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ABSTRACT 

Article History: 
Random Forest (RF) machine learning models have emerged as a prominent algorithm, 

addressing problems arising from the sole use of decision trees, such as overfitting and 

instability. However, conventional RF has global coverage that may need to capture 

spatial variations better. Based on the analysis of the level of public health development, 
the relationship between the level of health development and risk factors can vary 

spatially. We use a modified RF algorithm called Geographically Weighted Random 

Forest (GW-RF) to address this challenge. GW-RF, as a tree-based non-parametric 

machine learning model, can help explore and visualize relationships between the Public 
Health Development Index (PHDI) as response variables and factors that are indicators 

at the district level. GW-RF output is compared with global output, which is RF in 2018 

using the percentage of the population with access to clean/decent water (X1), 

consumption of eggs and milk per capita per week (X2), number of healthcare facilities 
per 1000 people (X3), number of doctors per 1000 people (X4), pure participation rate 

ratio female/male (X5), percentage of households that have hand washing facilities with 

soap and water (X6) as independent variables. Our results show that the non-parametric 

GW-RF model shows high potential for explaining spatial heterogeneity and predicting 
PHDI versus a global model when including six major risk factors. However, some of 

these predictions mean little. Findings of spatial heterogeneity using GW-RF show the 

need to consider local factors in approaches to increasing PHDI values. Spatial analysis 

of PHDI provides valuable information for determining geographic targets for areas 
whose PHDI values need to be improved. 
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1. INTRODUCTION 

Machine Learning (ML) models have high predictive capabilities from data mining and are often 

flexible and non-linear. However, it is often less than optimal in capturing geographic relationships, making 

it less sensitive to spatial context. This challenge is significant given that spatial data usually exhibit 

heterogeneity, leading to variations in the relationship between dependent and independent variables across 

regions. Conventional ML models need help dealing with such complexity because they produce a single 

output for the entire study area without considering the spatial variations that may exist. Research on handling 

spatial heterogeneity in population modeling based on geographic data is still limited [1]. Previous research 

on introducing a framework for modeling spatial data using the Random Forest (RF) algorithm with distance 

maps of spatial covariates as additional input showed improved performance compared to models that do not 

pay attention to spatial context [2]. However, their approach focuses more on spatial-temporal interpolation 

rather than providing insight into potential spatial heterogeneity.  

One commonly used method is geographically weighted regression (GWR), an extension of 

conventional statistical regression methods that considers the spatial influence of various factors. Approaches 

considering spatial variation involve developing several local regression models simultaneously by 

incorporating spatial distance weights [3]. However, the main drawback is the susceptibility of the linear 

model to data that deviates from the general pattern and relies on strong assumptions about the linear 

relationship between the explanatory variables and the dependent variable, as well as the existence of 

multicollinearity between the explanatory variables. With the spread of machine learning technologies, 

approaches have emerged that combine spatially weighted structures with machine learning models [4][5]. 

Geographically weighted random forest (GW-RF) is a tree-based non-parametric ensemble model 

developed recently to overcome the limitations of GWR models and improve the predictive performance of 

non-geographically weighted random forest (RF) models. The basic concept of GW-RF is similar to the GWR 

model in that the model is calibrated locally rather than globally [4]. GW-RF draws inspiration from spatially 

varying coefficient models, wherein a global process is decomposed into multiple local sub-models, serving 

as both predictive and explanatory tools [6]. GW-RF does not need to consider multicollinearity; it can 

analyze all independent variables without filtering, provide better predictive power, and evaluate the 

relationship between spatial independent and dependent variables better than GWR [4].  

Previous research using GW-RF has been done in a few cases. Research on addressing spatial 

heterogeneity in remote sensing and population modeling results showed that GW-RF can be more predictive 

when an appropriate spatial scale is selected to model the data so that it will reduce residual autocorrelation 

and lower Root Mean Squared Error and Mean Absolute Error values  [7].   Research on analyzing the spatial 

variability of type 2 diabetes mellitus (T2D) prevalence in the USA by comparing GWR Ordinary Least 

Square and GW-RF results showed that the GW-RF model outperformed the GW-OLS model also the GW-

RF model may be suitable for spatial analyses where multicollinearity across different geographical locations 

is a significant issue [4]. Another research on modeling spatial heterogeneity in traffic crash frequency and 

its determinants in the US compares the GW-RF, GWR, and global RF models. The results showed that the 

GW-RF model demonstrates better predictive accuracy compared to the global RF as GW-RF has lower MSE 

value than that of global RF model, also GW-RF model has improved in the overall performances compared 

to the GWR model with higher average R2 value [8].  

Health development entails a deliberate and sustainable endeavor to enhance a community's overall 

health status through diverse strategies, policies, and interventions. Its primary objective is to attain optimal 

health levels for the entire populace, encompassing enhanced access to healthcare services, disease 

prevention, health advocacy, and overall quality of life [9]. To realize the objective of sustainable health 

development, quantifiable health metrics are essential. Monitoring health through these metrics enables 

nations to evaluate the attainment of internationally set health objectives [10]. Consequently, Indonesia's 

Ministry of Health, through its Health Research and Development Agency (BALITBANGKES), has 

compiled the Public Health Development Index (PHDI). 

The PHDI comprises a set of health indicators that can be easily and directly measured to describe 

health problems. The underlying principles guiding the selection of indicators for the PHDI emphasize 

simplicity, ease of measurement, utility, reliability, and timeliness. In the 2018 edition of the PHDI, 30 

indicators are categorized into 7 groups, covering aspects such as child health, reproductive health, healthcare 

services, health-related behaviors, non-communicable diseases and associated risks, infectious diseases, and 

environmental health. The PHDI serves as a foundational tool for planning health development initiatives at 
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the district/city level and serves as a basis for determining the allocation of health funding from central to 

provincial levels, further down to district/city levels, and from provinces to regencies/cities [11]. 

 On a global scale, Indonesia's health index, according to The Legatum Prosperity Index 2017, ranks 

101st out of 149 countries. According to the Global Health Security Index (GHSI) report, Indonesia's global 

health security ranks 13th among G20 countries. In this ranking, the United States holds the top position with 

75.9 points, while Indonesia scores 50.4 points out of 100 [12]. Given these statistics, the significance of the 

PHDI as a tool for gauging health development achievements in Indonesia becomes apparent. Enhancing the 

PHDI involves modeling it with several variables closely linked to public health. In this study, PHDI 

modeling will be conducted based on four independent variables: access to clean water, consumption of eggs 

and milk, the ratio of community health centers to population, and the ratio of doctors to population. This 

modeling aims to identify significant variables influencing PHDI improvement, enabling policymakers to 

target interventions effectively. Access to clean water is selected as a crucial independent variable due to its 

role in preventing infectious diseases, meeting nutritional requirements, and ensuring personal and 

environmental hygiene [13]. Consuming eggs and milk, which are rich in nutrients, is another independent 

variable under consideration. Research indicates that egg consumption can boost good cholesterol levels 

without adversely affecting lousy cholesterol levels in most individuals [14]. In contrast, dairy consumption 

may contribute to bone health and reduce the risk of osteoporosis [15]. Lastly, the ratios of health centers and 

doctors per population are chosen as variables reflecting the availability and distribution of healthcare 

facilities and professionals. Adequate and well-distributed healthcare infrastructure can enhance accessibility 

to essential healthcare services, ensuring prompt diagnosis and treatment [16]. 

Previous research has been conducted by using the Geographically Weighted Logistic Regression 

(GWLR) Model applied to PHDI data in East Java Province in 2018 [17], which concluded that the GWLR 

model with Adaptive Gaussian Kernel produced the smallest AIC than the Fixed Gaussian Kernel and the 

Adaptive Bisquare Kernel. The research by M. Fathurahman [18] using Geographically Weighted 

Multivariate Logistic Regression (GWMLR) model and Multivariate Logistic Regression (MLR) model 

applied to PHDI and Human Development Index in Kalimantan Island concluded that  GWMLR has the 

lower AIC, AICC, and BIC values compared with the MLR. The other research [19] analyzed PHDI in 

Sumatra Island in 2018 with the Geographically Weighted Regression and Linear Regression, in which the 

Breusch-Pagan statistical test indicated spatial heterogeneity. 

Based on this background, we are interested in studying the GW-RF model to address spatial 

heterogeneity in the PHDI case on Java Island. We aim to apply the GW-RF model to a dataset on PHDI of 

Java Island, train the model, and compare its performance with global RF implementations. Additionally, we 

explore the influence of geographic scale and unique GW-RF outcomes, such as spatial feature importance 

of independent variables, to show the impact of the level of importance of local variables. 

 

2.  RESEARCH METHODS 

In this research, two models will be used, namely Random Forest (RF) and Geographically Weighted 

Random Forest (GW-RF). Data will be processed using R software.  

2.1 Data 

The research data used is 2018 PHDI data sourced from the Central Statistics Agency of Indonesia and 

the Provincial Level Health Office. Data was collected from 119 regencies/cities on the island of Java. 

According to the Ministry of Health data in 2018, the average PHDI was 0.6087. PHDI denoted as Y, is the 

dependent variable, while the other variables, denoted as X1, X2, X3, X4, X5, and X6, are independent 

variables, and variable xy is the coordinate. The details of the research variables are explained in Table 1 

below: 
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Table 1. Dependent Variables, Independent Variables Used in The Analysis.   

Variables Variables Name Type 

Y Public Health Development Index (PHDI) Ratio 

X1 Percentage of households that have access to improved water Ratio 

X2 
Expenditure on egg and milk consumption per capita per week 

(in thousands) 
Ratio 

X3 Percentage of public health centers per thousand population Ratio 

X4 Percentage of doctors per thousand population Ratio 

X5 
Pure Participation Rate Ratio (APM) at elementary 

school/equivalent level 
Ratio 

X6 
Percentage of households having hand washing facilities with 

soap and water 
Ratio 

xy Coordinates of cities/regencies Spatial Point 

 

2.2 Exploratory Data Analysist 

 To investigate the global relationship between PHDI and the factors that influence it, we used 

histograms, boxplots, and distribution of factors on maps and calculated the Pearson correlation coefficient 

between PHDI and the six factors. 

2.3 Random Forest (RF) 

The “randomForest” package in the R Statistical Computing Environment was used for this purpose. 

RF is a collection of multiple Classification and Regression Trees (CARTs). These were devised to address 

significant drawbacks of employing a single CART, such as the risk of overfitting [20]. In the conventional 

RF approach, each decision tree is randomly generated by sampling approximately two-thirds of the training 

data with replacement. At the same time, the remaining one-third is held out of training (bagging of training 

data) [21][22]. Random Forest (RF) performs effectively with high-dimensional variables even when the 

sample size is small. The RF algorithm follows this process[23]:  

1. The datasets 𝐷1, 𝐷2, . . . , 𝐷𝑛 are created by repeatedly applying the bootstrap method to randomly sample 

from the entire dataset D, resulting in the generation of the corresponding n decision trees 𝐻1, 𝐻2, . . . , 𝐻𝑛. 

2. At each node of the decision tree, a random selection of m variables where m < k is made from the total k 

variables available. The node is then split using the selected m variables, applying the optimal 

segmentation method based on a specific criterion. 

3. The value of m remains constant as the forest expands. Each tree grows to its maximum size without 

pruning until further splitting is no longer possible. 

In the first step of constructing the RF, whether with or without replacement, some data samples are 

not used to grow the tree, which is called the out-of-bag (OOB) for the tree. The accuracy of the RF model 

can be estimated from the OOB data as equation: 

𝑀𝑆𝐸 =
1

𝑁
 ∑(𝑦𝑖  −  �̂��̅�)

2
𝑁

𝑖=1

 (1) 

where N is the number of samples from the OOB data, 𝑦𝑖 is the actual value of the ith sample, and �̅̂�𝑖 is the 

average prediction for the ith sample from all trees. Random forest can also be used to produce feature 

importance, which shows how much a predictor contributes to predicting the response [24]. 

2.4 Geographically Weighted Random Forest (GW-RF)  

 The geographic random forest RF concept remains a generalized and aspatial global model, which may 

need to be revised to resolve spatial heterogeneity. Therefore, we propose an extension of RF by decomposing 

the model into several local sub-models. This concept is partly similar to GWR [25], where the focus shifts 

from global to local computing. A local RF is calculated for each location but only using n nearest 
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observations. This results in an RF calculation of each training data point, including its respective 

performance, predictive ability, and feature importance. Thus, we increase RF flexibility with local rather 

than global calibration. To explain the difference between the two approaches, we can use a simple regression 

equation: 

𝑌𝑖 = 𝑎𝑥𝑖 + 𝑒, 𝑖 = 1, . . . , 𝑛                                                                                             (2) 

where 𝑌𝑖 is the value of the dependent variable for the ith observation, 𝑎𝑥𝑖 is the prediction of non-linear of 

RF based on the independent variables of 𝑥, and 𝑒 is error term. The equation is formed with all data without 

considering their spatial distribution. In the GRF approach, the above equation is expanded to: 

𝑌𝑖 = 𝑎(𝑢𝑖, 𝑣𝑖)𝑥𝑖 + 𝑒, 𝑖 = 1, … , 𝑛     (3) 

where 𝑎(𝑢𝑖, 𝑣𝑖)𝑥 is the prediction of the RF model calibrated at location 𝑖, and (𝑢𝑖, 𝑣𝑖) are its coordinates. 

Sub-models are built for each data location, considering only nearby observations. The area in which the sub-

model operates is called the neighborhood (or kernel), and the maximum distance between a data point and 

its kernel is called the bandwidth [7][26]. In this study, we use an adaptive kernel. Adaptive kernels are 

beneficial when sampling densities vary across space, as the size of census units can vary greatly. We combine 

global and local estimates using the weight parameter (a). Combining predictions allows us to extract local 

heterogeneous signals (low bias) from local sub-models and combine them into a global model that uses more 

data. The weight parameters are user-definable, and for the scope of this research, we experimented with five 

settings i) a = 0, which means the weight for the local model is zero and 100% using the global model, ii) a 

= 1, which means the weight for the local model is 100%, iii) a = 0.5, which means the same weight for the 

local model and the global model, iv) a = 0.25, which means a smaller weight for the local model, namely 

25%, while the weight for the global model is 75%, and v) a = 0.75, which means a greater weight for the 

local model, namely 75%, while the weight for the global model is 25%. Implementation of GW-RF and RF 

analysis was carried out using the newly developed R package ‘SpatialML’ [21][27][28]. 

2.5 Predictive Performance 

 We first evaluated the predictive performance of GW-RF using K-fold cross-validation. Cross-

validation statistics usually better indicate how a model will perform on unseen data. In K-fold cross-

validation, the data set was randomly divided into a test and training set k different times, and model evolution 

was repeated k times. Each time, one of the k subsets was used as the test set, and the other k-1 subsets are 

put together to form a training set. Then the average error across all k trials was computed. We employ two 

established and robust error measurement metrics to evaluate the accuracy of the models, Root Mean Squared 

Error (RMSE) and Mean Absolute Error (MAE), as in Equation (4) and Equation (5) [29]: 

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
        (4) 

𝑀𝐴𝐸 =
∑ |�̂�𝑖−𝑦𝑖|𝑛

𝑖=1

𝑛
        (5) 

where 𝑦𝑖 is the observed variable, �̂�𝑖 is the predicted value, and n is the sample size. 

 

3. RESULTS AND DISCUSSION 

3.1 Exploratory Data Analysist 

As for our target dataset, the total number of data instances was 119 observations from regencies/cities 

on the island of Java in 2018. This dataset size is small, so we may not have enough cases for accurate 

prediction, but the random forest has been shown to handle challenges arising from small sample sizes. 

Figure 1 (a) shows a class comparison of the response variable, namely the public health development index 

(PHDI). In contrast, Figure 1(b) shows the descriptive statistics of the explanatory variables considered in 

this study. 
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Figure 1. (a) Histogram of PHDI distribution, (b) Boxplot of PHDI distribution. 

The PHDI distribution in Figure 1(a) looks bell-shaped or normally distributed. The lower the PHDI 

value, the smaller the frequency, and vice versa. The higher the PHDI value, the smaller the frequency, which 

means that only a small portion of areas have high PHDI values and low PHDI values. Most of the data has 

an average PHDI value of around 0.65. This is supported by Figure 1(b) where the median value of 0.6437 

is in the middle of the box plot, and the whiskers on both sides of the box are almost the same, indicating that 

the data is normally distributed. There are several outliers, but they do not affect the data distribution much, 

as noted in the mean value, which is not too different from the median value. 

The values of predictor variables on response variables can be seen as in Figure 2.  

 

   
Figure 2. Values of variables based on PHDI 

The Percentage of households with access to adequate water (X1) has a higher median at a high level 

of PHDI. This means that the more households have access to improved water, the higher the PHDI level. 

This also happens in the variable Expenditure on egg and milk consumption per capita per week (in 

thousands) (X2); the median boxplot of X2, which is at a high PHDI level, is greater than the median boxplot, 

which is at a low PHDI level. This means that the greater the egg and milk consumption, the higher the PHDI 

level. As for the variable number of community health centers per thousand population (X3), the box plot is 

not much different for both those with high and low PHDI, both of which still have low values with only a 

few outlier values. The variable number of doctors per thousand population (X4) has a low value both at the 

high PHDI level and at the low PHDI level; it's just that the number of doctors per population is still more 

significant at the high PHDI level, while at the low PHDI level, the number of doctors is very small, which 

means that the more doctors per population, the higher the PHDI level. The median box plot of Pure 

Participation Rate Ratio (APM) at elementary school/equivalent level (X5) is not much different for both 

high and low PHDI; even the box plot shows a negative correlation between the variable Pure Participation 

Rate Ratio (APM) at elementary school/equivalent level and PHDI. The Percentage of households having 

hand washing facilities with soap and water (X6) has a higher median at a high level of PHDI, which means 

that the more households have hand washing facilities, the higher the PHDI level. Outliers exist in all 

variables, with the most outliers being in X4.  
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Figure 3. Global correlation coefficients 

This research uses global correlation coefficients to find out how significant the correlation between 

PHDI and the six main factors in general in numbers. Figure 3 shows that the percentage of households 

having hand washing facilities with soap and water (X6), Expenditure on egg and milk consumption per 

capita per week in thousands (X2), and number of doctors per thousand population (X4) are the three variables 

that have the most significant correlation values among others, followed by the percentage of households 

having access to adequate water (X1), expenditure on egg and milk consumption per capita per week in 

thousands (X2), and pure Participation Rate Ratio (APM) at elementary school/equivalent level (X5). 

 

(a) 

  
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
Figure 4. Distribution map of PHDI and six independent variables:  

(a) PHDI, (b) X1, (c) X2, (d) X3, (e) X4, (f) X5, (g) X6 
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Figure 4 shows the PHDI distribution map and the factors that influence it. The small PHDI index is 

mainly in the western part of the island of Java, namely the provinces of Banten and West Java, some areas 

in Central Java Province, and East Java Province. This may be due to the lowest value percentage of 

households having hand washing facilities with soap and water (X6) and the number of doctors per thousand 

population (X4) spread across most of the district or cities on western Java Island, as the X4 and X6 have the 

most significant correlation with the PHDI. The smallest percentage of households with access to improved 

water is similar to the largest PHDI in Banten Province and West Java Province. The smallest expenditure on 

egg and milk consumption per capita per week is found in Central Java and East Java Provinces. The 

percentage of public health centers per thousand population and the Pure Participation Rate Ratio (APM) at 

elementary school/equivalent level are spread throughout all Provinces. In comparison, the Percentage of 

doctors per thousand population and the Percentage of households having hand washing facilities with soap 

and water are low in the Province West Java. 

3.2 Predictive Performances 

The methodological workflow is showed in flowchart of Figure 5.   

 

 
Figure 5. Flowchart of methodological framework 

 

The dataset used is 119 examples of observation results from cities and districts. The first thing we do 

is conduct exploratory data by making a box plot to determine the relationship between the PHDI variable 

and the six factors and identify which influences PHDI most. We also created a distribution of the PHDI 

response variable and six factors to determine which regions on the island of Java have PHDI values from 

the highest to the lowest values and identify possible causes. All data will be used as training data, as each 

belongs to a city or regency. Next, we used random forest and geographically weighted random forest 

methods to model the training data. The final step determines the best performance by calculating each 

model's RMSE and MAE values. The comparison between RF and GW-RF is carried out based on the values 

of RMSE and MAE.  

Table 2. Comparison of Models Based on RMSE and MAE  

Models 
Weight of  

local model (a) 
Bandwidth RMSE MAE 

RF  - - 0.0201 0.0162 

GW-RF 0 27 0.0173 0.0137 

GW-RF 1 27 0.0168 0.0131 

GW-RF  0.5 27 0.0171 0.0134 

GW-RF  0.25 27 0.0172 0.0135 

GW-RF  0.75 27 0.0170 0.0132 

  

The comparison of the RF and GW-RF models is shown in Table 2. The model with a smaller RMSE 

and MAE value indicates a better model. Table 2 shows that giving significant weight to local predictions  

(a = 1) in all five GW-RF modeling designs can produce better predictions based on the lowest RMSE and 

MAE. In particular, using an optimal bandwidth of 27 systematically shows the lowest RMSE and MAE 
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values across all five approaches. The weight value of a = 1, which means 100% weight for the local model, 

is the most optimal choice for minimizing RMSE and MAE and consistently predicts better than global R. 

 

   

(a) (b) 

Figure 6. Plots of observed PHDI versus predicted PHDI 

(a) RF, (b) GW-RF 

Figure 6 shows a 1:1 plot comparing the observed PHDI with the predicted PHDI using the RF and 

GW-RF models. The plot shows consistent improvement in accounting for PHDI (R2) variability when 

moving from global RF to GW-RF models. The GW-RF model makes a small contribution to more variability 

in the PHDI (R2 = 0.93) than in the RF model (R2 = 0.92). 

3.3 Feature Importance 

The global feature importance from RF model is shown in Figure 7.  

 

 
Figure 7. Global feature importance 

 

The global feature importance from the RF model places the expenditure on egg and milk consumption 

per capita per week as the most important variable, followed by the percentage of households having hand 

washing facilities with soap and water, percentage of doctors per thousand population, percentage of public 

health centers per thousand population, percentage of households that have access to improved water, and 

pure participation rate ratio at elementary school/equivalent level. 

GW-RF can be utilized solely as an exploratory tool. Since GW-RF is a local decomposition of RF, 

its results can be mapped. Using the whole dataset without training/testing splits for visualization, the spatial 

variation of feature importance of each independent variable can be shown in Figure 8. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 8. Plots of local feature importance of independent variables. (a) Percentage of the population with 

access to clean/decent water, (b) Consumption of eggs and milk per capita per week, (c) Number of healthcare 

facilities per 1000 people, (d) Number of doctors per 1000 people, (e) Pure participation rate ratio female/male, 

(f) Percentage of households that have hand washing facilities with soap and water. 
 

The influence of the level of importance of local variables on PHDI varies quite widely in each 

location. However, some variables appear to be concentrated in certain areas. The high consumption of eggs 

and milk per capita per week is focused on the eastern part of Java Island. The high value of the percentage 
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of households that have hand washing facilities with soap and water is seen concentrated in the western part 

of Java Island. The high variable of the number of doctors per 1000 people tends to congregate in the eastern 

part of Java Island. This shows the existence of spatial heterogeneity, where the geographic location of a 

region influences the variables that play a role in PHDI. As for the remaining variables, namely the percentage 

of the population with access to clean/decent water, consumption of eggs and milk per capita per week, and 

number of healthcare facilities per 1000 people, they appear to vary widely in various regions so that they do 

not reflect spatial heterogeneity. 

3.4 Discussion 

Empirical results from the application of GW-RF show good performance as a prediction and 

exploration tool. GW-RF outperforms RF with more accurate predictions based on lower RMSE and MAE 

values. Then, using geographic coordinates as features seems to be a good practice when using machine 

learning algorithms with spatial data. This confirms previous research [2]. Since RF is a decision tree (DT) 

algorithm, the explicit use of spatial features such as coordinates can support a degree of spatial interaction 

in tree development and, at least in part, overcome spatial non-stationarity. Although RF is a very flexible 

and non-linear algorithm, it is a model that does not account for spatial heterogeneity. Additionally, 

identifying and addressing spatial heterogeneity in machine learning models can be challenging because they 

are not based on strict parametric distributions like generalized linear models. Instead, GW-RF can illustrate 

these spatial effects very practically along with other information, such as the local performance of 

independent variables as feature importance. However, GW-RF has important limitations, such as increasing 

the complexity on the computational side. 

Based on the application of GW-RF in the PHDI case, the optimal performance of GW-RF was 

obtained at a ratio of local model weights to global model weights of 1:0, which means using local model 

components without global model components. However, the results obtained depend on the available data 

set. The results may be different for different data sets. For example, in other cases with varying degrees of 

spatial heterogeneity, adjusting the weights of global model components to local model components in a 

given comparison may provide more robust estimates. 

 

4. CONCLUSIONS 

This research is the first to apply the GW-RF regression model compared to the global RF model to 

explore the spatial heterogeneity of PHDI on the Indonesian island of Java concerning various influencing 

factors. It has been proven that the performance of GW-RF, which includes coordinates as the geographic 

scale, is better than that of the RF model. Thus, the geographic scale has the effect of improving the prediction 

performance of the model. The optimal performance of GW-RF depends on selecting the appropriate weight 

parameters when combining local and global estimates as GW-RF output, and the result can vary depending 

on the dataset. GW-RF models with higher local model weights perform better than those with low local 

model weights. The unique GW-RF outcome is the influence of the level of importance of the local variables 

(features) on PHDI, which varies quite widely in each location of the city/regency. GW-RF may be applicable 

in spatial models where multicollinearity across geographic locations is a significant concern. Understanding 

the spatial heterogeneity of the relationship between PHDI and its influencing factors allows further research 

and development of fundamental and spatially varying PHDI improvement policies on Java Island. 
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