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ABSTRACT 

Article History: 
This research develops a mathematical model of a natural phenomenon, namely sea snails 

that can release toxins (allelopathy) so that non-toxic sea snails become afraid. In 
addition, toxic and non-toxic sea snails share biotic resources. Based on the existing 

phenomenon, the model of fear effect caused by allelopathy in the competitive interaction 

model with shared biotic resources will be studied. In this system, three equilibrium points 

are obtained: extinction point of prey, extinction point of predator, and coexisting point 
under certain conditions. Analysis of local stability at equilibrium points by linearization 

shows that all equilibrium points are asymptotically stable with certain conditions. 

Numerical simulations at the equilibrium point show the same results as the analysis 
results. Then, numerical continuity was carried out by selecting variation of the fear effect 

parameter for  𝑘 = 0.8, 𝑘 = 0.9, 𝑘 = 4, 𝑘 = 5.5. Numerical continuity results show that 

changes in these parameters affect the population of toxic and non-toxic species, marked 

by the emergence of Transcritical bifurcations, Bifurcation occurs at 𝑘 = 1, the first 

Saddle-Node bifurcation at 𝑘 = 0.880185, and the second Saddle-Node bifurcation at 

𝑘 = 5.279992. 
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1. INTRODUCTION 

An ecological system formed from the reciprocal relationship between living things and their 

environment is called an ecosystem [1]. The process of ecosystem interaction can occur in all other living 

things, such as the interaction of animals with plants and the surrounding environment [2]. Interactions in 

ecosystems arise not only on land but also in waters such as the sea; one example is the interaction between 

sea snails and their environment.  

Sea snails are members of the Gastropoda class, one of the largest classes in the Mollusca phylum [3]. 

Sea snails secrete muricin, a chemical compound in some sea slug species that causes allelopathy by releasing 

toxins. Allelopathy is the process of secondary metabolites produced by plants, algae, bacteria, fungi, and 

organisms that affect the growth and development of agricultural and biological systems [4]. A unique 

phenomenon of sea snail species is when the release of toxins (allelopathy) inhibits another sea snail's 

development or physiological functions. Species that mainly produce it are Dicathais orbita and Conus Spp 

[5].  

Toxic and non-toxic sea snails compete for biotic environmental resources such as algae food. 

Competition between two species is modeled through the Lotka-Volterra model, and its development has 

been intensively investigated in recent decades, such as Safuan and Musa 2016 who studied the Lotka-

Volterra competition model by considering the intraguild phenomenon where two species share the same 

environmental carrying capacity [6]. 

Toxin release (allelopathy) was first added to the Lotka - Volterra model by Maynard-Smith to account 

for the harmful impact that one species has on another. Many scientists considered situations where only one 

species releases toxin, such as Chen et al. proposed a system for toxin release from a single species. The 

analysis found in Chen's (2013) model that extinction is not affected at low levels of toxin release, meaning 

that toxic species cannot wipe out non-toxic species [7]. But in reality, non-toxic species can go extinct even 

if only affected by lower concentrations of toxins.  Non-toxic species also experience fear of other toxic 

species when the toxic species releases toxins [8].  

Non-toxic species that have a fear effect experience a loss; namely, more time and energy spent with 

fear reduces time and energy to find food so that the growth of non-toxic species is inhibited. The fear effect 

also forces temporary habitat abandonment so that reproduction rates may decline in the long term [9]. In 

2016, Wang considered the fear effect for the first time based on the classical theory of the two-species Lotka-

Volterra predator-prey model [10]. Several studies discussed predator-prey models with fear effects, 

including considering the effect of fear on prey [11]. Other research that considers fear's effect on prey is 

accompanied by additional food [12]. This is supported by the research of Srivastava (2022), which considers 

the effect of fear on the competition model between two species [13]. The fear effect has been studied 

extensively, but the fear effect is less considered in competitive systems. However, there is strong evidence 

that fear arises in pure competitive systems without predation effects or when predation effects are negligible 

[14]. 

In some of the research that has been described previously, there is a model that combines the effects 

of fear and the release of toxins (allelopathy), namely the research of Chen et al. (2023), who studied the 

Lotka-Volterra competition model with the fear parameter affecting the allelopathic planktonic system by 

adding the term fear effect [8]. Based on this explanation, the authors are interested in studying and modifying 

the interaction model in the Lotka-Volterra competition studied by several previous researchers by 

considering the fear effect on non-toxic species due to releasing toxins with shared biotic resources. 

 

2. RESEARCH METHODS 

2.1 Basic Competition Model 

Competition is an interaction between two species trying to obtain the same resources, such as food, 

shelter, or other environmental factors. There are two types of competition in ecology: intraspecies and 

interspecies competition [15]. Intraspecies competition is competition from the same species, while 

interspecies competition is competition from different species. The Lotka-Volterra competition model is a 

mathematical model that describes the population dynamics of two species competing for the same resources 
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in an ecosystem [16]. The Lotka-Volterra competition model was first introduced by Alfred J. Lotka in 1925. 

In 1926, a prominent Italian mathematician named Vito Volterra developed the mathematical study.  

The competition model assumes that the model grows exponentially, which is usually called the 
exponential growth model, where the environment does not limit growth, so the species population increases 
infinitely. It is also assumed that the population decreases due to intraspecies competition (the same species) 
that competes for nutrients or food, sunlight, and maintaining its place of residence. Besides intraspecies 
competition, the population also decreases due to the presence of different species. Suppose 𝑢 = 𝑢(𝑡) 
represents the population of species one at time t and 𝑣 = 𝑣(𝑡) represents the population of species two at 
time t, the Lotka-Volterra competition model can be expressed as follows: 

 𝑑𝑢

𝑑𝑡
= 𝑎1𝑢 − 𝑏1𝑢

2 − 𝑐1𝑢𝑣,         
𝑑𝑣

𝑑𝑡
= 𝑎2𝑢 − 𝑏2𝑣

2 − 𝑐2𝑢𝑣. 
(1) 

 

where 
𝑑𝑢

𝑑𝑡
 is the rate of change of population of first species with respect to time t and 

𝑑𝑣

𝑑𝑡
 is the rate of change 

of population of second species with respect to time t. All parameters are positive real. Parameters 𝑎1 and 𝑎2 
are the intrinsic growth of species, 𝑏1 and 𝑏2 are the intraspecies competition rate, 𝑐1 and 𝑐2 are the 
interspecies competition rate. 

2.2 The Fear Effect  

The fear effects are behavioral and stress-related physiological changes resulting from the presence of 

a noxious species [17]. One example is the fear effect in non-toxic species due to toxic species releasing toxic 

compounds. Non-toxic sea snail species fear sea snails that can release toxins.  

The fear effect affects the growth rate of the frightened species assumed as species two, where the 

growth of species two is not constant but depends on the density of the species, causing the fear assumed as 

species one. A higher density of species one increases the fear of species two, the fear effect is denoted by 

the parameter 𝑘. The denominator 1 + 𝑘𝑥 is used to represent the level of fear that decreases as the number 

of species experiencing fear (species two) increases. The fear effect function, according to [10], has the 

following equation  

 𝑓(𝑘, 𝑥) =
1

1 + 𝑘𝑥
. (2) 

where the variable 𝑥 is species one and the parameter 𝑘 is the fear effect coefficient. 

2.3 The Competitive Model with Shared Biotic Resources 

The Lotka-Volterra competitive interaction model with shared biotic resources has been investigated 

by previous research without considering the effects of fear and the release of toxins (allelopathy) [6]. The 

results of Safuan and Musa (2016) showed that interspecies competition affected the system solution, and 

parameter variations also affected the system solution. The following is the competitive interaction model 

with shared biotic resources. 

 𝑑𝑋

𝑑𝑡
= 𝑟1𝑋 (1 −

𝑋

𝑝𝑍
) − 𝑎𝑋𝑌, 

 

 𝑑𝑌

𝑑𝑡
= 𝑟2𝑋 (1 −

𝑌

𝑞𝑍
) − 𝑏𝑋𝑌, 

(3) 

 𝑑𝑍

𝑑𝑡
= 𝑐𝑍 − 𝑑𝑋𝑍 − 𝑒𝑌𝑍. 

 

The variables 𝑋, 𝑌 and 𝑍 denote the populations of first species, second species, and biotic resourcZ. 

Species one and two grow logistically with intrinsic growth rates given by 𝑟1 and 𝑟2 respectively and are 

limited by the availability of biotic resources 𝑍 in proportions 𝑝𝑍 and 𝑞𝑍 respectively. It is assumed that the 

environmental carrying capacity evolves linearly with growth rate 𝑐, and the resource utilization rates by 

species one and two are d 𝑑 and 𝑒, respectively. Parameters 𝑎 and 𝑏 are the interspecies competition rates of 

species one and two. 
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3. RESULTS AND DISCUSSION 

3.1 The Model Formulation 

The Lotka-Volterra competitive interaction model assumes, based on previous research, that the 

population growth rate of toxic sea snails (species one) follows logistic growth with shared biotic resources. 

The population of toxic sea snails decreases due to interspecies competition (from different species) between 

toxic (allelopathic) and non-toxic (nonallelopathic) sea snails. Furthermore, the population growth of non-

toxic sea snails (species two) also follows logistic growth with shared biotic resources. This growth decreases 

due to the fear effect of the release of toxins from poisonous sea snails; it is also assumed that the population 

of non-toxic sea snails decreases due to interspecies competition. In addition, non-toxic sea snails may 

become extinct due to the release of allelopathic sea snail toxins. Based on Equation (1), Equation (2), 

Equation (3), and the above assumptions, the construction of a model on Lotka-Volterra competition 

interaction that considers the fear effect on non-toxic species due to the presence of allelopathy with shared 

biotic resources as is follows 

 𝑑𝑋

𝑑𝑡
= 𝑟1𝑋 (1 −

𝑋

𝑝𝑍
) − 𝑎𝑋𝑌, 

 

 𝑑𝑌

𝑑𝑡
=

𝑟2𝑌

1+𝜂𝑋
(1 −

𝑌

𝑞𝑍
) − 𝑏𝑋𝑌 − 𝜉𝑋𝑌2, 

(4) 

 𝑑𝑍

𝑑𝑡
= 𝑐𝑍 − 𝑑𝑋𝑍 − 𝑒𝑌𝑍. 

 

 

The assumed variables and model parameters used to model competition that considers the fear effect 

on non-toxic species due to allelopathy (toxin release) with shared biotic resources are presented in Table 1. 

 
Table 1. The Variables and Parameters of a Fear Effect on Non-Toxic Species Due to the Release of Toxins with 

Share Biotic Resources 

Symbol Definition Type Unit 

𝑋 Population of toxic species Variable 𝑡𝑎𝑖𝑙 
𝑌 Population of nontoxic species Variable 𝑡𝑎𝑖𝑙 
𝑍 Biotic resources Variable 𝑡𝑎𝑖𝑙 

𝑟1 
Toxic species growth rate without being influenced by the 

environment 
Parameter 

1

𝑑𝑎𝑦
 

𝑝 Environmental carrying capacity of toxic species populations Parameter 𝑡𝑎𝑖𝑙 

𝑎 Rate of interspecies competition Parameter 
1

𝑑𝑎𝑦
 

𝑟2 
Nontoxic species growth rate without being influenced by the 

environment 
Parameter 

1

𝑑𝑎𝑦
 

𝜂 The fear effect Parameter - 

𝑞 
Environmental carrying capacity of nontoxic species 

populations 
Parameter 𝑡𝑎𝑖𝑙 

𝑏 Rate of interspecies competition Parameter 
1

𝑑𝑎𝑦
 

𝜉 Rate of toxic release Parameter 
1

𝑑𝑎𝑦
 

𝑐 Growth of biotic resources Parameter 
1

𝑑𝑎𝑦
 

𝑑 Rate of uptake of the resource by toxic species Parameter 
1

𝑑𝑎𝑦
 

𝑒 Rate of uptake of the resource by nontoxic species Parameter 
1

𝑑𝑎𝑦
 

 

Equation (4) can be written in dimensionless form, referring to [18] with 𝑥 =
𝑑𝑋

𝑟1
, 𝑦 =

𝑒𝑌

𝑟1
, 𝑧 =

𝑑𝑝𝑍

𝑟1
, 𝜏 =

𝑟1𝑡, so that Equation (4) becomes 
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 𝑑𝑥

𝑑𝜏
= 𝑥 (1 −

𝑥

𝑧
) − 𝛼𝑥𝑦, 

𝑑𝑦

𝑑𝜏
=

𝑟𝑦

1 + 𝑘𝑥
(1 −

𝜇𝑦

𝑧
) − 𝛽𝑋𝑌 − 𝑚𝑋𝑌2, 

𝑑𝑧

𝑑𝜏
= 𝛾𝑧 − 𝑥𝑧 − 𝑦𝑧. 

 

 

(5) 

 

 
with 

  𝛼 =
𝑎

𝑒
, 𝛽 =

𝑏

𝑑
, 𝛾 =

𝑐

𝑟1
, 𝑟 =

𝑟2
𝑟1
, 𝜇 =

𝑑𝑝

𝑒𝑞
,   𝑘 =

𝜂𝑟1
𝑑
, 𝑚 =

𝜉𝑟1
𝑒𝑑
, 

 

3.2 Model Analysis 

The next step is to find the equilibrium point of Equation (5). The equilibrium points in the model 

competition that considers the fear effect on non-toxic species due to allelopathy (toxin release) with shared 

biotic resources is obtained if  
𝑑𝑥

𝑑𝜏
= 0,

𝑑𝑦

𝑑𝜏
= 0,

𝑑𝑧

𝑑𝜏
= 0 [19]. So that the equilibrium points are obtained: 

1. The extinction equilibium point of first species 𝐸1 = (0, 𝛾, 𝜇𝛾) 
2. The extinction equilibrium point of second species 𝐸2 = (𝛾, 0, 𝛾) 
3. The coexist equilibrium point 𝐸3 = (𝑥

∗, 𝑦∗, 𝑧∗), with 

𝑥∗ =
𝑧∗ − 𝑧∗𝛼𝛾

1 − 𝑧∗𝛼
, 𝑦∗ =

𝛾 − 𝑧∗

1 − 𝑧∗𝛼
, 

And 𝑧∗  is obtained by solving the below equation 

 𝐴𝑧∗4 + 𝐵𝑧∗3 + 𝐶𝑧∗2 + 𝐷𝑧∗ + 𝐸 = 0, (6) 

 with 

 𝐴 = −𝛼3𝛽𝛾2𝑘 − 𝛼2𝛾2𝑘𝑚 − 𝛼3𝛽𝛾 + 2𝛼2𝛽𝛾𝑘 + 𝛼3𝑟 − 𝛼2𝛾𝑚 + 2𝛼𝛾𝑘𝑚 + 𝛼2𝛽 − 𝛼𝛽𝑘 + 

𝛼𝑚 − 𝑘𝑚,  

𝐵 = 𝛼2𝛾3𝑘𝑚 + 𝛼2𝛽𝛾2𝑘 + 𝛼2𝛾2𝑚 − 2𝛼𝛾2𝑘𝑚 + 2𝛼2𝛽𝛾 − 𝛼2𝜇𝑟 − 2𝛼𝛽𝛾𝑘 − 3𝛼2𝑟 + 𝛾𝑘𝑚 

−2𝛼𝛽 + 𝛽𝑘 −𝑚, 

 𝐶 = 𝛼2𝛾𝜇𝑟 − 𝛼𝛾2𝑚 − 𝛼𝛽𝛾 + 2𝛼𝜇𝑟 + 3𝛼𝑟 + 𝛾𝑚 + 𝛽, 

 𝐷 =  −2𝛼𝛾𝜇𝑟 − 𝜇𝑟 − 𝑟, 

 𝐸 =  𝛾𝜇𝑟. 

Equation (6) can be determined by using the Ferarri method, the following are the roots of the solution [20] 

 𝑧1 = −
𝐵

4𝐴
+
√𝑝+2𝑢+√−(3𝑝+2𝑢+

2𝑞

√𝑝+2𝑢
)

2
,  𝑧2 = −

𝐵

4𝐴
+
√𝑝+2𝑢−√−(3𝑝+2𝑢+

2𝑞

√𝑝+2𝑢
)

2
, 

 𝑧3 = −
𝐵

4𝐴
+
−√𝑝+2𝑢+√−(3𝑝+2𝑢+

2𝑞

√𝑝+2𝑢
)

2
, and  𝑧4 = −

𝐵

4𝐴
+
−√𝑝+2𝑢−√−(3𝑝+2𝑢+

2𝑞

√𝑝+2𝑢
)

2
. 

 with 

 𝑢 = −
5

6
𝑝 +

√
−
(−

𝑝3

108
+
𝑝𝑟

3
−
𝑞3

8
)

2
±
√(−

𝑝3

108
+
𝑝𝑟

3
−
𝑞3

8
)
2

4
+
(−
𝑝2

12
−𝑟)

27

3

−
−
𝑝2

12
−𝑟

3
√
−
(−

𝑝3

108+
𝑝𝑟
3 −

𝑞3

8 )

2
±
√(−

𝑝3

108+
𝑝𝑟
3 −

𝑞3

8 )

2

4
+
(−
𝑝2

12−𝑟)

27

3

, 
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 𝑝 =
𝐶

𝐴
−
3𝐵2

8𝐴2
, 

 𝑞 =
𝐷

𝐴
−

𝐵𝐶

2𝐴2
+

𝐵3

8𝐴3
, 

 𝑟 =
𝐸

𝐴
−
𝐵𝐷

4𝐴2
+

𝐵2𝐶

16𝐴3
−

3𝐵4

256𝐴4
, 

 so that the equilibrium point is obtained as follows 

𝐸3 = (𝑥1, 𝑦1, 𝑧1) = (
𝑧1−𝑧1𝛼𝛾

1−𝑧1𝛼
,
𝛾−𝑧1

1−𝑧1𝛼
, −

𝐵

4𝐴
+
√𝑝+2𝑢+√−(3𝑝+2𝑢+

2𝑞

√𝑝+2𝑢
)

2
), 

𝐸4 = (𝑥2, 𝑦2, 𝑧2) = (
𝑧2−𝑧2𝛼𝛾

1−𝑧1𝛼
,
𝛾−𝑧2

1−𝑧2𝛼
, −

𝐵

4𝐴
+
√𝑝+2𝑢−√−(3𝑝+2𝑢+

2𝑞

√𝑝+2𝑢
)

2
), 

𝐸5 = (𝑥3, 𝑦3, 𝑧3) = (
𝑧3−𝑧3𝛼𝛾

1−𝑧3𝛼
,
𝛾−𝑧3

1−𝑧3𝛼
, −

𝐵

4𝐴
+
−√𝑝+2𝑢+√−(3𝑝+2𝑢+

2𝑞

√𝑝+2𝑢
)

2
), 

𝐸6 = (𝑥4, 𝑦4, 𝑧4) = (
𝑧4−𝑧4𝛼𝛾

1−𝑧4𝛼
,
𝛾−𝑧4

1−𝑧4𝛼
, −

𝐵

4𝐴
+
−√𝑝+2𝑢−√−(3𝑝+2𝑢+

2𝑞

√𝑝+2𝑢
)

2
). 

The local stability of the three equilibrium points can be determined by the eigenvalues generated from 

the linearization process of the system of Equation (5) around the equilibrium point [21]. The Jacobian 

matrix resulting from the linearization process of the system of Equation (5) is as follows 

 

 𝐽(𝑥, 𝑦, 𝑧) =

(

 
 
 
 

𝜕𝑓1
𝑑𝑥

𝜕𝑓1
𝑑𝑦

𝜕𝑓1
𝑑𝑧

𝜕𝑓2
𝑑𝑥

𝜕𝑓2
𝑑𝑦

𝜕𝑓2
𝑑𝑧

𝜕𝑓3
𝑑𝑥

𝜕𝑓3
𝑑𝑦

𝜕𝑓3
𝑑𝑧)

 
 
 
 

 

 

(7) 

 

where 
𝑑𝑥

𝑑𝜏
= 𝑓1(𝑥, 𝑦, 𝑧),

𝑑𝑦

𝑑𝜏
= 𝑓2(𝑥, 𝑦, 𝑧), and   

𝑑𝑧

𝑑𝜏
= 𝑓3(𝑥, 𝑦, 𝑧). The matrix elements of 𝐽(𝑥, 𝑦, 𝑧) is 

𝜕𝑓1

𝑑𝑥
= 1 −

2𝑥

𝑧
− 𝛼𝑦,     

𝜕𝑓3

𝑑𝑦
=

𝑟𝑦2𝜇

𝑧2(1+𝑘𝑥)
, 

𝜕𝑓2

𝑑𝑥
= −𝛼𝑥,      

𝜕𝑓1

𝑑𝑧
= −𝑧, 

𝜕𝑓3

𝑑𝑥
=
𝑥2

𝑧2
,      

𝜕𝑓2

𝑑𝑧
= −𝑧, 

𝜕𝑓1

𝑑𝑦
= −

𝑟𝑘𝑦

(1+𝑘𝑥)2
(1 −

𝜇𝑦

𝑧
) − 𝛽𝑦 −𝑚𝑦2,   

𝜕𝑓3

𝑑𝑧
= 𝛾 − 𝑥 − 𝑦. 

𝜕𝑓2

𝑑𝑦
= −

𝑟

1+𝑘𝑥
(1 −

𝜇𝑦

𝑧
) −

𝑟𝜇𝑦

𝑧(1+𝑘𝑥)
− 𝛽𝑥 − 2𝑚𝑥𝑦,  

 

Theorem 1. The equilibrium point 𝐸1 = (0, 𝛾, 𝜇𝛾) is asymptotically stable if  𝛾 >
1

𝛼
. 

Proof. The Jacobian matrix in Equation (7) at is as follows:  

𝐽(𝐸1) = (

1 − 𝛼𝛾 0 0

−𝛽𝛾 −𝑚𝛾2 −𝑟
𝑟

𝜇
−𝜇𝛾 −𝜇𝛾 0

) 

The eigenvalues of the above Jacobian matrix at 𝐸1 are  
 

𝜆1 = −𝛼𝛾 + 1, 𝜆2 = −
𝑟

2
+
√𝑟2−4𝑟𝛾

2
,  and 𝜆3 = −

𝑟

2
−
√𝑟2−4𝑟𝛾

2
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Stable when 𝜆1 < 0, 𝜆2 < 0 and 𝜆3 < 0. Conditions that must be met when 𝜆1 < 0 if: 

−𝛼𝛾 + 1 < 0, 

⇔ 𝛾 >
1

𝛼
. 

a) The equilibrium point 𝐸1 = (0, 𝛾, 𝜇𝛾)  is stable spiral if it satisfies the conditions 𝜆1 < 0, 𝜆2 < 0, 

𝜆3 < 0, and if the discriminant of the quadratic equation is 𝑟2 − 4𝑟𝛾 < 0 or 𝛾 >
𝑟

4
 . 

b) The equilibrium point 𝐸1 = (0, 𝛾, 𝜇𝛾)  is stable node if it satisfies the conditions 𝜆1 < 0, 𝜆2 < 0, 

𝜆3 < 0, and if the discriminant of the quadratic equation is 𝑟2 − 4𝑟𝛾 ≥ 0 or 𝛾 ≤
𝑟

4
 . 

So, the equilibrium point 𝐸1 = (0, 𝛾, 𝜇𝛾)  is asymptotically stable if 𝛾 >
1

𝛼
. 

 

Theorem 2. The equilibrium point 𝐸2 = (𝛾, 0, 𝛾) is asymptotically stable if 𝑘 >
𝑟−𝛽𝛾

𝛽𝛾2
. 

Proof. The Jacobian matrix in Equation (7) at is as follows:  

𝐽(𝐸2) = (

1 −𝛼𝛾 1

0
𝑟

1 + 𝑘𝛾
− 𝛽𝛾 0

−𝛾 −𝛾 0

) 

The eigenvalues of the above Jacobian matrix at 𝐸1 are 

𝜆1 =
𝑟

1+𝑘𝛾
− 𝛽𝛾, 𝜆2 = −

1

2
+
√1−4𝛾

2
,  and 𝜆3 = −

1

2
−
√1−4𝛾

2
 

Stable when 𝜆1 < 0, 𝜆2 < 0 and 𝜆3 < 0. Conditions that must be met when 𝜆1 < 0 if: 
 

𝑟

1 + 𝑘𝛾
− 𝛽𝛾 < 0, 

⇔ 𝑘 >
𝑟 − 𝛽𝛾

𝛽𝛾2
. 

a) The equilibrium point  𝐸2 = (𝛾, 0, 𝛾)  is stable spiral if it satisfies the conditions 𝜆1 < 0, 𝜆2 < 0, 

𝜆3 < 0, and if the discriminant of the quadratic equation is 𝑟2 − 4𝑟𝛾 < 0 or 𝛾 >
1

4
 . 

b) The equilibrium point  𝐸2 = (𝛾, 0, 𝛾)  is stable node if it satisfies the conditions 𝜆1 < 0, 𝜆2 < 0, 𝜆3 <

0, and if the discriminant of the quadratic equation is 𝑟2 − 4𝑟𝛾 ≥ 0 or 𝛾 ≤
1

4
 . 

So, the equilibrium point E2 = (γ, 0, γ) is asymptotically stable if 𝑘 >
𝑟−𝛽𝛾

𝛽𝛾2
. 

Theorem 3. The equilibrium point 𝐸3 = (𝑥
∗, 𝑦∗, 𝑧∗) is asymptotically stable if 𝑏1 > 0, 𝑏3 > 0 and 𝑏1𝑏2 > 𝑏3 

Proof. The Jacobian matrix in Equation (7) at is as follows:  

 
𝐽(𝐸3) = (

ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23
ℎ31 ℎ32 ℎ33

). 

 

(8) 

 

where 

ℎ11 = 1 −
2𝑥∗

𝑧∗
− 𝛼𝑦∗,     ℎ23 =

𝑟𝑦∗2𝜇

𝑧∗2(1+𝑘𝑥∗)
, 

ℎ12 = −𝛼𝑥
∗,      ℎ31 = −𝑧

∗, 

ℎ13 =
𝑥∗2

𝑧∗2
,      ℎ32 = −𝑧

∗, 

ℎ21 = −
𝑟𝑘𝑦∗

(1+𝑘𝑥∗)2
(1 −

𝜇𝑦∗

𝑧∗
) − 𝛽𝑦∗ −𝑚𝑦∗2,  ℎ33 = 𝛾 − 𝑥

∗ − 𝑦∗. 

ℎ22 = −
𝑟

1+𝑘𝑥∗
(1 −

𝜇𝑦∗

𝑧∗
) −

𝑟𝜇𝑦∗

𝑧∗(1+𝑘𝑥∗)
− 𝛽𝑥∗ − 2𝑚𝑥∗𝑦∗,  

 
The corresponding characteristic equation of (8) is 

𝜆3 + 𝑏1𝜆
2 + 𝑏2𝜆 + 𝑏3 = 0 
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with 

𝑏1 = −(ℎ11 + ℎ22 + ℎ33), 
𝑏2 = ℎ11ℎ22 + ℎ11ℎ33 + ℎ22ℎ33 − ℎ13ℎ31 − ℎ23ℎ32 − ℎ12ℎ21, 

 𝑏3 = −ℎ11ℎ22ℎ33 − ℎ12ℎ23ℎ31 − ℎ13ℎ21ℎ32 + ℎ13ℎ31ℎ22 + ℎ11ℎ23ℎ32 + ℎ12ℎ21ℎ33. 
 

By Routh-Hurwitz criteria, equilibrium point E3 = (x
∗, y∗, z∗) is asymptotically stable if b1 > 0, b3 > 0 and 

b1b2 > b3.  
 

3.3 Model Simulation 

Numerical simulations were performed to validate the results of the analysis method [22]. Numerical 

simulations were carried out with variations in several parameters to determine how changes in these 

parameters affect the population of toxic and non-toxic species. The following parameter values are required 

to perform numerical simulations.  

Tabel 2. System Parameter Value 

Parameters Value References 

𝛼 0.5 Safuan & Musa [6] 

𝑟 1 Safuan & Musa [6] 

𝜇 0.2 Safuan & Musa [6] 

𝛽 0.5 Safuan & Musa [6] 

𝛾 1 Safuan & Musa [6] 

𝑘 0.8 Assumptions 

𝑚 1 Assumptions 

 

In this article, the parameter 𝑘 or the fear effect parameter of the nontoxic species due to the toxic 

species is varied to determine the changes in the stability of some equilibrium points. Numerical simulation 

is performed by setting different values of parameter 𝑘 (𝑘 = 0.8, 𝑘 = 0.9, 𝑘 = 2, 𝑘 = 4). The phase portraits 

of numerical simulation results based on the parameter values in Table 2 with different values of parameter 

𝑘 are illustrated in Figure 1, Figure 2, Figure 3, and Figure 4. 

 

Figure 1. Phase portrait at 𝒌 = 𝟎. 𝟖 

 

Figure 2. Phase portrait at 𝒌 = 𝟎. 𝟗  
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Figure 3. Phase portrait at 𝒌 = 𝟒  

 

Figure 4. Phase portrait at 𝒌 = 𝟓. 𝟓 

Based on Figure 1, the phase portrait fear effect parameter at 𝑘 = 0.8 so that 3 equilibrium points exist 

namely 𝐸1, 𝐸2 and 𝐸3. Figure 1 indicates stability towards the equilibrium point 𝐸3 = (0.117, 0.882, 0.211) 
and the equilibrium points 𝐸1 and 𝐸2 are unstable. The stability at point 𝐸3 shown in the phase portrait means 

that the populations of toxic, non-toxic, and biotic resource species remain or all three can coexist.  

Simulation of the model by increasing the parameter values in Table 2, by increasing the parameter 

values to 𝑘 = 0.9  so that 5 equilibrium points exist namely 𝐸1, 𝐸2, 𝐸3, 𝐸4 and 𝐸5. Figure 2 is phase portraits 

that show stability at two points, called bistable. In Figure 2, the phase portraits towards the equilibrium 

points 𝐸3 =  (0.117, 0.882, 0.211) and 𝐸5 = (0.894, 0.1055, 0.9443)  are spiral stable and the equilibrium 

points 𝐸1, 𝐸2 and 𝐸4 are unstable. The equilibrium point is 𝐸5 = (0.894, 0.1055, 0.9443), which was 

originally unstable becomes stable this shows that Theorem 3 is satisfied 

Furthermore, by increasing the fear effect parameter at 𝑘 = 4, so that 4 equilibrium points exist namely 

𝐸1, 𝐸2, 𝐸3 and 𝐸4. Figure 3 is phase portraits that show stability at two points, so they are called bistable. In 

Figure 5, the phase portraits towards the equilibrium points  𝐸2 = (1, 0, 1) and 𝐸3 =  (0.117, 0.882, 0.211)  
are spiral stable and the equilibrium points 𝐸1 and 𝐸4 are unstable. When the fear effect is given as 𝑘 = 0.9 

there is only one stable equilibrium point, namely 𝐸3 and 𝐸5. Then the value of the fear effect parameter is 

increased to 𝑘 = 4  there are two stable equilibrium points, namely 𝐸2 and 𝐸3. The equilibrium point 𝐸2 =
 (1, 0, 1)  which was originally unstable becomes stable this shows that Theorem 2 is satisfied and the 

equilibrium point 𝐸3 = (0.117, 0.882, 0.211)   which was originally unstable becomes stable this shows that 

Theorem 3 is satisfied. This indicates a bifurcation or change in stability. The stability at point 𝐸2 = (1, 0, 1)  
shown in the phase portrait means that populations of toxic species and biotic resources remain but 

populations of non-toxic species are extinct.  

For the final simulation by increasing the fear effect parameter 𝑘 = 5.5, so that 2 equilibrium points 

exist namely 𝐸1 and 𝐸2. Based on Figure 4, the phase portrait at 𝑘 = 5.5 shows stability towards the 

equilibrium point is 𝐸2 = (1, 0, 1), and the equilibrium point 𝐸1 remains unstable. The result of numerical 

simulation shows that changes in the equilibrium point due to variation the parameter of the fear effect, when 

𝑘 = 0.8  there is only one stable point, namely 𝐸3, when the value of 𝑘 is increased to 𝑘 = 0.9   it becomes 

bistable, namely at points 𝐸3 and 𝐸5. The value of the parameter 𝑘 is increased again to 𝑘 = 4   where it is 

still bistable at points 𝐸2 and 𝐸3, then increased again to 𝑘 = 5.5   shows only one stable point at 𝐸2.  

Numerical continuation is performed on Equation (4) by running the value of 𝑘, the fear effect 

parameter. The results of numerical continuation of the parameter 𝑘 cause changes in the stability of the 

equilibrium point which is illustrated by a bifurcation diagram, as shown in Figure 5.  
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Figure 5. Bifurcation diagram 

 

Continuation begins when the value of 𝑘 = 0.8 indicates that the equilibrium point 𝐸3 is stable, 𝐸1  and 

𝐸2  are unstable. Then 𝑘 is moved forward and LP1 (Limit Point) occurs at 𝑘 = 0.880185. This LP1 shows 

a Saddle Node bifurcation where two equilibrium points intersect each other, namely 𝐸3 and 𝐸3 and disappear 

when 𝑘 > 0.880185 accompanied by the emergence of another stable equilibrium point, namely 𝐸5. Saddle 

Node bifurcation illustrates that when 0.880185 < 𝑘 < 1 the system has two stable equilibrium points or called 

bistable, namely at 𝐸3 and 𝐸5.  

The nature of stability in this system changes when passing BP (Branch Point), which is when 𝑘 = 1. 

Changes in stability that occur in BP (Branch Point) type bifurcations include Transcritical bifurcations 

characterized by the intersection of the two branches of the equilibrium point. At equilibrium points 𝐸3 and 

𝐸5 there is a change in stability after bifurcation where 𝐸3 and 𝐸5 become unstable. When 𝑘 < 1 equilibrium 

point 𝐸2 is unstable, while when 𝑘 > 1 equilibrium point 𝐸2 is stable. In addition, the previously unstable 

point 𝐸3 becomes stable.  

After that, parameter 𝑘 moves forward and LP2 (Limit Point) occurs 𝑘 = 5.279992. This LP2 shows 

the Saddle Node bifurcation that when 1 < 𝑘 < 5.279992 has two stable equilibrium points or called bistable, 

namely 𝐸2 and 𝐸3. So it can be seen when bistable if 1 < 𝑘 < 5.279992, also can see in Figure 3 for numerical 

results are in accordance with the analytical results. After passing the Saddle Node bifurcation with a value 

of 𝑘 > 5.27999, there are only two equilibrium points that exist, namely, 𝐸1 and 𝐸2 with only 𝐸2 being stable. 

 

4. CONCLUSIONS 

1. Based on the assumptions set in this study, a mathematical model of the fear effect caused by allelopathy 

on competitive interaction model with shared biotic resources is formed, namely in System (4).  

2. The system has three equilibrium points namely 𝐸1 = (0, 𝛾, 𝜇𝛾), 𝐸2 = (𝛾, 0, 𝛾), and 𝐸3 = (𝑥
∗, 𝑦∗, 𝑧∗). 

Stability analysis is performed at three equilibrium points, the equilibrium points 𝐸1, 𝐸2, and 𝐸3 are 

asymptotically stable with certain conditions. 

3. Numerical simulations were carried out on parameter values from research related to the fear effect 

model due to the release of toxins (allelopathy). Numerical simulations at equilibrium points show the 

same results as the analytical results. Numerical simulations with variations in several parameters show 

that the parameter 𝑘 has an effect on changes in the population of toxic and non-toxic species, where the 

originally unstable equilibrium point becomes stable or otherwise. When the value of the fear effect 

parameter is low, 𝑘 = 0.8 produces one stable equilibrium point. When the value of the fear effect 

parameter is increased to 𝑘 = 0.9  and 𝑘 = 4  results in bistable equilibrium points. After the parameter 

is increased to k = 5.5 there is one stable point. This shows that an increase in the fear effect results in a 

change in the stability of the three populations not to exist or cannot coexist. Bifurcation arises due to 

changes in the stability of the equilibrium point, which is expressed in the numerical continuity of 

variations in the parameters of the fear effect. Transcritical bifurcation occurs at 𝑘 = 1, the first Saddle-

Node bifurcation at 𝑘 = 0.880185, and the second Saddle-Node bifurcation at 𝑘 = 5.279992. 
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