴) = {
|{𝐵 ∈ (

𝐹
𝑘
) : ∃𝐴0 ⊆ 𝐴, [𝐴0 ∪ 𝐵]ℒ ≠ 0 }|  , [𝐴]ℒ = 0

(
𝑓
𝑘
) − 1                                                            , [𝐴]ℒ ≠ 0.

 

Proof. It is pretty clear for the case [𝐴]ℒ = 0. If [𝐴]ℒ ≠ 0, then every subset 𝐵 ∈ (
𝐹
𝑘
) − {𝐴} satisfies 

[𝐵 ∪ 𝐴]ℒ ≠ 0 since 2𝐵∪𝐴 ∩ ℒ ⊇ 2𝐴 ∩ ℒ ≠ ∅. Therefore, #𝑁∪(𝐴) = (
𝑓
𝑘
) − 1. 

∎ 

Theorem 6. #𝑁∪(𝐴) ≥ |𝑁∩(𝐴) ∪ 𝑁△(𝐴)|. 

Proof. Take any 𝐵 ∈ 𝑁∩(𝐴) ∪ 𝑁△(𝐴). If 𝐵 ∈ 𝑁∩(𝐴), then there exists 𝐶1 ∈ ℒ such that 𝐶1 ⊆ 𝐵 ∩ 𝐴 ⊆ 𝐵 ∪
𝐴. Similarly, if 𝐵 ∈ 𝑁△(𝐴), then there exists 𝐶2 ∈ ℒ such that 𝐶2 ⊆ 𝐵 △ 𝐴 ⊆ 𝐵 ∪ 𝐴. Therefore, there exists 

𝐶 = 𝐶1 ∪ 𝐶2 such that 𝐶 ⊆ 𝐵 ∪ 𝐴. In other words, 𝐵 ∈ 𝑁∪(𝐴). 
∎ 

Theorem 4 does not always hold equality i.e., #𝑁∪(𝐴) = |𝑁∩(𝐴) ∪ 𝑁△(𝐴)|. It because not all 

elements of 𝑁∪(𝐴) are contained in 𝑁∩(𝐴) ∪ 𝑁△(𝐴). Perhaps there exists 𝐵 ∈ 𝑁∪(𝐴) which all 𝐶 ∈ 2𝐴 ∩ ℒ 

satisfy 𝐶 ∩ (𝐵 ∩ 𝐴) ≠ ∅ and 𝐶 ∩ (𝐵 △ 𝐴) ≠ ∅. It follows that 𝐶 ⊈ (𝐵 ∩ 𝐴) and 𝐶 ⊈ (𝐵 △ 𝐴). Therefore, 

𝐵 ∉ (𝑁∩(𝐴) ∪ 𝑁△(𝐴)). For instance, given a hypergraph (𝐻,ℜ) where 

𝐻 = (
{𝑛: 1 ≤ 𝑛 ≤ 11}

5
)   ∧   ℜ = {{2,4,6}}. 

For a fixed node 𝑢 = {1,2,3,4,5}. There exists 𝑣 = {4,5,6,7,8} such that {2,4,6} ∩ (𝑣 ∩ 𝑢) = {4} ≠ ∅ and 

{2,4,6} ∩ (𝑣 △ 𝑢) = {2,6} ≠ ∅. Therefore, we have  #𝑁∪(𝑢) > |𝑁∩(𝑢) ∪ 𝑁△(𝑢)|. 

Theorem 7. If [𝐴]ℒ = 0, then 

#𝑁−(𝐴) = ∑(−1)𝑝−1

|ℒ+|

𝑝=1

∑ (
𝑓 − 𝑟
𝑘 − 𝑟

)𝜓𝑝,𝑟

𝑚𝑖𝑛{𝑘,𝑝𝑚}

𝑟=
𝑝𝑛2

𝑛+(𝑝−1)𝑙

, 

where ℒ+ ≔ {𝐶 ∈ ℒ:𝐶 ∩ 𝐴 = ∅} and 𝜓𝑝,𝑟 represents the number of subcollections {𝐶𝑖}1≤𝑖≤𝑝 of ℒ+ satisfy 

|⋃ 𝐶𝑖1≤𝑖≤𝑝 | = 𝑟. 

Proof. Consider that for any 𝐵 ∈ (
𝐹
𝑘
), we have the fact that for some 𝐶 ∈ ℒ, 𝐵 − 𝐴 ⊃ 𝐶 if and only if 𝐵 ⊃

𝐶 with 𝐶 ∩ 𝐴 = ∅. Therefore, 

#𝑁−(𝐴) = |{𝐵 ∈ (
𝐹
𝑘
) : ∃𝐶 ∈ ℒ, 𝐵 ⊃ 𝐶, 𝐶 ∩ 𝐴 = ∅}| = |⋃ 𝐶𝑘(𝐶)

𝐶∈ℒ+

|, 

where ℒ+ ≔ {𝐶 ∈ ℒ: 𝐶 ∩ 𝐴 = ∅}. By using the similar technique of proving Theorem 1 and Theorem 2, 

we obtain 

#𝑁−(𝐴) = ∑(−1)𝑝−1

|ℒ+|

𝑝=1

∑ (
𝑓 − 𝑟
𝑘 − 𝑟

)𝜓𝑝,𝑟

min{𝑘,𝑝 max
𝐶∈ℒ+

|𝐶|}

𝑟=
𝑝𝑛2

𝑛+(𝑝−1)𝑙

, 

where 𝜓𝑝,𝑟 represents the number of subcollections {𝐶𝑖}1≤𝑖≤𝑝 of ℒ+ satisfy |⋃ 𝐶𝑖1≤𝑖≤𝑝 | = 𝑟.    

∎ 

The results of Theorem 1 and Theorem 7 are precise and accurate even though the formulas are sort 

of complicated to use (as 𝑓 → ∞) because one has to consider every subcollection of 2𝐴 ∩ ℒ to get the 

values of 𝛾𝑝,𝑟 and 𝜓𝑝,𝑟. Nevertheless, we believe that the values of #𝑁∩(𝐴) and #𝑁−(𝐴) are bounded as 

follows, 
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1

1
[𝐴]ℒ

+ (
𝑓 − 2𝑛 + 𝑙
𝑘 − 2𝑛 + 𝑙

)
< 1 + #𝑁∩(𝐴) < [𝐴]ℒ

(𝑓 − 𝛼)𝑘−𝛼

(𝑘 − 𝛼)!
, 

and if [𝐴]ℒ = 0, then 

|ℒ| (
𝑓 −𝑚
𝑘 −𝑚

)
2

(
𝑓 −𝑚
𝑘 −𝑚

) + (|ℒ| − 1) (
𝑓 −

2𝑛2

𝑛 + 𝑙

𝑘 −
2𝑛2

𝑛 + 𝑙

)

≤ #𝑁−(𝐴) ≤ |ℒ|
(𝑓 − 𝑛)𝑘−𝑛

(𝑘 − 𝑛)!
. 

Example 1. An information technology company saves about five different important data i.e., 

𝑑1, 𝑑2, … , 𝑑5. The relationship between data is shown in the following figure. 

 

Figure 1. Data Relationship 

In Figure 1, a group of data that lie in the same region is connected data. Furthermore, the data will 

be distributed into exactly 10 different secret boxes where each box has 3 different data. The chairman 

wants the employers to analyze how many relations for every box based on the following rules. 

“Two distinct boxes, 𝑢 and 𝑣, are related if and only if 𝑣 ∗ 𝑢 contains at least one connected data”, 

where ∗ be a binary set operation. 

Now, define a hypergraph (𝐻, ℇ) where 𝐻 = {𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5} and 

ℇ = {𝑒1 = {𝑑1, 𝑑2, 𝑑3}, 𝑒2 = {𝑑2, 𝑑3}, 𝑒3 = {𝑑3, 𝑑5}, 𝑒4 = {𝑑4}}. 

The data relationship is interpreted as a hypergraph (𝐻, ℇ). Define a graph 𝐺 = (𝑉𝐺 , 𝐸𝐺) in which the set of 

nodes is 𝑉𝐺 = (
𝐻
3
). Let the nodes are 

𝑢1 = {𝑑1, 𝑑2, 𝑑3}, 𝑢2 = {𝑑1, 𝑑2, 𝑑4}, 

𝑢3 = {𝑑1, 𝑑2, 𝑑5}, 𝑢4 = {𝑑1, 𝑑3, 𝑑4}, 

𝑢5 = {𝑑1, 𝑑3, 𝑑5}, 𝑢6 = {𝑑1, 𝑑4, 𝑑5}, 

𝑢7 = {𝑑2, 𝑑3, 𝑑4}, 𝑢8 = {𝑑2, 𝑑3, 𝑑5}, 

𝑢9 = {𝑑2, 𝑑4, 𝑑5}, 𝑢10 = {𝑑3, 𝑑4, 𝑑5}. 

We can represent the relation between boxes as a graph 𝐺. The chairman asked what is the degree of every 

node in 𝐺 based on certain adjacency rules? Consider the following rules. 

RULE-1. “Two distinct boxes, 𝑢 and 𝑣, are related if and only if 𝑣 ∩ 𝑢 contains at least one connected 

data”. The rule means that whether 𝑢 and 𝑣 share the same connected data. For every secret box 𝑢, it relates 

to 
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𝑑𝐺(𝑢) =

{
 
 

 
 

−1 +∑(−1)𝑝−1

[𝑢]ℇ

𝑝=1

∑ (
5− 𝑟
3 − 𝑟

) 𝛾𝑝,𝑟

min{3,𝑝 max
𝑒∈2𝑢∩ℇ

|𝑒|}

𝑟=
𝑝

2𝑝−1

, [𝑢]ℇ ≠ 0

0,                                                                                               [𝑢]ℇ = 0

 

other data. By some calculations using Theorem 1, we have the following table. 

  Table 1. Degree of Every Node of 𝑮. 

Node Degree 

𝑢1 2 

𝑢2 5 

𝑢3 0 

𝑢4 5 

𝑢5 2 

𝑢6 5 

𝑢7 7 

𝑢8 4 

𝑢9 5 

𝑢10 7 

RULE-2. “Two distinct boxes, 𝑢 and 𝑣, are related if and only if 𝑣 △ 𝑢 contains at least one connected 

data”. The rule 𝑢 and 𝑣 means that each of their different data collectively contains connected data. For 

every secret box 𝑢, it relates to 

𝑑𝐺(𝑢)

{
 
 
 
 

 
 
 
 
≥ ∑(−1)𝑝−1 ∑ (

5− 𝑟
3

) 𝛾𝑝,𝑟

𝑝 max
𝐶∈2𝑢∩ℇ

|𝐶|

𝑟=
𝑝

2𝑝−1

[𝑢]ℇ

𝑝=1

                   , [𝑢]ℇ ≠ 0

≤ ∑(−1)𝑝−1 ∑ (
5 − 𝑟
3 − 𝑟

) 𝜙𝑝,𝑟

min{3,𝑝max
𝑒∈ℇ

|𝑒−𝑢|}

𝑟=
𝑝(min

𝑒∈ℇ
|𝑒−𝑢|)

2

min
𝑒∈ℇ

|𝑒−𝑢|+(𝑝−1)𝑙

|ℇ|

𝑝=1

    , [𝑢]ℇ = 0

 

other data. By some calculations using Theorem 2 and Theorem 4, we have the following table of 

the degree of every node of 𝐺. 

Table 2. The degree of every node of 𝑮. 

Node Degree 

𝑢1 ≥ 1 

𝑢2 ≥ 4 

𝑢3 ≤ 9 

𝑢4 ≥ 4 

𝑢5 ≥ 1 

𝑢6 ≥ 4 

𝑢7 ≥ 5 

𝑢8 ≥ 1 

𝑢9 ≥ 4 

𝑢10 ≥ 5 

RULE-3. “Two distinct boxes, 𝑢 and 𝑣, are related if and only if 𝑣 ∪ 𝑢 contains at least one connected 

data”. The rule means that whether 𝑢 and 𝑣 collectively contain some connected data. For every secret box 

𝑢, it relates to 

𝑑𝐺(𝑢) = {
|{𝑣 ∈ 𝑉𝐺 : ∃𝑢0 ⊆ 𝑢, [𝑢0 ∪ 𝑣]ℇ ≠ 0 }|  , [𝑢]ℇ = 0

9                                                                 , [𝑢]ℇ ≠ 0
 

other data. By some calculations using Theorem 5, we have the following. 
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Table 3. The degree of every node of 𝑮. 

Node Degree 

𝑢1 9 

𝑢2 9 

𝑢3 9 

𝑢4 9 

𝑢5 9 

𝑢6 9 

𝑢7 9 

𝑢8 9 

𝑢9 9 

𝑢10 9 

By Theorem 7, we obtain particularly for box 𝑢3 that 𝑑𝐺(𝑢3) = 6.  

Hereafter, in addition to the knowledge of non-uniform subset graphs and token graphs, one can 

create new graphs using the remaining operations such as difference and union. Let 𝑈 be a graph 

constructed from any hypergraph and ∗ represents a binary set operation. In this construction, the node set 

comprises all subsets of 𝑘 elements from the node set of the hypergraph, and the edge set consists of all 

pairs of nodes 𝐴 and 𝐵 where there exists a hyperedge 𝐶 satisfies 𝐶 ⊆ 𝐴 ∗ 𝐵 or 𝐶 ⊆ 𝐵 ∗ 𝐴. The degree of 

every node of those graphs is partially determined by the solutions of Problem 2. Especially, for the token 

graph of a hypergraph, if each hyperedge of the hypergraph has an odd number of elements, then the token 

graph has no edges because the symmetric difference of any two nodes has an even number of elements. 

Therefore, the degree of every node is zero. In the case of the token graph of a graph 𝐺, the degree of every 

node 𝐴 is strictly less than #𝑁△(𝐴) because there are some pairs of nodes whose symmetric difference has 

more than two elements. 

 

4. CONCLUSIONS 

In this paper, the newly posed problem related to binary set operations on finite sets is defined and 

subsequently solved for certain operations. These are solved using the principle of inclusion-exclusion, 

Corrádi’s lemma, and Bonferroni’s inequality. Interestingly, this problem corresponds to a problem in 

graph theory, specifically determining the degree of every node of certain graphs. 
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