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ABSTRACT 

Article History: 
Gold price fluctuations have a significant impact because gold is a haven asset. When 

financial markets are volatile, investors tend to turn to safer instruments such as gold, so 

gold price forecasting becomes important in economic uncertainty. The novelty of this 

research is the comparative analysis of time series forecasting models using ARIMA and 
the NNAR methods to predict gold price movements specifically applied to gold price data 

with non-stationary and non-linear characteristics. The aim is to identify the strengths 

and limitations of ARIMA and NNAR on such data. ARIMA can only be applied to time 

series data that are already stationary or have been converted to stationary form through 
differentiation. However, ARIMA may struggle to capture complex non-linear patterns in 

non-stationary data. Instead, NNAR can handle non-stationary data more effectively by 

modeling the complex non-linear relationships between input and output variables. In the 

NNAR model, the lag values of the time series are used as input variables for the neural 
network. The dataset used is the closing price of gold with 1449 periods from January 2, 

2018, to October 5, 2023. The augmented Dickey-Fuller test dataset obtained a p-value 

= 0.6746, meaning the data is not stationary. The ARIMA(1, 1, 1) model was selected as 

the gold price forecasting model and outperformed other candidate ARIMA models based 
on parameter identification and model diagnosis tests. Model performance is evaluated 

based on the RMSE and MAE values. In this study, the ARIMA(1, 1, 1) model obtained 

RMSE = 16.20431 and MAE = 11.13958. The NNAR(1, 10) model produces RMSE = 

16.10002 and MAE = 11.09360. Based on the RMSE and MAE values, the NNAR(1, 10) 
model produces better accuracy than the ARIMA(1, 1, 1) model. 
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1. INTRODUCTION 

Gold is one of the precious metals that function as jewelry and is an investment favored by the public 

because gold is easy to liquidate, can be used for simple transactions, and is not easily damaged [1]. As an 

investment that is not eroded by inflation, prices tend to rise, and the process of buying and selling gold is 

flexible, causing people to be more interested in investing in gold than stocks. In a globalized economy, gold 

is widely used as a haven [2]. Gold price fluctuations always increase investment risk, while the causes of 

such fluctuations are complex, and gold price trends are influenced by many factors [3]. As a financial asset, 

gold protects against extreme movements in value compared to other types of assets. Although the price of 

gold is relatively volatile, it is trending upwards, so investors should be wise in investing in gold and be able 

to forecast future gold price opportunities. In statistics, several models can predict data in the future. Time 

series analysis is one of the most popular forecasting models because it uses past data that will be used as a 

reference for forecasting the future [4]. Time series data is displayed based on time, with the characteristic of 

time series data being within a certain period. Traditional approaches to time series forecasting, such as Box-

Jenkins or auto-regressive integrated moving averages (ARIMA), are linear process models with limitations 

for non-stationary data [5]. Time series forecasting is the forecasting of events that will occur in the future 

based on previous data [6].  

ARIMA and neural network autoregressive (NNAR) can resolve periodic series in time series data. 

ARIMA can only be applied to time series data that are already stationary or converted into stationary form 

through differentiation. However, ARIMA may struggle to capture complex non-linear patterns in non-

stationary data, where NNAR models become valuable. Unlike ARIMA, NNAR can handle non-stationary 

data more effectively by modeling the complex non-linear relationship between input and output variables. 

Using lagged values of time series data as inputs, NNAR can complement the limitations of ARIMA, 

providing a more robust approach to forecasting in the presence of non-linearity and non-stationarity [7].  

Previous studies have conducted forecasting using the ARIMA and NNAR models. One of them is a 

study that forecasts the death rate due to COVID-19 infection in Brazil. The research data was obtained from 

the total data of confirmed cases and the total data of deaths due to COVID-19. Data on COVID-19 cases in 

Brazil from February 15, 2020, to April 30, 2020. The NNAR and ARIMA models were applied to data for 

76 days. The accuracy of forecasting is checked through MSE. The result is that the NNAR(1, 1) model 

outperforms the ARIMA(0, 2, 1) model with an error rate of 6.85% for the NNAR model and 7.11% for the 

ARIMA model [8].  

Research designing a forecasting model for rice production in Andhra Pradesh. The dataset was taken 

over the period 1982 to 2022 (for 40 years). The research results show that the ARIMA model (0,1,1) 

produces the best accuracy with RMSE = 53.1440 and MAPE = 4.8300. On the other hand, the NNAR(1, 1) 

model obtained a value of RMSE = 64.8142 and MAPE = 6.0901. Forecasting rice production for 2023 to 

2030, the NNAR(1, 1) model produces a higher rice production forecast value, whereas the ARIMA(0, 1, 1) 

model shows lower production [9].  

Forecasting gold price fluctuations in time series is difficult because the data is neither stationary 

nor linear. The novelty of this research is that it provides a comparative analysis of time series forecasting 

models using ARIMA and NNAR methods specifically designed to predict gold price movements 

characterized by non-stationary, volatility, and non-linear data. The models are measured for performance 

using a comprehensive set of evaluation metrics across the most recent dataset covering 1449 periods from 

January 2, 2018, to October 5, 2023. During this period, in early March 2020, the COVID-19 pandemic shook 

the financial markets [10]. By examining how each model handles the inherent non-stationarity and volatility 

of gold prices and testing the residuals of the ARIMA outputs, this study aims to identify the strengths and 

limitations of ARIMA and NNAR when using non-stationary, volatile, and non-linear characterized data. 

Both models are measured for performance using a series of evaluation metrics. The evaluation metrics are 

based on obtaining root mean square error (RMSE) and mean absolute error (MAE) values [11]. The ARIMA 

model is very effective for short-term forecasting with the requirement of stationarity of time series data. The 

NNAR model is a non-linear model that uses lag values in time series data for input variables to the NN. In 

the NNAR model, setting parameters by changing the network architecture greatly affects the model's 

accuracy. Generally, previous studies did not conduct parameter-setting experiments to get the best NNAR 

model. This research offers valuable insights for financial analysts, researchers, banks, governments, and 

investors seeking more reliable forecasting tools in the face of market uncertainty.  
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2. RESEARCH METHODS 

2.1 Dataset 

The spot price is the most widely used gold price and is the most real-time gold price as it is constantly 
updated. The cost of gold in the spot market uses the United States Dollar, and the unit is a troy ounce (oz). 
Historical gold price data is obtained from the website http://www.finance.yahoo.com, with 1449 periods 
from January 2, 2018, to October 5, 2023. 

2.2 ARIMA 

The ARIMA model is a traditional statistical model used in forecasting, which considers correlations 

in time series and considers various assumptions, such as stationarity and white noise, that must be met [12]. 

The ARIMA method is also known as the Box-Jenkins method [6]. The Box-Jenkins method fits a mixed 

ARIMA model to a given data set. ARIMA, which stands for 'Auto-Regressive Integrated Moving Average,' 

is a model class that describes a particular time series based on past values. An ARIMA model is characterized 

by 3 terms namely 𝑝 is the order of the autoregressive (AR) terms, 𝑞 is the order of the moving average (MA) 

terms, and d is the number of differences required to make the time series stationary stationer [13]. The 

general 𝑝 th-order AR(𝑝) process is [12]. 

𝑍𝑡 = ∅1𝑍𝑡−1 + ∅2𝑍𝑡−2 + ⋯ + ∅𝑝𝑍𝑡−𝑝 + 𝑎𝑡, (1) 

or 

(1 − ∅1𝐵 − ∅2𝐵2 − ⋯ − ∅𝑝𝐵𝑝)𝑍𝑡 = 𝑎𝑡 (2) 

The general 𝑞 th-order 𝑀𝐴(𝑝) process is 

 

𝑍𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞)𝑎𝑡 (3) 

 

The ARMA model is a combination of AR and MA models. The general form of the ARMA(𝑝, 𝑞) 

model is 

 

(1 − ∅1𝐵 − ⋯ −∅𝑝𝐵𝑝)𝑍𝑡 = 𝜃0 + (1 − 𝜃1𝐵 − ⋯ − 𝜃𝑞𝐵𝑞)𝑎𝑡 (4) 

  

The general non-stationary of the ARIMA(𝑝, 𝑑, 𝑞) model with 𝑑 ≠ 0 is [14], [15] 

 

∅𝑝(𝐵)(1 − 𝐵)𝑑𝑍𝑡 = 𝜃0 + 𝜃𝑞(𝐵)𝑎𝑡 , (5) 

or 

(1 − ∅1𝐵 − ⋯ ∅𝑝𝐵𝑝)𝑍𝑡(1 − 𝐵)𝑑 = 𝜃0 + (1 − 𝜃1𝐵 − ⋯ − 𝜃𝑞𝐵𝑞)𝑎𝑡 , (6) 

 

where, 𝑍𝑡 is time series at time 𝑡, ∅𝑡 is autoregressive coefficient, 𝜃𝑡 is moving average coefficient, 𝐵 is a 

backshift operator, 𝑎𝑡 is residual at time 𝑡, 𝑝 is autoregressive component, 𝑞 is moving average component, 

𝑑 is differencing component. 

2.3 NNAR 

A neural network (NN) is an information-processing technique or approach inspired by how the 

nervous system of human brain cells works in processing information [16]. The key element of this technique 

is the structure of the information processing system, which is unique and diverse for each application. The 

term artificial here is used because this NN is implemented using a computer program that can complete 

several calculation processes during the learning process [17].  
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NNs with multiple layers have one or more layers located between the input and output layers called 

hidden layers (HL) [18]. These multi-layer networks can solve more challenging and rigorous problems with 

non-linear data. Figure 1 shows the concept of a multi-layer NN with n inputs and HL [19]. The coefficients 

attached to these input variables are called weights. The forecast is obtained from a linear combination of the 

inputs. The weights are selected in the NN framework using a learning algorithm until a minimum cost 

function value such as mean absolute error (MAE) or mean squared error (MSE) is obtained.  

 

 
Figure 1. Neural network concept 

 

NNAR is an NN method that uses lag values from time series data as input variables to the NN. Rob J 

Hyndman and George Athanasopoulos introduced the NNAR method in 2018 [20]. The model is denoted by 

NNAR(𝑝, 𝑘), where 𝑝 denotes the 𝑝-lag as input and 𝑘 as nodes in the HL. The NNAR(𝑝, 𝑘) model indicates 

that there are 𝑝-lags of the last observation (𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑝) used as input variables to forecast the output 

𝑍𝑡, and 𝑘 nodes in the HL. In general, NNAR(𝑝, 𝑃, 𝑘) and 𝑘 neurons or nodes in the HL. Models that omit 

the HL with the setting 𝑘 =  0, NNAR(𝑝, 𝑃, 0) are analogous to the seasonal ARIMA(𝑝, 0, 0) (𝑃, 0, 0) 

model, and NNAR(𝑝, 0) is the same as the AR(𝑝) model but with a non-linear function [21]. 

2.4 Methodology 

In this research, the computational process uses the RStudio program. The methodology carried out in 

this study can be seen in Figure 2 as follows. 
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Figure 2. Methodology 

 

3. RESULTS AND DISCUSSION 

The first step taken is data pre-processing. Data pre-processing is done because the data obtained is 

incomplete, contains noise, or is missing so that the dataset used is complete and of high quality. Furthermore, 

the ARIMA and NNAR models use the dataset for input variables. Characteristic testing is done by utilizing 

the terasvirta test function available in RStudio. The hypothesis is: 

H0: Linear data. 

H1: Non-linear data. 

The terasvirta neural network test results on the dataset obtained 𝑝-value = 0.003218. Based on the test 

results, where 𝑝-value < 0.05, H0 is rejected, and H1 is accepted. The conclusion is that the data is non-linear, 

so it is aligned with the research objectives. Furthermore, the dataset is used for input variables in the ARIMA 

and NNAR models. 

3.1 ARIMA Model 

Generally, time series data is non-stationary. In the ARIMA model, time series data must be stationary; 

not stationary data is changed to stationary by differencing. A plot of the time series dataset is done to visually 

determine stationary data and see if the data distribution has a trend or seasonal pattern. The following plot 

of historical daily gold price data is shown in Figure 3. 



2568 Melina, et al.  COMPARATIVE ANALYSIS OF TIME SERIES FORECASTING MODELS USING ARIMA…  

 

 
Figure 3. Historical gold price 

Stationarity tests of time series are identified visually using plots of the autocorrelation function (ACF), 

partial autocorrelation function (PACF), and the Augmented Dickey-Fuller (ADF) test. When the dataset is 

not stationary, appropriate transformation and differentiation are then performed to produce a stationary time 

series. The number of ACF and PACF lags in the stationary time series is then used to determine the order of 

the ARIMA model. Parameter estimation is then performed on several ARIMA models to be tested. 

Diagnostics are carried out to check the parameters' significance and whether the forecasting residuals have 

averages that are not significantly different from zero and are uncorrelated. If these assumptions are met, the 

model can be used for forecasting. Otherwise, it can return to the identification stage for a better model. The 

following hypothesis criteria are carried out. 

H0: Stationary data. 

H1: Data is not stationary. 

The Augmented Dickey-Fuller test results on the dataset obtained Dickey-Fuller value = -1.7725, Lag 

order = 11, 𝑝-value = 0.6746. Based on the test results, 𝑝-value = 0.6746, where 𝑝-value > 0.05, then H0 is 

rejected and H1 is accepted. The conclusion is that the data is not stationary and must be differenced to make 

the data stationary.  

The initial step of ARIMA time series modeling is identifying the dataset on the variables used. This 

identification step aims to determine whether the data used has met the assumption of stationary in the mean. 

The ARIMA model uses stationary time series data to produce accurate short-term forecasting. The results 

of the stationary test on the dataset have been carried out; it is concluded that the dataset is not stationary, so 

the differencing stage must be carried out so that all variables used meet the assumption of stationary in the 

mean. The dataset plot after differencing is presented in Figure 4 as follows. 

 
Figure 4. Differencing 1 

Figure 4 shows that after differing the dataset once, the variables have relatively small fluctuations, 

and the trend pattern disappears. Visually, it can be indicated that the data is stationary in the mean. However, 

some data still spikes very low and very high. The ARIMA model identification stage has been carried out, 

so the data has met the assumption of stationarity in the mean. The ADF test on the differencing dataset will 

further ensure the data is stationary. The hypothesis criteria are. 
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H0: The data is stationary.  

H1: The data is not stationary.  

Based on the ADF test results on the differencing dataset, the Dickey-Fuller value = -10.92, Lag order = 

11, 𝑝-value = 0.01. Based on the ADF test results, 𝑝-value = 0.01, where 𝑝-value < 0.05, then H1 is rejected. 

The conclusion is that the data is stationary at differencing = 1, as well as getting the parameter estimation 

value 𝑑 = 1. Determination of the ARIMA order can be done with ACF and PACF plots on the differencing 

dataset. Figure 5 shows the different ACF and PACF plots of the dataset. 

 
Figure 5. ACF and PACF plot of differencing 1 

After identifying the parameters, several conjecture models or candidate ARIMA model parameters 

are determined. Here, in Table 1, the estimated parameters of the ARIMA model are shown. 

Table 1. Parameters Estimates 

No 
Parameters 

Model candidate 
𝒑 𝒅 𝒒 

1 1 1 1 ARIMA(1, 1, 1) 

2 2 1 2 ARIMA(2, 1, 2) 

3 3 1 2 ARIMA(3, 1, 2) 

4 2 1 3 ARIMA(2, 1, 3) 

 

The estimated parameters must then be tested to determine their significance in the model, which is to 

see whether the parameters of the estimated results are significant in the model or insignificant. The estimated 

parameters of the ARIMA model are then estimated using the 𝑧-test of coefficients method. The parameter 

estimation results on the candidate model can be seen in Table 2 as follows. 

Table 2. Z test of Coefficients Parameter 

Models 
z test of coefficients: 

Results 
Parameters Estimated Std. Error 𝒛 value 𝑷𝒓(> |𝒛|) 

ARIMA(1, 1, 1) AR1 0.830230 0.135380 6.1328 8.64x10-10 Significant 

 MA1 -0.858740 0.124630 -6.8900 5.58x10-12 Significant 

ARIMA(2, 1, 2) AR1 0.027764 0.237268 0.1170 0.9068466 Not 

 AR2 0.644950 0.205705 3.1353 0.0017167 Significant 

 MA1 -0.047449 0.229233 -0.2070 0.8360167 Not 

 MA2 -0.680039 0.200373 -3.3939 0.0006892 Significant 

ARIMA(3, 1, 2) AR1 0.066627 0.225347 0.2957 0.7674869 Not 

 AR2 0.653999 0.185394 3.5276 0.0004193 Significant 

 AR3 0.017726 0.030085 0.5892 0.5557243 Not 

 MA1 -0.095618 0.223887 -0.4271 0.6693199 Not 

 MA2 -0.687324 0.179890 -3.8208 0.0001330 Significant 

ARIMA(2, 1, 3) AR1 0.082392 0.232201 0.3548 0.7227148 Not 

 AR2 0.666670 0.184653 3.6104 0.0003057 Significant 

 MA1 -0.110325 0.232679 -0.4742 0.6353921 Not 

 MA2 -0.698990 0.178264 -3.9211 8.81x10-05 Significant 
 MA3 0.016834 0.029856 0.5638 0.5728623 Not 
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Based on Table 2, the results of the 𝑧-test of coefficients on the candidate models show that only one 

model has significant parameter coefficients, namely the ARIMA(1, 1, 1) model. This means that this model 

was chosen for forecasting. Furthermore, the candidate ARIMA model's akaike information criterion (AIC) 

value is presented. 

Table 3. AIC Value 

No Models Log likelihood AIC 

1 ARIMA(1, 1, 1) -6088.21 12182.41 

2 ARIMA(2, 1, 2) -6087.95 12185.90 

3 ARIMA(3, 1, 2) -6087.77 12187.54 

4 ARIMA(2, 1, 3) -6087.79 12187.59 

 

The best model is determined based on the smallest AIC value. The AIC acquisition results in Table 

3 show that the AIC value of the ARIMA(1, 1, 1) model is smaller than the AIC of other model candidates. 

This indicates that ARIMA(1, 1, 1) is the best model compared to other model candidates, this is also 

reinforced by the results of the 𝑍 test of coefficient, where this model has all significant coefficients. 

Based on the results of the 𝑍 test of coefficients and the smallest AIC value, the ARIMA(1, 1, 1) model 

is the most effective forecasting model. Next, model diagnostics will be carried out on ARIMA(1, 1, 1). 

Model diagnostics are intended to determine whether the residuals of the model built have met the modeling 

assumptions. To ensure the suitability of the ARIMA(1, 1, 1) model, several assumption tests are performed 

on the residuals. 

1. The autocorrelation test is used to detect autocorrelation in residuals using the Ljung-Box test. The 

hypothesis criteria are: 

H0: There is no autocorrelation in the residuals. 

H1: There is autocorrelation in the residuals. 

2. Test the mean of residuals to see whether the mean of residuals is equal to zero using a one-sample t-

test. Hypothesis criteria are: 

H0: μ = 0. 

H1: μ ≠ 0. 

3. Normality test to test the normality of residuals using the Kolmogorov-Smirnov test. The hypothesis 

criteria are: 

H0: Residuals are normally distributed. 

H1: Residuals are not normally distributed 

4. The variance homogeneity test is used to test the homogeneity of variance using the Breusch-Pagan test. 

Hypothesis criteria are: 

H0: Residual variance is constant (homoscedasticity). 

H1: Residual variance is not constant (heteroscedasticity).  

The following Table 4 presents the results of the assumption test on the residuals of the ARIMA(1, 1, 1). 

Table 4. Residual test 

Test 𝒑 − 𝒗𝒂𝒍𝒖𝒆 Hypothesis 

Ljung-Box 0.9537 H0 is accepted 

One Sample 0.3177 H0 is accepted 

Kolmogorov-Smirnov 2.2 x 10-16 H0 is rejected 

Studentized Breusch-Pagan 2.6 x 10-10 H0 is rejected 

 

Table 4 shows the results of the assumption test on the residuals of the ARIMA(1, 1, 1) model. The 

autocorrelation test yields a 𝑝-value of 0.9537, since the p-value is greater than 0.05, H0 is accepted. This 

proves that there is no autocorrelation in the residuals. The residual mean test p-value is 0.3177, meaning that 

the mean of the residuals is equal to zero. The normality test results in a 𝑝-value = 2.2 x 10-16, this means the 

residuals are not normally distributed. Therefore, H0 is rejected. The homogeneity of variance test resulted in 

a 𝑝-value = 2.6 x 10-10. The 𝑝-value not exceeding 0.05 indicates heteroscedasticity in the residuals.  

Only the autocorrelation and residual mean tests are fulfilled based on the residual test. The normality 

test and homogeneity of variance test are not fulfilled. This indicates that the residuals of the ARIMA(1, 1, 1) 

model have heteroscedasticity, or the residual variance is not constant. The inability to fulfill the normality 
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assumption is a signal that the ARIMA model may fail to read the data pattern properly. This is an indication 

that the ARIMA model may not fully fit the dataset. Since the purpose of this study is to analyze short-term 

forecasting comparisons and the ARIMA(1, 1, 1) model is the only significant parameter coefficient, this 

model is used for forecasting. 

3.2 NNAR Model 

In time series data, the lag value of the time series can be used as an input variable in the NN. The 

NNAR model is denoted by NNAR(𝑝, 𝑘), where p denotes the lag p used as input. 𝑘 denotes the number of 

neurons in one HL. In this study, the nnetar function available in the RStudio library is used to identify the 

values of 𝑝 and 𝑘. NNAR is a non-linear autoregressive model, and it should be too difficult to solve 

analytically due to the complexity of the model. Therefore, the model uses simulation to simulate future 

sample paths iteratively. Here is a simulation of five possible future sample paths for the gold price dataset. 

Each sample path covers the following 30 periods after the observed data, as shown in Figure 6. 

 

 
Figure 6. Simulation of the NNAR(𝟏, 𝟏𝟎) model 

 

In the NNAR model, repeated simulations of the sample path are performed, so that the model can 

build knowledge about the distribution of all future values based on the fitted NN. Therefore, it is 

recommended that the NN model be run multiple times, and 20 is the minimum requirement. Experiments 

were conducted by changing the number of neurons (𝑘) to get the best NNAR model. Table 5 shows the 

experiments and the accuracy of the NNAR model. 

Table 5. Experiments NNAR models 

Model NNAR(𝟏, 𝟏) NNAR(𝟏, 𝟐) NNAR(𝟏, 𝟏𝟎) NNAR(𝟏, 𝟐𝟎) 

RMSE 16.17115 16.12521 16.10002 16.10444 

MAE 11.16473 11.11188 11.09360 11.09739 

Table 5 shows the experiments by increasing the number of k of the NNAR model. It can be seen that 

increasing the number of 𝑘 affects the accuracy of the model, where the more 𝑘 the better the accuracy. 

However, too many 𝑘 will cause bias due to high computational load, resulting in poor accuracy. This can be 

seen from the NNAR(1, 10) model, which obtained the best accuracy and decreased when the 𝑘 increased as 

seen in the NNAR(1, 20) model. 

3.3 Forecasting 

Based on Table 3, the selected candidate ARIMA model is the ARIMA(1, 1, 1) model. This model 

will be used in forecasting gold prices for the next four periods. The forecasting results of the ARIMA(1, 1, 1) 

model will be compared with the forecasting results of the NNAR(1, 10) model which is the best NNAR 

model based on Table 5. The following Table 6 shows the forecasting results of the ARIMA(1, 1, 1) and 

NNAR(1, 10) models for the next four periods. 
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Table 6. Forecasting Results in Four Periods Ahead 

Period ARIMA(𝟏, 𝟏, 𝟏) NNAR(𝟏, 𝟏𝟎) 

1450 1818.140 1816.811 

1451 1819.418 1817.021 

1452 1820.480 1817.230 

1453 1821.361 1817.438 

 

The following Figure 7 and Figure 8 respectively, show plots of actual and forecast data with the 

ARIMA(1, 1, 1) and NNAR(1, 10) models as follows. 

 
Figure 7. Data and forecasts of ARIMA(𝟏, 𝟏, 𝟏) model 

 

 Figure 8 shows a graph of actual data and the results of forecasting for the following four periods 

using the ARIMA(1, 1, 1) model. It can be seen that the forecasting results of this model increase slowly. 

The ARIMA(1, 1, 1) model in period 1450 produced a forecast of 1818.140. This value is greater than the 

output of the NNAR(1, 10) model in the same period. Overall, the results of ARIMA(1, 1, 1) forecasting in 

each period are greater than those of the NNAR(1, 10). Figure 9 displays the dataset and forecasting results 

using the NNAR(1, 10) model as follows. 

 
Figure 8. Data and forecasts of NNAR(𝟏, 𝟏𝟎) model 

Based on Figure 7 and Figure 8, the plot of forecasting results from both models tends to rise slowly. 

This means that gold prices are expected to increase from 1450 to 1453. The following Table 7 shows the 

accuracy obtained from each model. Model accuracy based on RMSE and MAE values. 

Table 7. Model accuracy 

Model RMSE MAE 

ARIMA(1, 1, 1) 16.20431 11.13958 

NNAR(1, 10) 16.10002 11.09360 

 

Table 7 presents the accuracy of the two models used, namely the ARIMA(1, 1, 1) model and the 

NNAR(1, 10) model. The ARIMA model works by combining three components: autoregression (AR), 

differencing (I), and moving average (MA). The parameters (1, 1, 1) indicate that the model uses one lag in 

the AR and MA components and one level of differencing to make the data stationary. The ARIMA(1, 1, 1) 

model obtained forecasting accuracy RMSE = 16.20431 and MAE = 11.13958. The NNAR model is a variant 

of NN adapted for time series analysis. The NNAR model utilizes the ability of NNs to capture non-linear 

patterns in the data, which often cannot be captured by traditional linear models such as ARIMA. The 
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parameters (1, 10) indicate that the model utilizes one input lag and ten neurons in the HL. The NNAR(1, 10) 

model produces forecasting accuracy with a value of RMSE = 16.10002 and MAE = 11.09360. Table 5 

shows the experimental results of the NNAR model by changing the parameter settings. The best model 

obtained is the NNAR(1, 10) model and the NNAR (1, 1) model is the model with the worst accuracy when 

compared to other NNAR models. It can be seen that all NNAR models produce better accuracy when 

compared to the ARIMA(1, 1, 1) model. The results show that the NNAR model is slightly more accurate 

than the ARIMA model regarding RMSE and MAE, although the difference is insignificant. Figure 9 shows 

the last ten periods of actual data and their forecast values, as well as the results of forecasting the gold closing 

price for the next four periods using the ARIMA(1, 1, 1) and NNAR(1, 10) models.  

 
Figure 9. Gold price forecasting results for the next four periods 

Figure 9 shows that the forecasting results of the NNAR(1, 10) model on the data are closer to the 

actual data than the forecasting results of the ARIMA(1, 1, 1) model. Then these two models will perform 

gold price forecasting for the following four periods, starting from October 6, 2023 to October 9, 2023. The 

ARIMA(1, 1, 1) model forecasting are symbolized by a dark red line, and the results of the NNAR(1,10) 

model forecasting are symbolized by dark blue. The ARIMA(1, 1, 1) model produces forecasts that increase 

from period 1450 to period 1453, and the NNAR(1, 10) model produces forecasting values that increase 

slowly. This demonstrates the potential of NNs to improve the accuracy of time series forecasting, especially 

in the case of data that may have non-linear components, making it suitable for gold price forecasting tasks, 

especially in volatile markets due to economic uncertainty. This research demonstrates the potential use of 

NN models in time series analysis.  

 

4. CONCLUSIONS 

In this study, gold price forecasting was carried out using the ARIMA(1, 1, 1) and NNAR(1, 10) 

models. Based on the accuracy value obtained, the NNAR model outperforms the ARIMA(1, 1, 1) model. 

The NNAR(1, 10) model produces RMSE = 16.10002 and MAE = 11.09360. This is smaller than the 

accuracy value of the ARIMA(1, 1, 1) model with RMSE = 16.20431 and MAE = 11.13958. Although the 

parameter coefficients of the ARIMA(1, 1, 1) model are all significant, the results of the residual normality 

test and the variance homogeneity test are not fulfilled. This indicates patterns in the data that have not been 

captured by the ARIMA(1, 1, 1) model. If the variance is not constant or heteroscedasticity, it indicates that 

the ARIMA(1, 1, 1) model does not fit the data or other factors have not been captured by the model. 
Heteroscedasticity can cause the forecasting accuracy of the model to be less accurate because it is susceptible 

to outliers. Based on the analysis results, the ARIMA method may not be suitable for datasets with complex 

or non-linear characteristics. 
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The NNAR model is suitable for time series data with non-linear characteristics that cannot be captured 

well by linear models such as ARIMA. Not bound by the assumptions of linearity or normality, NNAR 

models are often more robust in dealing with complex and time-varying data. The main focus of NNAR 

models is on good predictive ability based on accuracy metrics.  

From the results of this study, both ARIMA and NNAR models have advantages in time series 

forecasting. ARIMA is better at handling linear patterns and stationary data. The NNAR model is better at 

capturing non-linear patterns. NNAR is very flexible and can capture non-linear patterns in the data, so this 

model is less dependent on classical assumptions such as residual normality. The NNAR model focuses more 

on the ability to effectively forecast time series data, especially in cases where the data has non-linear patterns. 

Therefore, model selection should be tailored to the characteristics of the data and forecasting objectives. 
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