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ABSTRACT 

Article History: 
The detection and recognition of traffic signs are crucial components of advanced driving 

assistance systems (ADAS) that enhance road safety. Current traffic sign detection and 
recognition model technology is proficient in identifying and interpreting traffic signs. 

However, for accurate detection and recognition, the traffic sign in the image must be of 

a certain minimum pixel size or distance from the driver's sight line for proper detection. 

The ADAS system should be capable of detecting and recognizing road traffic signs from 
a considerable distance as they come into the driver's line of vision. The higher the vehicle 

speed, the greater the distance required for the sign to be detected and recognized, 

allowing the driver sufficient time to react according to the sign's meaning. Addressing 

these challenges, this research proposes an enhanced version of the single shot detector 
(SSD) algorithm, commonly used in object detection, to improve the algorithm's ability to 

detect small objects. The proposed method involves adding an auxiliary layer module to 

the original SSD architecture to increase the feature map resolution and expand the 

conventional layer's receptive space. With the Enhanced SSD algorithm, the detection 
capability of the SSD can be significantly enhanced in terms of accuracy. The limitations 

of this study are related to the influence of occlusion and clutter, which might affect the 

performance of object detection, especially for small objects, which are more susceptible 

to being influenced by various factors. The research results demonstrate that Enhanced 
SSD improves object detection accuracy compared to the original SSD, with a mean 

average precision (mAP) of 97.87 compared to 95.35 for detecting 21 traffic signs in 

Indonesia. 
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1. INTRODUCTION 

Traffic signs are a type of road equipment that informs road users about the rules and instructions 

needed to achieve order and security on the road [1].  Identifying and recognizing road traffic signs are crucial 

components incorporated into the advanced driving assistance system (ADAS) module in contemporary 

vehicles. This ensures it functions effectively and optimally to aid drivers while navigating roads [2]. 

Traffic signs, especially in Indonesia, are broadly divided into three categories: prohibitions, 

instructions, and warnings [3]. These signs are generally designed using specific shapes like circles, triangles, 

and squares. They are given particular colors that state the type of sign, such as red for prohibition, yellow 

for warning, and blue for instructions [4]. 

Identifying and acknowledging road traffic signs are crucial aspects integrated into the advanced 

driving assistance system (ADAS) module in modern vehicles. This is essential for its practical and optimal 

performance in supporting drivers while navigating roads. Researchers from various countries, including 

Indonesia, have conducted studies on this topic, resulting in the evolution of accurate detection and 

recognition models for traffic signs [1], [2], [4]–[7]. However, the minimum pixel size needed for accurately 

detecting and recognizing image traffic signs remains unresolved. Currently, existing models that originated 

from previous research, despite their high accuracy, can only identify signs when they reach a certain size in 

the image. This poses a problem when the signs are at a distance from the driver, as it may result in delayed 

or unsafe reactions. ADAS systems must detect and recognize traffic signs from a considerable distance, 

allowing drivers ample time to react appropriately based on the sign's meaning, especially at higher speeds. 

This research aims to create a small object detection model for traffic sign detection and recognition. 

This model is designed to identify objects with tiny dimensions in images. The developed model is an 

improved version of the single shot detector (Enhanced-SSD) algorithm, known for its high accuracy and 

speed in object detection. Auxiliary modules have been integrated to enhance its perception of tiny objects 

and improve the algorithm's ability to detect small objects accurately. Implementing this method will enhance 

the performance of traffic sign detection and recognition and allow for signs to be detected from a greater 

distance as they enter the driver's field of view. 

 

2. RESEARCH METHODS 

Object detection algorithms based on convolutional neural networks can be divided into two main 

types. The first type is a single-stage algorithm, which uses convolution networks like YOLO and SSD (single 

shot detector) to directly predict the categories and positions of objects in the input image. The second type 

is a region proposal-based algorithm, also known as a two-stage algorithm. This algorithm starts by 

generating a region proposal through a region proposal network and then proceeds to classify the objects 

based on the region proposal [8]. Object detection results are obtained after these two stages. Examples of 

two-stage algorithms include Faster RCNN (faster region-based convolutional neural network). While two-

stage algorithms are usually more flexible and accurate, single stage algorithms like SSD have the advantage 

of faster processing speed, up to 7 times faster than two-stage algorithms like Faster RCNN [9]. This 

characteristic is particularly suitable for real-time applications such as ADAS systems requiring fast 

processing [10]. To detect and recognize small objects, such as traffic signs, we utilize a modified version of 

SSD called Enhanced-SSD to increase the accuracy of the SSD algorithm. According to the literature, a small 

object can be defined as an object with a maximum resolution dimension of one-tenth of the image resolution 

dimension, or an alternative definition, as an object whose pixel dimensions are less than 32 x 32. Detecting 

small objects is challenging due to their characteristics, including being unrecognizable, low resolution, set 

against a complex background, and having limited context information [11]. By using Enhanced-SSD to 

detect small objects, we achieved a better trade-off between accuracy and faster processing than the original 

SSD and two-stage algorithm. The following sub-section will discuss the details of the Enhanced-SSD model. 
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2.1 SSD Model Architecture 

The SSD method employs a feed-forward convolutional network to produce a series of bounding boxes 

and determine the presence of an object class within each box [12]. Afterward, a non-maximum suppression 

process is applied to generate the ultimate detection. The layers of the original SSD consist of a network 

layer, which is the basic architecture for processing high-quality images, called the base layer. In addition to 

the base layer, an extra layer structure supports object detection, known as the feature layer for multi-scale 

feature maps. This layer is a convolutional feature layer added at the end of the base layer. These layers 

progressively decrease in size, enabling detection and prediction at various scales. Each additional feature 

layer can produce a series of fixed predictions using convolutional filters, as demonstrated in the original 

SSD architecture in Figure 1. The prediction of parameters for potential detection in an m x n feature layer 

with x channels is based on a 3 x 3 x p kernel, which generates scores for categories or offset shapes about 

the coordinates of the bounding boxes. As convolutional layers progressively decrease in spatial dimension, 

the feature map resolution is also reduced. SSD utilizes a low-resolution layer to detect large objects and, 

conversely, uses a high-resolution layer to detect small-scale objects. For instance, a 4 x 4 feature map is 

utilized to detect large objects, and an 8 x 8 feature map is utilized to detect smaller objects, as shown in 

Figure 2. SSD adds 6 convolutional layers after VGG16, with 5 used for object detection. In total, the SSD 

can make 8732 predictions using these 6 layers. 

 

 
 

Figure 1. The SSD Model Architecture 
 

 
 

Figure 2. Higher resolution feature map (left) and lower resolution feature map (right) 

 

2.2 SSD Enhanced Module 

In the original SSD architecture, as discussed in section 2.1, the multi-scale feature map is utilized 

directly to detect objects regardless of the scale of the detected objects [13]. The weakness of this method 
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causes SSD to have shortcomings in capturing detailed local and global semantic features. This causes the 

SSD's ability to detect objects of various sizes unequal, especially for small objects. To be able to detect small 

objects well, the detector must be able to combine context information and detailed features. For this reason, 

a slight change was made to the architecture so that the SSD does not directly use the feature map from the 

prediction layer to detect objects but waits until the context layer fusion results are obtained using a particular 

auxiliary module, as illustrated in Figure 3.  

 

 
 

Figure 3. Auxiliary module for Enhanced SSD 
 

The auxiliary module aims to expand the SSD module by adding additional layers. Layer that will 

increase the feature map resolution and develop the receptive space of conventional VGG. The features from 

the two auxiliary modules are then concatenated to replace those from the Conv 5_3 layer. Assuming 𝑥𝑖,   𝑖    

is a multi-scale feature for detection, the fusion module feature can be expressed as following Equation (1) 

and Equation (2): 

 

𝒳𝑓 =  𝒞 { 𝒟 (𝒳𝐶𝑜𝑛𝑓53
),   𝒯(𝒳𝑓𝑐7

)}                                             (1) 

 

𝑙𝑜𝑐 = 𝑐𝑙𝑎𝑠𝑠 =  𝜙𝑐,𝑙 (𝒳𝑝) 𝑝 ∈  𝒫                                             (2) 

 

 

Where 𝒟 is the first aux module for the Xconf5_3 feature of the conf5_3 layer and T is the function of the 

second aux module which carries out the deconvolution process. The next is 𝒞, which states the concatenation 

function 𝜙𝑐,𝑙 and is a method for predicting objects from feature maps. The first aux module 𝒟 which 

performs the convolution process, is usually used in image segmentation [14], [15] to obtain context 

information from various image dimensions. 𝒯 is used to integrate semantic information for small object 

detection in shallow layers, so it uses feature maps from higher layers and combines them into shallower 

layers. However, because the dimension of the feature map is different, an upsample map is needed for each 

layer to ensure the size of each feature map is the same. 

2.3 Training 

The main difference between detection models based on single-stage detectors (including enhanced 

SSD) and two-stage detector models that use region proposals such as Faster-RCNN is that ground-truth 

information must be provided to an output in a series of output detectors [16]. After the provisioning process 

is carried out, the loss and backpropagation functions are then implemented at both input and output points. 

Training also requires choosing a series of standard boxes and scales for detection and utilizing the data 

augmentation method. 

During training, it is necessary to determine the default box corresponding to the annotated object label 

and then train according to this configuration. For each ground truth, default boxes will be selected, and these 

will vary in size, location, and aspect ratio. The matching strategy will be carried out by matching default 
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boxes with each label annotated with a certain threshold. This strategy will simplify the learning problem and 

allow the network to predict multiple overlapping default boxes. 

SSD's Training Objective is a derivative of the MultiBox objective but with the addition of supporting 

multiple object categories [17]. For example, 𝒳𝑖𝑗 
𝑝

= {1,0} represents whether the default box i matches the 

ground truth box from category p. In the matching approach described above, it is possible to have ∑ 𝑥𝑖𝑗  
𝑝

𝑖 >

1. The combined loss function aims to minimize both the localization loss (loc) and the confidence loss (conf) 

through weighted summation, which is expressed in Equation (3) 

 

𝐿(𝑥, 𝑐, 𝑙, 𝑔) =  
1

𝑁
  (𝐿𝑐𝑜𝑛𝑓  (𝑥, 𝑐) + 𝛼𝐿𝑙𝑜𝑐  (𝑥, 𝑙, 𝑔))                        (3) 

 

Where N is the count of default matching boxes. If N = 0, then the loss is set to 0. Localization loss refers to 

the discrepancy between the parameters of the predicted bounding box (l) and the actual ground truth (g). 

Confidence loss, on the other hand, is the loss calculated using the softmax function across various classes 

(c), with the weight factor α being determined as 1 through the process of cross-validation. 

 

3. RESULTS AND DISCUSSION 

3.1 Dataset 

The dataset used in this research is the Indonesian Traffic Sign Dataset [3], which consists of applicable 

traffic signs in Indonesia. These traffic signs are divided into four groups: prohibition signs, warning signs, 

command signs, guidance signs, and traffic lights. There are a total of 21 types of signs in the dataset, with 

details provided in Table 1 below: 

Table 1. Indonesian Traffic Sign Dataset 

No Group Category Road Sign 
Sample 

Count 
Sample Image 

1 Prohibition sign No parking sign 100  

 
 No stopping sign 100 

 
 Do not enter sign 100  

 
 No U-turn sign 100 

 
 No right turn sign 100  

 
 No left turn sign 100 

 
 No through road sign 100  

 
2 Warning sign Pedestrian crossing warning sign 100 

 
 Traffic light ahead sign 100  
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No Group Category Road Sign 
Sample 

Count 
Sample Image 

 Railroad crossing warning sign 100 

 
 Left T intersection warning sign 100  

 
 Lane ends ahead warning sign 100 

 
3 Mandatory sign Keep left sign 100  

 
 Lane choice control sign 100 

 
4 Direction sign U-turn location sign 100  

 
 Pedestrian crossing sign 100 

 
 Bus stop sign 100  

 
 Parking area sign 100 

 
5 Traffic light Red light 100  

 
 Yellow light 100 

 
 Green light 100  

 
 

The dataset comprises 2100 images, divided into 21 categories, with 100 images for each. The sign 

dataset was split into a 70:30 ratio for training and validation, resulting in 1470 images for training and 630 

images for validation. The dataset used has been annotated, and the annotation results are stored in a text file 

named according to the image file. The data in the text file includes the index number of the sign type, the 

coordinates of the bounding box where the sign object is located, and the size of the bounding box. 

3.2   Model Training 

The training machine runs on the Windows 10 Operating System with an Intel Core i7 11800H 

processor, 32GB of RAM, and an NVIDIA RTX 3070Ti GPU with 12GB of VRAM. The training procedures 

are based on the original SSD with adjustments to support new additional layers for enhanced SSD models. 

A batch size of 16 and an input size of 300 x 300 are used. The training begins with a learning rate of 10-3 for 

the first 20,000 iterations, then gradually reduces to 10-4 and 10-5 at the 40,000 and 60,000 terations using a 

stochastic gradient descent (SGD) optimizer with weight_decay of 0.0005. Stochastic Gradient Descent 

(SGD) is a popular optimization algorithm used in training deep learning models. It is a variant of the 

traditional gradient descent algorithm designed to optimize the model's weights by minimizing the loss 

function. To evaluate the performance increase from the Enhanced SSD, we compare the original SSD 

algorithm by detecting the accuracy of the two algorithms for each sign class. The performance evaluation 

metric is Average Precision (AP), which refers to the area enclosed by the Precision-Recall curve. Precision 

measures how many predicted objects are relevant (correctly identified). It is calculated as the ratio of true 
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positive detections to the total number of predicted detections. Meanwhile, recall measures how many of the 

actual objects were correctly predicted. It is calculated as the ratio of true positive detections to the total 

number of ground truth objects. In practical applications, AP is not calculated directly but is based on a 

smoothed accuracy value obtained from a precision-recall curve. The calculation formula follows Equation 

(4) and Equation (5). Mean Average Precision (mAP) is the average of AP across all classes in the dataset, 

and it provides an overall measure of the accuracy and robustness of an object detection model across different 

object categories. Higher mAP values indicate better overall performance of the model. 

 

𝐴𝑃 =  ∫ 𝑃𝑠𝑚𝑜𝑜𝑡ℎ(𝑟) 𝑑𝑟 
1

0
                                                   (4) 

𝑃𝑆𝑚𝑜𝑜𝑡ℎ (𝑟) =  maxP
𝑟′≥𝑟

(𝑟′)                                                          (5) 

 

3.3   Experiment Result 

The experiments conducted with enhanced SSD yielded a Mean Average Precision (mAP) of 97.87% 

for all sign classes, surpassing the original SSD algorithm, which achieved a mAP of 95.35%. Generally, 

both algorithms showed similar accuracy for classes with large objects; however, enhanced SSD 

outperformed the original SSD in detecting classes with small objects, such as identifying the color of traffic 

lights from a distance. Table 2 compares the average accuracy for each sign class using enhanced SSD and 

original SSD. 

Table 2. Original SSD vs Enhanced SSD performance result  

No Road Sign  AP(%) 

Original SSD Enhanced SSD 

1 No parking sign 88.56 95.56 

2 No stopping sign 96.67 97.05 

3 Do not enter sign 100 100 

4 No U-turn sign 96.45 95.32 

5 No right turn sign 92.66 96.18 

6 No left turn sign 98.16 97.74 

7 No through road sign 94.03 93.39 

8 Pedestrian crossing warning sign 100 100 

9 Traffic light ahead sign 100 100 

10 Railroad crossing warning sign 100 100 

11 Left T intersection warning sign 100 100 

12 Lane ends ahead warning sign 100 100 

13 Keep left sign 100 98.86 

14 Lane choice control sign 96.67 97.08 

15 U-turn location sign 96.18 97.33 

16 Pedestrian crossing sign 100 100 

17 Bus stop sign 100 100 

18 Parking area sign 100 100 

19 Red light 76.26 93.65 

20 Yellow light 73.78 94.18 

21 Green light 93.85 98.83 

mAP(%) 95,35 97,87 

 

3.4   Model Implementation Result 

The results of direct testing of images using the original SSD and enhanced SSD algorithms are 

displayed in Figure 4. The comparison revealed that the improved SSD algorithm effectively detects small 

objects with high accuracy and confidence, outperforming the original SSD. This means that detection errors 

or failures will be further reduced with the enhanced SSD. 

The Enhanced SSD architecture, an improvement over the original SSD, has successfully increased 

the detection accuracy of the SSD algorithm, particularly for small objects. However, further research is 

needed to enhance the accuracy of this detection by making additional modifications to the network layer 



2660 Chyan, et al.     SMALL OBJECT DETECTION APPROACH BASED ON ENHANCED SINGLE-SHOT…  

components of the SSD architecture. This will optimize feature extraction from small objects based on their 

characteristics, leading to developing a more optimal network model. 

 

 
(a) 

 
(b) 

Figure 4. Comparison results of traffic sign detection with SSD: (a) results of traffic sign detection using 
enhanced SSD; (b) traffic sign detection results using original SSD 

 

4. CONCLUSIONS 

The results from our small object detection for traffic sign recognition show that our modified SSD 

algorithm significantly improves detection and recognition, achieving a mAP of 97.87% compared to 95.35% 

for the original SSD algorithm. This enhancement can enhance the capability of the original SSD algorithm 

in detecting small objects, particularly in supporting ADAS systems that require precise detection of traffic 

signs from long distances. The limitations of this study are related to the influence of occlusion and clutter, 

which might affect the performance of object detection, especially for small objects, which are more 

susceptible to being influenced by various factors. Future research will address these limitations, including 

integrating these object detection algorithms into vehicle ADAS simulations. 
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