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ABSTRACT 

Article History: 
The vec operator is an essential tool in matrix algebra that transforms a matrix into a 

column vector based on specific rules. This paper introduces two new operators, namely 

𝑣𝑒𝑐ℎ∗ and 𝑣𝑒𝑐𝑝∗, which take the main diagonal and supra-diagonal elements of the matrix, 

respectively. In this paper, we obtain the general form of the matrix 𝐵𝑛
∗(𝑝), which transform 

𝑣𝑒𝑐ℎ∗(𝐴) to 𝑣𝑒𝑐𝑝∗(𝐴), with 𝐴 as a matrix of size 𝑛 × 𝑛. In addition, we also develop the 

general forms of matrices 𝐷𝑛
∗(ℎ) and 𝐷𝑛

∗(𝑝), which transform 𝑣𝑒𝑐ℎ∗(𝐴) into 𝑣𝑒𝑐(𝐴) and 

𝑣𝑒𝑐𝑝∗(𝐴) into 𝑣𝑒𝑐(𝐴), with 𝐴 as a symmetric matrix of size 𝑛 × 𝑛. This study also explores 
the properties and relationships between these matrices and their relevance to duplication 

and commutation matrices, providing deeper insights into the structure and operations of 

matrices. 
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1. INTRODUCTION 

The 𝑣𝑒𝑐 operator transforms a matrix into a column vector by stacking the first column to the last 

column of a matrix vertically [1]. Similarly, [2] introduces the vech operator for symmetric matrices, which 

functions like the 𝑣𝑒𝑐 operator but excludes entries above the main diagonal. . In this case, the 𝑣𝑒𝑐ℎ operator 

transforms a symmetric matrix into a column vector by stacking only the relevant elements from each column, 

omitting those above the main diagonal. Both 𝑣𝑒𝑐 and 𝑣𝑒𝑐ℎ operators are widely utilized in multivariate 

statistics for deriving key results [2]. Furthermore, [3] extends the 𝑣𝑒𝑐ℎ operator, initially designed for 

symmetric matrices, to general square matrices by incorporating supra-diagonal elements. The 𝑣𝑒𝑐 operator 

also plays a significant role in analyzing structured families of symmetric stochastic matrices( see [4] and 

[5]),  while  [6] applies it to individual blocks of arbitrary matrices, providing a straightforward formula. 

The 𝑣𝑒𝑐 operator related to the Kronecker product and the 𝑣𝑒𝑐-permutation matrix can be seen in [7]. 

The matrix that transforms the 𝑣𝑒𝑐 operator with its transpose is the commutation matrix.  The concept of the 

commutation matrix to the commutation tensor and the use  of the commutation tensor to achieve the 

unification of the two formulae of the linear preserver of the matrix rank is extended by [8]. Another 

relationship between the 𝑣𝑒𝑐 operator related to the Kronecker product and the commutation matrix can be 

seen at [9], [10], and [11]. Then, there are three definitions of commutation matrix which are represented by 

[12] in different ways and it is proven that these three definitions are equivalent. Proof of the equivalent uses 

the properties in the Kronecker product on the matrix. Kronecker product is used in many branches of 

mathematics [13] and physics [14]. Rakotonirina [15], gives formulas of Kronecker commutation matrices 

(KCMs) in terms of some matrices of particle physics. By using the block matrix 𝑣𝑒𝑐, and Ojeda [16], 

provides necessary and sufficient conditions for the factorization of a matrix into the Kronecker product of 

two matrices so that the basic algorithm is obtained to decide whether a matrix has square roots for the 

Kronecker product. Furthermore, More [17], derives a new approach to describing balanced and unbalanced 

partitioned block matrices and discusses the properties of the block operator 𝑣𝑒𝑐 and the block Kronecker 

product.  

In addition to permutation and commutation matrices, the 𝑣𝑒𝑐 operator is also associated with the 

duplication matrix. The duplication matrix changes the 𝑣𝑒𝑐ℎ to 𝑣𝑒𝑐. The duplication matrix is useful in 

various cases, such as in control theory [18] to show that the order of the external positive system can be 

reduced to 
𝑛(𝑛+1)

2
 (LTI system analysis via conversion) and in statistics [19] to transform the multivariate to 

univariate system. There are several other matrix operators defined, such as 𝑣𝑒𝑐𝑝 [20], 𝑣𝑒𝑐𝑑 [21] and its 

applications [22], 𝑣𝑒𝑐𝑘 and its applications [23]. Hidayah, et.al [24], introduces the 𝑣𝑒𝑐ℎ∗and 𝑣𝑒𝑐𝑝∗ 
operators and constructs a matrix that transforms 𝑣𝑒𝑐ℎ∗to 𝑣𝑒𝑐𝑝∗ for 𝑛 = 2, 3, 4, 5, and 6, and finds several 

properties. 

This paper will construct matrices that transform 𝑣𝑒𝑐ℎ∗ to 𝑣𝑒𝑐𝑝∗, 𝑣𝑒𝑐ℎ∗ to 𝑣𝑒𝑐, and 𝑣𝑒𝑐𝑝∗ to 𝑣𝑒𝑐 in 

general. Section I describes the development of the 𝑣𝑒𝑐 operator and its application through research that 

previous researchers have done. Section II gives some definitions and theorems which will be used. Section 

III present some interesting results about the 𝑣𝑒𝑐ℎ∗ and 𝑣𝑒𝑐𝑝∗ operators. 

2. RESEARCH METHODS 

This section present definitions, properties, and theorems related to 𝒗𝒆𝒄, 𝒗𝒆𝒄𝒉, 𝒗𝒆𝒄𝒉∗, and 𝒗𝒆𝒄𝒑∗. 

Definition 1. [1] Let 𝐴 = (𝑎𝑖𝑗) be an 𝑚 × 𝑛 matrix and 𝐴𝑗 as its 𝑗th column, then 𝑣𝑒𝑐(𝐴) is the 𝑚𝑛 × 1 

vector gives by 

𝑣𝑒𝑐(𝐴) = (

𝐴1
𝐴2
⋮
𝐴𝑛

). 

For example, if 𝐴 is the 2 ×3 matrix given by 𝐴 = (
2 0 5
8 1 3

) then 𝑣𝑒𝑐(𝐴) is the 6 × 1 vector given by 

𝑣𝑒𝑐(𝐴) = (2, 8, 0, 1, 5, 3)𝑇. 

Theorem 1. [1] Let 𝒂 and 𝒃 be any two vectors, whereas 𝐴 dan 𝐵 are two matrices of the same size. Then 
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a. 𝑣𝑒𝑐(𝒂) = 𝑣𝑒𝑐(𝒂𝑇) = 𝒂, 

b. 𝑣𝑒𝑐(𝒂𝒃𝑇) = 𝒃⊗ 𝒂, 

c. 𝑣𝑒𝑐(𝛼𝐴 + 𝛽𝐵) = 𝛼𝑣𝑒𝑐(𝐴) + 𝛽𝑣𝑒𝑐(𝐵), where 𝛼 and 𝛽 are scalars. 

Theorem 2. [1] Let 𝐴 = (𝑎𝑖𝑗), 𝐵 = (𝑏𝑖𝑗), and 𝐶 = (𝑐𝑖𝑗) be matrices of sizes 𝑚 × 𝑛, 𝑛 × 𝑝, and 𝑝 × 𝑞, 

respectively. Then 𝑣𝑒𝑐(𝐴𝐵𝐶) = (𝐶𝑇⊗𝐴)𝑣𝑒𝑐(𝐵). 

Theorem 3. [1] Let 𝐴 = (𝑎𝑖𝑗), 𝐵 = (𝑏𝑖𝑗), 𝐶 = (𝑐𝑖𝑗), and 𝐷 = (𝑑𝑖𝑗) be matrices of sizes 𝑚 × 𝑛, 𝑛 × 𝑝, 

𝑝 × 𝑞, and 𝑞 ×𝑚, respectively. Then 𝑡𝑟(𝐴𝐵𝐶𝐷) = (𝑣𝑒𝑐(𝐴𝑇))𝑇(𝐷𝑇⊗𝐵)𝑣𝑒𝑐(𝐶). 

Definition 2. [3] Let 𝐴 = (𝑎𝑖𝑗) be an 𝑛 × 𝑛 matrix. Then 𝑣𝑒𝑐ℎ(𝐴) is the 
 (𝑛+1)

2
× 1 vector that is obtained 

from 𝑣𝑒𝑐(𝐴) by eliminating all supra-diagonal elements of 𝐴. 

For example, for 𝑛 = 3, 𝑣𝑒𝑐ℎ(𝐴) = (𝑎11, 𝑎21, 𝑎31, 𝑎22, 𝑎32, 𝑎33)
𝑇. 

Definition 3. [1] Let 𝐻𝑖𝑗 be an 𝑚 × 𝑛 matrix that has its only nonzero element, a one, in the (𝑖, 𝑗)th position. 

The 𝑚𝑛 × 𝑚𝑛 matrix, denoted by 𝐾𝑚𝑛 is given by 

𝐾𝑚𝑛 =∑∑(𝐻𝑖𝑗⊗𝐻𝑖𝑗
𝑇).

𝑛

𝑗=1

𝑚

𝑖=1

 

The matrix 𝐻𝑖𝑗 can be conveniently expressed in terms of columns from the identity matrices 𝐼𝑚 and 𝐼𝑛.  If 

𝒆𝑖,𝑚 is the 𝑖-th column of 𝐼𝑚 and 𝒆𝑗,𝑛 is the 𝑗th column of 𝐼𝑛, then 𝐻𝑖𝑗 = 𝒆𝑖,𝑚𝒆𝑗,𝑛
𝑇. 

Theorem 4. [12] Let 𝐾𝑚,𝑛 be a commutation matrix. Then the following statements are equivalent: 

a. Definition 3 

b. Let 𝐼𝑛 be the identity matrix, and 𝒆𝑖,𝑚 is an m-dimensional column vector that has 1 in the 𝑖th 

position and 0’s elsewhere; that is: 

𝒆𝑖,𝑚 = [0, 0, . . . , 0, 1, 0,… , 0]𝑇 and 𝐼𝑛⊗𝒆𝑖,𝑚
𝑇 = 𝑎𝑖𝑗𝒆𝑖,𝑚

𝑇 , 𝑎𝑖𝑗 ∈ 𝐼𝑛. 

The commutation matrix, denoted by Km,n is given by: 

𝐾𝑚,𝑛 =

(

 
 
𝐼𝑛⊗𝒆1,𝑚

𝑇

𝐼𝑛⊗𝒆2,𝑚
𝑇

⋮
𝐼𝑛⊗𝒆𝑚,𝑚

𝑇

)

 
 

 

c. A permutation matrix P is called a commutation matrix of a matrix, m× n, if it satisfies the 

following conditions: 

i. P = [Aij] is an m× n block matrix, with each blok Aij being n × m matrix. 

ii. For each i ∈ {1, 2, … ,m}, j ∈ {1, 2,… , n}, Aij = (ast
(i,j)) is a (0,1) matrix with unique 1 

which lies at the position (j, i). 

We denote this commutation matrix by 𝐾𝑚,𝑛, thus a commutation matrix is of size 𝑚𝑛 ×𝑚𝑛. 

Theorem 5. [1] Let 𝐴 be an 𝑚 × 𝑛 matrix and 𝐵 be a 𝑝 × 𝑞. Then 𝑣𝑒𝑐(𝐴⊗ 𝐵) = (𝐼𝑛⊗𝐾𝑚𝑛⊗
𝐼𝑚)(𝑣𝑒𝑐(𝐴) ⊗ 𝑣𝑒𝑐(𝐵)). 

Definition 4. [19] Let 𝐴 = (𝑎𝑖𝑗) be an 𝑛 × 𝑛 symmetric matrix. The duplication matrix 𝐷𝑛 is a matrix that 

transforms 𝑣𝑒𝑐ℎ(𝐴) to 𝑣𝑒𝑐(𝐴) of size 𝑛2 ×
𝑛(𝑛+1)

2
. The general form of 𝐷𝑛 is as follows: 
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𝐷𝑛 =

{
 
 

 
 (
𝑂(𝑖−1)×(𝑛−𝑖+1)
𝐼(𝑛−𝑖+1)

) ,

(𝑂𝑛×(𝑛−𝑗+1)),    

(
𝑂(𝑗−1)×(𝑛−𝑗+1)

𝐸1,(𝑖−𝑗+1)
(𝑛−𝑗+1) ) ,

    

for 𝑖 = 𝑗,

for 𝑖 < 𝑗,

for 𝑖 > 𝑗,

 

for each 𝑖, 𝑗 = 1,2,… , 𝑛 where 𝐸1,𝑗
𝑛 = 𝒆𝑖,𝑛⊗𝒆𝑗,𝑛

𝑇  with  𝒆𝑖,𝑛 is 𝑡ℎ𝑒 𝑖th unit vector of size 𝑛 × 1 and 𝒆𝑗,𝑛 is the 

𝑗th unit vector of size 𝑛 × 1. 

Definition 5. [24] Let 𝐴 = (𝑎𝑖𝑗) be an 𝑛 × 𝑛 matrix. Then 𝑣𝑒𝑐ℎ∗(𝐴) is the 
𝑛(𝑛+1)

2
× 1 vector that is obtained 

from 𝑣𝑒𝑐(𝐴) by eliminating all below elements of 𝐴, i.e.: 

𝑣𝑒𝑐ℎ∗(𝐴) = (𝑎11, 𝑎12, 𝑎22, 𝑎13, 𝑎23, 𝑎33, … , 𝑎1𝑛, 𝑎2𝑛, … , 𝑎𝑛𝑛)
𝑇 . 

Definition 6. [24] Let 𝐴 = [𝑎𝑖𝑗] be an 𝑛 × 𝑛 matrix. The 𝑣𝑒𝑐𝑝∗(𝐴) is the 
1

2
𝑛(𝑛 + 1) × 1 vector that stacks 

the main diagonal elements and then the supra-diagonal elements in order of the first column to the last 

column of 𝐴, i.e.: 

𝑣𝑒𝑐𝑝∗(𝐴) = (𝑎11, 𝑎22, 𝑎33, … , 𝑎𝑛𝑛, 𝑎12, 𝑎13, 𝑎23, … , 𝑎1𝑛, … , 𝑎𝑛−1,𝑛)
𝑇
. 

For example, suppose given a matrix 𝐴 of size 4 × 4 as follows: 

𝐴 = (

2
1
5
1

    

0
8
8
9

    

1
3
3
4

    

8
2
6
7

), 

then 𝑣𝑒𝑐ℎ∗(𝐴) = (2, 0, 8, 1, 3, 3, 8, 2, 6, 7)𝑇 and 𝑣𝑒𝑐𝑝∗(𝐴) = (2, 8, 3, 7, 0, 1, 3, 8, 2, 6)𝑇 . 

3. RESULTS AND DISCUSSION 

Let 𝐴 be an 𝑛 × 𝑛 matrix. Based on Definition 5 and Definition 6, the operators 𝑣𝑒𝑐ℎ∗(𝐴) and 

𝑣𝑒𝑐𝑝∗(𝐴)  have the same elements, only the position of the arrangement of the elements is different. 

Therefore, each element of 𝑣𝑒𝑐ℎ∗(𝐴) can be associated with exactly one element of 𝑣𝑒𝑐𝑝∗(𝐴). Consequently, 

there is a transformation matrix which is symbolized as 𝐵𝑛
∗(𝑝) = (𝑏𝑖𝑗) with entries namely 1 and 0, where 1 

represents the change in the position of the arrangement of elements from 𝑣𝑒𝑐ℎ∗(𝐴) to 𝑣𝑒𝑐𝑝∗(𝐴)  or 𝑏𝑖𝑗 = 1 

represents the change from the 𝑗th row of 𝑣𝑒𝑐ℎ∗(𝐴) to the 𝑖th row of 𝑣𝑒𝑐𝑝 ∗ (𝐴) such that 

𝐵𝑛
∗(𝑝)𝑣𝑒𝑐ℎ∗(𝐴) = 𝑣𝑒𝑐𝑝∗(𝐴)                                           (1) 

The form of 𝐵𝑛
∗(𝑝)

 for 𝑛 = 2,3,4,5,6 has been obtained in the article [24]. We need several symbols, 

i.e.: 

a. 𝒆1,𝑛 is a row matrix containing one element 1 in the first column, 

b. 𝑂𝑚×𝑛 is a zero-matrix consisting of m-row and 𝑛-column, 

c. 𝐹𝑛 = (𝑂(𝑛−1)×1, 𝐼𝑛−1). 

We obtain the form of 𝐵𝑛
∗(𝑝)

 of size 
𝑛(𝑛+1)

2
×
𝑛(𝑛+1)

2
 which satisfies Equation (1) for any 𝑛 as follows: 

𝐵2
∗(𝑝) = (

𝒆1,2
𝑇 𝑂1×1

𝑂1×2 𝒆1,1
𝑇

𝑂1×1 𝒆1,2
𝑇

) and 𝐵𝑛
∗(𝑝) = (

𝐸𝑛
∗

𝐹𝑛
∗) for 𝑛 ≥ 3                (2) 

where                 
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𝐸𝑛
∗ =

(

 
 
 
 

𝒆1,𝑛
𝑇 𝑂1×1 𝑂1×1

𝑂1×2 𝒆1,𝑛−1
𝑇 𝑂1×1

𝑂1×3
𝑂1×4
⋮

𝑂1×𝑛

𝑂1×1
𝑂1×1
⋮

𝑂1×𝑛−1

𝒆1,𝑛−2
𝑇

𝑂1×1
⋮

𝑂1×𝑛−2

    

⋯ ⋯ 𝑂1×𝑛−1
⋯ ⋯ 𝑂1×𝑛−1
⋮
⋱
⋱
⋯

⋮
⋮
⋱

𝑂1×2

𝑂1×𝑛−1
⋮
⋮
𝒆1,𝑛
𝑇

)

 
 
 
 

 and 

𝐹𝑛
∗ =

(

 
 
 

𝐹𝟐 𝑂1×1 𝑂1×𝑛
𝑂2×2 𝐹𝟑 𝑂2×1
𝑂3×3
𝑂4×4
⋮

𝑂𝑛−1×𝑛−1

𝑂3×2
𝑂4×3
⋱

𝑂𝑛−1×𝑛−2

𝐹𝟒
𝑂4×2
⋱

𝑂𝑛−1×𝑛−3

    

𝑂1×𝑛−1 ⋯ ⋯
𝑂2×𝑛 𝑂2×𝑛−1 ⋯

𝑂3×1
𝐹𝟓
⋱
⋯

𝑂3×𝑛
𝑂4×1
⋱

𝑂𝑛−1×2

⋱
⋱
⋱
𝐹𝒏

     

𝑂1×3
⋱
⋮

𝑂𝑛−3×𝑛−1
𝑂𝑛−2×𝑛
𝑂𝑛−1×1 )

 
 
 

  

where size of matrix 𝐸𝑛
∗ is 𝑛 ×

𝑛(𝑛+1)

2
  and matrix 𝐹𝑛

∗ is 
𝑛(𝑛−1)

2
×
𝑛(𝑛+1)

2
. 

For example, for 𝑛 = 4, 

𝐵4
∗(𝑝) =

(

 
 
 
 
 

𝒆1,4
𝑇

𝑂1×2
𝑂1×3
𝑂1×4
𝑂1×1
𝑂2×2
𝑂3×3

   

𝑂1×1
𝒆1,3
𝑇

𝑂1×2
𝑂1×3
𝒆1,4
𝑇

𝐹3
𝑂3×2

   

𝑂1×2
𝑂1×2
𝒆1,2
𝑇

𝑂1×2
𝑂1×2
𝑂2×1
𝐹4

  

𝑂1×3
𝑂1×3
𝑂1×3
𝒆1,1
𝑇

𝑂1×3
𝑂2×4
𝑂3×1)

 
 
 
 
 

  

=

(

 
 
 
 
 
 

1
0
0
0
0
0
0
0
0
0

   

0
0
0
0
1
0
0
0
0
0

   

0
1
0
0
0
0
0
0
0
0

   

0
0
0
0
0
1
0
0
0
0

   

0
0
0
0
0
0
1
0
0
0

   

0
0
1
0
0
0
0
0
0
0

   

0
0
0
0
0
0
0
1
0
0

   

0
0
0
0
0
0
0
0
1
0

   

0
0
0
0
0
0
0
0
0
1

   

0
0
0
1
0
0
0
0
0
0)

 
 
 
 
 
 

  

The properties associate with 𝐵𝑛
∗(𝑝) are as follows: 

Theorem 6.  The 𝐵𝑛
∗(𝑝) is a permutation matrix. 

Proof.  A matrix is said to be a permutation matrix if each row and each column of the matrix contains one 

element 1 and the other elements are 0. In Equation (2), matrix 𝐵𝑛
∗(𝑝)

 is formed from matrices 𝐸𝑛
∗  and 𝐹𝑛

∗. 

Matrix 𝐸𝑛
∗ contains one unit vector in each row and each column, while the other elements contain a zero 

matrix. The 𝐹𝑛
∗ matrix contains the 𝐹𝑛 matrix, where 𝐹𝑛 = (𝑂(𝑛−1)×1, 𝐼𝑛−1), meaning that 𝐹𝑛

∗ contains the 

identity matrix, which has one 1 element in each row and each column, while the other elements contain a 

zero matrix. So, the matrix 𝐵𝑛
∗(𝑝)

 is a permutation matrix. ∎  

Corollary 1.  The 𝐵𝑛
∗(𝑝) is an orthogonal matrix. 

Proof. The proof is analogous to the proof of Theorem 3.1 (see [24]). ∎  

Theorem 7. The 𝐵𝑛
∗(𝑝) is a unique matrix. 

Proof. Let 𝐴 be an 𝑛 × 𝑛 matrix. Suppose 𝑋 = (𝑥𝑖𝑗) and 𝑌 = (𝑦𝑖𝑗) are 𝐵𝑛
∗(𝑝)

 of size 
𝑛(𝑛+1)

2
 that transforms 

𝑣𝑒𝑐ℎ∗(𝐴) to 𝑣𝑒𝑐𝑝∗(𝐴) such that 𝑋𝑣𝑒𝑐ℎ∗(𝐴) = 𝑣𝑒𝑐𝑝∗(𝐴) and 𝑌𝑣𝑒𝑐ℎ∗(𝐴) = 𝑣𝑒𝑐𝑝∗(𝐴). From Theorem 6, it 

is obtained that 𝐵𝑛
∗(𝑝)

 is a permutation matrix. That is, each element of 𝑣𝑒𝑐ℎ∗(𝐴) is individually mapped to 

an element of 𝑣𝑒𝑐𝑝∗(𝐴). As a result, X and Y are permutation matrices with entries 𝑥𝑖𝑗 = 𝑦𝑖𝑗 for each 𝑖 =

1,2,···,
𝑛(𝑛+1)

2
 and 𝑗 = 1,2,···,

𝑛(𝑛+1)

2
 or 𝑋 = 𝑌 so that it is proven that the 𝐵𝑛

∗(𝑝)
 is a unique matrix. ∎  

Theorem 8.  Let 𝐴 be an 𝑛 × 𝑛 matrix, then  
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a. 𝑡𝑟(𝐵𝑛
∗(𝑝)) = 1, 

b. 𝑑𝑒𝑡(𝐵𝑛
∗(𝑝)) = {

−1,
1,
 
𝑖𝑓 𝐵𝑛

∗(𝑝) 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥,

𝑖𝑓 𝐵𝑛
∗(𝑝) 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥.

 

Proof. (a) Based on Equation (2), the 𝐵𝑛
∗(𝑝)

 is formed from the partition matrix 𝐸𝑛
∗ and 𝐹𝑛

∗, where the number 

1 is always located on the main diagonal in the first row and first column while the main diagonal in the other 

rows and columns contain the number 0. Since a trace is the sum of the entries on the main diagonal, then 

𝑡𝑟(𝐵𝑛
∗(𝑝)) = 1. (b) Based on the article [24] it is found that if the permutation of the 𝐵𝑛

∗(𝑝)
 matrix is odd 

then 𝑑𝑒𝑡(𝐵𝑛
∗(𝑝)) = −1 and otherwise. Consequently, it can be concluded that if 𝐵𝑛

∗(𝑝)
  is an odd permutation 

matrix then 𝑑𝑒𝑡(𝐵𝑛
∗(𝑝)) = −1, and if  𝐵𝑛

∗(𝑝)
  is an odd permutation matrix then 𝑑𝑒𝑡(𝐵𝑛

∗(𝑝)) = 1.∎  

Let 𝑆 = (𝑠𝑖𝑗) be an 𝑛 × 𝑛 symmetric matrix, which means 𝑠𝑖𝑗 = 𝑠𝑗𝑖. Based on Definition 5 and Definition 

6, every element of 𝑣𝑒𝑐(𝑆) is a duplicate of the elements 𝑣𝑒𝑐ℎ∗(𝑆) and 𝑣𝑒𝑐𝑝∗(𝑆), except for the element on 

the main diagonal. Therefore, every 𝑣𝑒𝑐ℎ∗(𝑆) and 𝑣𝑒𝑐𝑝∗(𝑆) element can be associated with 𝑣𝑒𝑐(𝑆) elements. 

Consequently, there exists a unique matrix denoted as 𝐷𝑛
∗(ℎ)  = (ℎ𝑖𝑗) and 𝐷𝑛

∗(𝑝)  = (𝑝𝑖𝑗), with the elements 

1 and 0, where ℎ𝑖𝑗 = 1 represents the change from the 𝑗th row of 𝑣𝑒𝑐ℎ∗(𝑆) to the 𝑖th row of 𝑣𝑒𝑐(𝑆), and 

𝑝𝑖𝑗 = 1 represents the change from the 𝑗th row of 𝑣𝑒𝑐𝑝∗(𝑆) to the 𝑖th row of 𝑣𝑒𝑐(𝑆) such that 

𝐷𝑛
∗(ℎ)𝑣𝑒𝑐ℎ∗(𝑆) = 𝑣𝑒𝑐(𝑆)                  (3) 

and 

𝐷𝑛
∗(𝑝)𝑣𝑒𝑐𝑝∗(𝑆) = 𝑣𝑒𝑐(𝑆).                  (4) 

The 𝐷𝑛
∗(ℎ)

 of size 𝑛2 ×
𝑛(𝑛+1)

2
 can be constructed in general as follows: 

𝐷𝑛
∗(ℎ) =

{
 
 

 
 (

𝐼𝑖
𝑂(𝑛−𝑖)×𝑖

) , for 𝑖 = 𝑗,

(
𝒆𝑗,𝑗⊗𝒆𝑖,𝑗

𝑇

𝑂(𝑛−𝑖)×𝑖
) , for 𝑖 < 𝑗,

(𝑂𝑛×𝑗), for 𝑖 > 𝑗

 

where  𝑖, 𝑗 = 1,2,… , 𝑛. 

For example, 𝑛 = 3, 

𝐷3
∗(ℎ) =

(

 
 
(
𝐼1
𝑂2×1

) (
𝒆2,2⊗𝒆1,2

𝑇

𝑂1×2
) (𝒆3,3⊗𝒆1,3

𝑇 )

(𝑂3×1) (
𝐼2
𝑂1×2

) (𝒆3,3⊗𝒆2,3
𝑇 )

(𝑂3×1) (𝑂3×2) (𝐼3) )

 
 
=

(

 
 
 
 
 
 

1
0
0
0
0
0
0
0
0

   

0
1
0
1
0
0
0
0
0

   

0
0
0
0
1
0
0
0
0

   

0
0
1
0
0
0
1
0
0

   

0
0
0
0
0
1
0
1
0

   

0
0
0
0
0
0
0
0
1)

 
 
 
 
 
 

. 

Next, the 𝐷𝑛
∗(𝑝)

 of size 𝑛2 ×
𝑛(𝑛+1)

2
 can be constructed in general as follows: 
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𝐷𝑛
∗(𝑝) =

{
 
 
 
 
 
 

 
 
 
 
 
 
(𝒆1,𝑛⊗𝒆𝑖,𝑛

𝑇 ),      for 𝑗 = 1,                                                             

(
𝐼𝑖−1

𝑂(𝑛−𝑖+1)×(𝑖−1)
) , for 𝑖 = 𝑗,where 𝑖, 𝑗 = 2,3, …𝑛                      

(𝑂𝑛×(𝑗−1)), for 𝑖 > 𝑗,where 𝑗 = 2,3, … , 𝑛 − 1,                           

(
𝑂1×(𝑛−1)

𝒆(𝑛−1),(𝑛−1)⊗𝒆𝑖,(𝑛−1)
𝑇 ) , for 𝑖 = 1,2, … , 𝑛 − 1 and 𝑗 = 𝑛,   

(𝒆2,𝑛), for 𝑖 < 𝑗 and 𝑗 = 2,                                                              

(

𝑂2×(𝑗−1)

𝒆(𝑗−2),(𝑗−1)⊗𝒆𝑖,(𝑗−1)
𝑇

𝑂(𝑛−1−𝑗)×(𝑗−1)

) , for 𝑖 < 𝑗, where 𝑗 = 3,4,… , 𝑛 − 1.

 

For example, 𝑛 = 3, 

𝐷3
∗(𝑝) =

(

 
 
 
 
(𝒆1,3⊗𝒆1,3

𝑇 ) (𝒆2,3) (
𝑂1×2

𝒆2,2⊗𝒆1,2
𝑇 )

(𝒆2,3⊗𝒆2,3
𝑇 ) (

𝐼1
𝑂2×1

) (
𝑂1×2

𝒆2,2⊗𝒆2,2
𝑇 )

(𝒆3,3⊗𝒆3,3
𝑇 ) (𝑂3×1) (

𝐼1
𝑂2×1

)
)

 
 
 
 

=

(

 
 
 
 
 
 

1
0
0
0
0
0
0
0
0

   

0
0
0
0
1
0
0
0
0

   

0
0
0
0
0
0
0
0
1

   

0
1
0
1
0
0
0
0
0

   

0
0
1
0
0
0
1
0
0

   

0
0
0
0
0
1
0
1
0)

 
 
 
 
 
 

. 

The following section provides a theorem that explains the relationship between 𝐵𝑛
∗(𝑝)

, 𝐷𝑛
∗(ℎ)

, and 

𝐷𝑛
∗(𝑝)

. 

Theorem 9. Let S be an 𝑛 × 𝑛 symmetric matrix. Then 

a. 𝐷𝑛
∗(ℎ) = 𝐷𝑛

∗(𝑝)𝐵𝑛
∗(𝑝), 

b. 𝐷𝑛
∗(𝑝) = 𝐷𝑛

∗(ℎ)𝐵𝑛
∗(𝑝)𝑇. 

Proof. (a) Based on Equation (3) obtained 

    𝑣𝑒𝑐(𝑆) = 𝐷𝑛
∗(ℎ)𝑣𝑒𝑐ℎ∗(𝑆)                                                       (5) 

Equation (4) obtained  

𝑣𝑒𝑐(𝑆) = 𝐷𝑛
∗(𝑝)𝑣𝑒𝑐𝑝∗(𝑆)                                                           (6) 

and Equation (1) obtained  

 𝑣𝑒𝑐𝑝∗(𝑆) = 𝐵𝑛
∗(𝑝)𝑣𝑒𝑐ℎ∗(𝑆)                                                     (7) 

Substituting Equation (7) into Equation (6), so that 

                                     𝑣𝑒𝑐(𝑆) = 𝐷𝑛
∗(𝑝)𝐵𝑛

∗(𝑝)𝑣𝑒𝑐ℎ∗(𝑆)                                                            (8) 

Furthermore, substituting Equation (5) into Equation (8) is obtained 

                               𝐷𝑛
∗(ℎ)𝑣𝑒𝑐ℎ∗(𝑆) = 𝐷𝑛

∗(𝑝)𝐵𝑛
∗(𝑝)𝑣𝑒𝑐ℎ∗(𝑆)                                               (9) 

So, we have 𝐷𝑛
∗(ℎ) = 𝐷𝑛

∗(𝑝)𝐵𝑛
∗(𝑝)

.  

(b) From (a) obtained 𝐷𝑛
∗(ℎ) = 𝐷𝑛

∗(𝑝)𝐵𝑛
∗(𝑝)

. Since 𝐵𝑛
∗(𝑝)

 is nonsingular then 𝐵𝑛
∗(𝑝)

 is invertible. Thus, 

premultiplying both sides by 𝐵𝑛
∗(𝑝)−1

 and obtained 

                  𝐷𝑛
∗(ℎ)𝐵𝑛

∗(𝑝)−1 = 𝐷𝑛
∗(𝑝)𝐵𝑛

∗(𝑝)𝐵𝑛
∗(𝑝)−1

 = 𝐷𝑛
∗(𝑝)𝐼𝑛(𝑛+1)

2

 = 𝐷𝑛
∗(𝑝)

                        (10) 

From Corollary 1, 𝐵𝑛
∗(𝑝)

 is an orthogonal matrix then 𝐵𝑛
∗(𝑝)−1 = 𝐵𝑛

∗(𝑝)𝑇
. So, 

𝐷𝑛
∗(𝑝) = 𝐷𝑛

∗(ℎ)𝐵𝑛
∗(𝑝)𝑇∎  
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The properties of the 𝐷𝑛
∗(ℎ)

 and 𝐷𝑛
∗(𝑝)

 are discussed in the following theorem. 

Theorem 10. Let 𝐷𝑛
∗(ℎ) and 𝐷𝑛

∗(𝑝) both be analogous to the duplication matrix of size 𝑛2 ×
𝑛(𝑛+1)

2
 and have 

a Moore-Penrose inverse, then 

a. 𝑟𝑎𝑛𝑘(𝐷𝑛
∗(ℎ)) = 𝑟𝑎𝑛𝑘(𝐷𝑛

∗(𝑝)) =
𝑛(𝑛+1)

2
, 

b. 𝐷𝑛
∗(ℎ)+ = (𝐷𝑛

∗(ℎ)𝑇𝐷𝑛
∗(ℎ))

−1
𝐷𝑛

∗(ℎ)𝑇, 

c. 𝐷𝑛
∗(𝑝)+ = (𝐷𝑛

∗(𝑝)𝑇𝐷𝑛
∗(𝑝))

−1
𝐷𝑛

∗(𝑝)𝑇, 

d. 𝐷𝑛
∗(ℎ)+𝐷𝑛

∗(ℎ) = 𝐼𝑛(𝑛+1)
2

 and 𝐷𝑛
∗(𝑝)+𝐷𝑛

∗(𝑝) = 𝐼𝑛(𝑛+1)
2

, 

e. 𝐷𝑛
∗(ℎ)+𝑣𝑒𝑐(𝐴) = 𝑣𝑒𝑐ℎ∗(𝐴) for every 𝑛 × 𝑛 symmetric matrix 𝐴, 

f. 𝐷𝑛
∗(𝑝)+𝑣𝑒𝑐(𝐴) = 𝑣𝑒𝑐𝑝∗(𝐴) for every 𝑛 × 𝑛 symmetric matrix 𝐴, 

Proof. Part (a), since 𝐴 is a symmetric matrix, means that 𝑣𝑒𝑐ℎ∗(𝐴), 𝑣𝑒𝑐𝑝∗(𝐴), and 𝑣𝑒𝑐(𝐴) have exactly the 

same elements. Suppose 𝐷𝑛
∗(ℎ)𝑣𝑒𝑐ℎ∗(𝐴) = 𝟎 and 𝐷𝑛

∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐴) = 𝟎. So according to the Equation (3) 

and Equation (4), it means 𝑣𝑒𝑐(𝐴) = 𝟎. This implies that 𝑣𝑒𝑐ℎ∗(𝐴) = 𝑣𝑒𝑐𝑝∗(𝐴) = 𝟎. Thus, 

𝐷𝑛
∗(ℎ)𝑣𝑒𝑐ℎ∗(𝐴) = 𝟎 and 𝐷𝑛

∗(ℎ)𝑣𝑒𝑐ℎ∗(𝐴) = 𝟎 if 𝑣𝑒𝑐ℎ∗(𝐴) = 𝑣𝑒𝑐𝑝∗(𝐴) = 𝟎, so the matrix 𝐷𝑛
∗(ℎ)

 and 

𝐷𝑛
∗(𝑝)

 has full column rank. Parts (b), (c), and (d) follow immediately from (a) and Theorem 5.3(h) [1], 

whereas (e) is obtained by premultiplying 𝐷𝑛
∗(ℎ)𝑣𝑒𝑐ℎ∗(𝐴) = 𝑣𝑒𝑐(𝐴) by 𝐷𝑛

∗(ℎ)+
 and then applying (d) and 

(f) is obtained by premultiplying 𝐷𝑛
∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐴) = 𝑣𝑒𝑐(𝐴) by 𝐷𝑛

∗(𝑝)+
 and then applying (d). ∎  

The following section provides a theorem that explains the relationship between 𝐵𝑛
∗(𝑝)

, 𝐷𝑛
∗(ℎ)

, and 

𝐷𝑛
∗(𝑝)

. 

Theorem 11. Let S be an 𝑛 × 𝑛 symmetric matrix. Then, 

a. 𝐷𝑛
∗(ℎ)+ = 𝐵𝑛

∗(𝑝)𝑇𝐷𝑛
∗(𝑝)+, 

b. 𝐷𝑛
∗(𝑝)+ = 𝐵𝑛

∗(𝑝)𝐷𝑛
∗(ℎ)+. 

Proof. Based on Theorem 10, we have 

                                     𝐷𝑛
∗(ℎ)+ = (𝐷𝑛

∗(ℎ)𝑇𝐷𝑛
∗(ℎ))

−1
𝐷𝑛

∗(ℎ)𝑇
                                        (11) 

and 

                                𝐷𝑛
∗(𝑝)+ = (𝐷𝑛

∗(𝑝)𝑇𝐷𝑛
∗(𝑝))

−1
𝐷𝑛

∗(𝑝)𝑇
                                  (12) 

From Theorem 9, substitute 𝐷𝑛
∗(ℎ) = 𝐷𝑛

∗(𝑝)𝐵𝑛
∗(𝑝)

 into Equation (11) and 𝐷𝑛
∗(𝑝) = 𝐷𝑛

∗(ℎ)𝐵𝑛
∗(𝑝)𝑇

 into 

Equation (12) so obtained the desired result. ∎  

We will give some theorems related to the relationship between 𝑣𝑒𝑐ℎ∗ and 𝑣𝑒𝑐𝑝∗ with 𝐵𝑛
∗(𝑝), 𝐷𝑛

∗(ℎ), 

𝐷𝑛
∗(𝑝)

, and the commutation matrix, 𝐾𝑚𝑛. 

Theorem 12. Let 𝐴 be an 𝑛 × 𝑚 matrix, 𝐵 be an 𝑚 ×𝑚 matrix, and 𝐶 be an 𝑚 × 𝑛 matrix. If 𝐴𝐵𝐶 is a 

symmetric matrix then 

𝑣𝑒𝑐ℎ∗(𝐴𝐵𝐶) = 𝐷𝑛
∗(ℎ)+(𝐶𝑇⊗𝐴)𝐷𝑚

∗(ℎ)𝑣𝑒𝑐ℎ∗(𝐵) = 𝐷𝑛
∗(ℎ)+(𝐶𝑇⊗𝐴)𝐷𝑚

∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐵) 

and 

𝑣𝑒𝑐𝑝∗(𝐴𝐵𝐶) = 𝐷𝑛
∗(𝑝)+(𝐶𝑇⊗𝐴)𝐷𝑚

∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐵) = 𝐷𝑛
∗(𝑝)+(𝐶𝑇⊗𝐴)𝐷𝑚

∗(ℎ)𝑣𝑒𝑐ℎ∗(𝐵). 

Proof. Based on Theorem 2, we have 

                                             𝑣𝑒𝑐(𝐴𝐵𝐶) = (𝐶𝑇 ⊗𝐴)𝑣𝑒𝑐(𝐵)                   (13) 

By using Definition 5, Equation (13) becomes  

                      𝐷𝑛
∗(ℎ)𝑣𝑒𝑐ℎ∗(𝐴𝐵𝐶) = (𝐶𝑇⊗𝐴)𝐷𝑚

∗ℎ𝑣𝑒𝑐ℎ∗(𝐵)                                  (14) 
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Premultiplying both sides by 𝐷𝑛
∗(ℎ)+

 so that Equation (14) becomes  

             𝑣𝑒𝑐ℎ∗(𝐴𝐵𝐶) = 𝐷𝑛
∗(ℎ)+(𝐶𝑇⊗𝐴)𝐷𝑚

∗(ℎ)𝑣𝑒𝑐ℎ∗(𝐵)                              (15) 

By using Theorem 9(a) and Equation (1), Equation (15) becomes  

               𝑣𝑒𝑐ℎ∗(𝐴𝐵𝐶) = 𝐷𝑛
∗(ℎ)+(𝐶𝑇⊗𝐴)𝐷𝑚

∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐵)                        (16) 

Premultiplying both sides by 𝐵𝑛
∗(𝑝)

 so that Equation (16) becomes 

               𝑣𝑒𝑐𝑝∗(𝐴𝐵𝐶) = 𝐷𝑛
∗(𝑝)+(𝐶𝑇⊗𝐴)𝐷𝑚

∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐵)                          (17) 

By using Theorem 9(b), Equation (17) becomes 

𝑣𝑒𝑐𝑝∗(𝐴𝐵𝐶) = 𝐷𝑛
∗(𝑝)+(𝐶𝑇⊗𝐴)𝐷𝑚

∗(ℎ)𝐵𝑚
∗(𝑝)𝑇𝑣𝑒𝑐𝑝∗(𝐵).   (18) 

Based on Corollary 1 then 𝐵𝑚
∗(𝑝)𝑇 = 𝐵𝑚

∗(𝑝)−1
 so that Equation (18) becomes 

    𝑣𝑒𝑐𝑝∗(𝐴𝐵𝐶) = 𝐷𝑛
∗(𝑝)+(𝐶𝑇⊗𝐴)𝐷𝑚

∗(ℎ)𝑣𝑒𝑐ℎ∗(𝐵)                                            (19) 

The proof is complete. ∎ 

Theorem 13. Let 𝐴 be an 𝑛 × 𝑛 matrix, 𝐵 be an 𝑛 ×𝑚 matrix, 𝐶 be an 𝑚 ×𝑚 matrix, and 𝐷 be an 𝑚 × 𝑛 

matrix. If 𝐴 and 𝐶 are symmetric matrices, then 

𝑡𝑟(𝐴𝐵𝐶𝐷) = (𝑣𝑒𝑐𝑝∗(𝐴))
𝑇
𝐷𝑛

∗(𝑝)𝑇(𝐷𝑇⊗𝐵)𝐷𝑚
∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐶) = (𝑣𝑒𝑐ℎ∗(𝐴))

𝑇
𝐷𝑛

∗(ℎ)𝑇(𝐷𝑇⊗

𝐵)𝐷𝑚
∗(ℎ)𝑣𝑒𝑐ℎ∗(𝐶). 

Proof.  Based on Theorem 3, we have 

                    𝑡𝑟(𝐴𝐵𝐶𝐷) = (𝑣𝑒𝑐(𝐴𝑇))
𝑇
(𝐷𝑇⊗𝐵)𝑣𝑒𝑐(𝐶)                                         (20) 

Since 𝐴 is a symmetric matrix then 𝐴𝑇 = 𝐴 and by using Equation (4) so that Equation (20) becomes  

                      𝑡𝑟(𝐴𝐵𝐶𝐷) = (𝐷𝑛
∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐴))

𝑇
(𝐷𝑇𝐵)𝐷𝑚

∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐶)                   (21) 

By using Theorem 9(a), Equation (21) becomes  

        𝑡𝑟(𝐴𝐵𝐶𝐷) = (𝐵𝑛
∗(𝑝)𝑇𝑣𝑒𝑐𝑝∗(𝐴))

𝑇
𝐷𝑛

∗(ℎ)𝑇(𝐷𝑇⊗𝐵)𝐷𝑚
∗(ℎ)𝑣𝑒𝑐ℎ∗(𝐶)           (22) 

Based on Corollary 1, we have 𝐵𝑛
∗(𝑝)𝑇 = 𝐵𝑛

∗(𝑝)−1
 and by using Equation (1), Equation (22) becomes  

            𝑡𝑟(𝐴𝐵𝐶𝐷) = (𝑣𝑒𝑐ℎ∗(𝐴))
𝑇
𝐷𝑛

∗(ℎ)𝑇(𝐷𝑇⊗𝐵)𝐷𝑚
∗(ℎ)𝑣𝑒𝑐ℎ∗(𝐶)                      (23) 

From Equation (21) and Equation (23), the proof is complete. ∎ 

Theorem 14. Let 𝐴 be an 𝑛 × 𝑛 matrix. Then 𝐷𝑛
∗(ℎ)𝑣𝑒𝑐ℎ∗(𝐴) = 𝐷𝑛

∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐴) = 𝑣𝑒𝑐(𝐴𝑈 + 𝐴𝑈
𝑇 −𝐷𝐴, 

where 𝐴𝑈 is the upper triangular matrix obtained from 𝐴 by replacing 𝑎𝑖𝑗 by 0 for 𝑖 > 𝑗, and 𝐷𝐴 is the 

diagonal matrix having the same diagonal entries as 𝐴. 

Proof. Suppose 𝐴 given a matrix of size 𝑛 × 𝑛 as follows:  

𝐴 = (

𝑎11
𝑎21
⋮
𝑎𝑛1

   

𝑎12
𝑎22
⋮
𝑎𝑛2

   

⋯
⋯
⋱
⋯

   

𝑎1𝑛
𝑎2𝑛
⋮
𝑎𝑛𝑛

). 

Based on Equation (3) and Equation (4), 𝐴 is a symmetric matrix. Thus, by following the rules of 

Definition 5 and Definition 6, the elements selected are the main diagonal and the supra-diagonal elements. 

Therefore, the matrix formed is the upper triangular matrix from 𝐴 which is denoted by 𝐴𝑈 as follows:  

𝐴𝑈 = (

𝑎11
0
⋮
0

   

𝑎12
𝑎22
⋯
0

   

⋯
⋯
⋱
⋯

   

𝑎1𝑛
𝑎2𝑛
⋮
𝑎𝑛𝑛

) 

By adding the 𝐴𝑈 with its transpose, we have 
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𝐴𝑈 + 𝐴𝑈
𝑇 = 𝐴 = (

2𝑎11
𝑎21
⋮
𝑎1𝑛

   

𝑎12
2𝑎22
⋮
𝑎2𝑛

   

⋯
⋯
⋱
⋯

   

𝑎1𝑛
𝑎2𝑛
⋮

2𝑎𝑛𝑛

)                             (24) 

From Equation (24) the element of the main diagonal is 2𝑎𝑖𝑗 for 𝑖 = 𝑗 where 𝑖, 𝑗 = 1, 2,···, 𝑛. By 

paying attention to Definition 5 and Equation (6), the main diagonal of 𝐴 acts as a reflection axis, so that 

the diagonal matrix is formed which is denoted by 𝐷𝐴 as follows:  

                                                        𝐷𝐴 = (

𝑎11
0
⋮
0

   

0
𝑎22
⋯
0

   

⋯
⋯
⋱
⋯

   

0
0
⋮
𝑎𝑛𝑛

). 

Equation (24) reduced by 𝐷𝐴 obtained 

(𝐴𝑈 + 𝐴𝑈
𝑇 ) − 𝐷𝐴 = (

𝑎11
𝑎21
⋮
𝑎1𝑛

   

𝑎12
𝑎22
⋮
𝑎2𝑛

   

⋯
⋯
⋱
⋯

   

𝑎1𝑛
𝑎2𝑛
⋮
𝑎𝑛𝑛

) = 𝐴′ 

Consequently, 𝐷𝑛
∗(ℎ)𝑣𝑒𝑐ℎ∗(𝐴) = 𝐷𝑛

∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐴) = 𝑣𝑒𝑐(𝐴′) = 𝑣𝑒𝑐(𝐴𝑈 + 𝐴𝑈
𝑇 − 𝐷𝐴). ∎ 

Theorem 15. Let 𝐴 be an 𝑛 × 𝑛 matrix and 𝐵 be an 𝑚 ×𝑚 matrix. Then 

a. 𝑣𝑒𝑐𝑝∗(𝐴⊗ 𝐵) = 𝐷𝑛𝑚
∗(𝑝)+(𝐼𝑛⊗𝐾𝑚𝑛⊗ 𝐼𝑚)(𝐷𝑛

∗(𝑝)⊗𝐷𝑚
∗(𝑝))(𝑣𝑒𝑐𝑝∗(𝐴) ⊗ 𝑣𝑒𝑐𝑝∗(𝐵)) =

𝐷𝑛𝑚
∗(𝑝)+(𝐼𝑛⊗𝐾𝑚𝑛⊗ 𝐼𝑚)(𝐷𝑛

∗(ℎ)⊗𝐷𝑚
∗(ℎ))(𝑣𝑒𝑐ℎ∗(𝐴) ⊗ 𝑣𝑒𝑐ℎ∗(𝐵)), 

b. 𝑣𝑒𝑐ℎ∗(𝐴⊗ 𝐵) = 𝐷𝑛𝑚
∗(ℎ)+(𝐼𝑛⊗𝐾𝑚𝑛⊗ 𝐼𝑚)(𝐷𝑛

∗(ℎ)⊗𝐷𝑚
∗(ℎ))(𝑣𝑒𝑐ℎ∗(𝐴)⊗ 𝑣𝑒𝑐ℎ∗(𝐵)) =

𝐷𝑛𝑚
∗(ℎ)+(𝐼𝑛⊗𝐾𝑚𝑛⊗ 𝐼𝑚)(𝐷𝑛

∗(𝑝)⊗𝐷𝑚
∗(𝑝))(𝑣𝑒𝑐𝑝∗(𝐴)⊗ 𝑣𝑒𝑐𝑝∗(𝐵)). 

Proof. (a) Based on Theorem 5, we have  

𝑣𝑒𝑐(𝐴 ⊗ 𝐵) = (𝐼𝑛⊗𝐾𝑚𝑛⊗ 𝐼𝑚)(𝑣𝑒𝑐(𝐴) ⊗ 𝑣𝑒𝑐(𝐵))                     (25) 

Analogously, by using Equation (4), we have 

                             𝑣𝑒𝑐𝑝∗(𝐴⊗ 𝐵) = (𝐼𝑛⊗𝐾𝑚𝑛⊗ 𝐼𝑚)(𝑣𝑒𝑐𝑝
∗(𝐴) ⊗ 𝑣𝑒𝑐𝑝∗(𝐵))  

               𝐷𝑛𝑚
∗(𝑝) 𝑣𝑒𝑐𝑝∗(𝐴⊗ 𝐵) = (𝐼𝑛⊗𝐾𝑚𝑛⊗ 𝐼𝑚)(𝐷𝑛

∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐴) ⊗𝐷𝑚
∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐵))  

𝐷𝑛𝑚
∗(𝑝)+ 𝐷𝑛𝑚

∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐴⊗ 𝐵) = 𝐷𝑛𝑚
∗(𝑝)+(𝐼𝑛⊗𝐾𝑚𝑛⊗ 𝐼𝑚)(𝐷𝑛

∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐴) ⊗ 𝐷𝑚
∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐵))  

   𝑣𝑒𝑐𝑝∗(𝐴 ⊗ 𝐵) = 𝐷𝑛𝑚
∗(𝑝)+(𝐼𝑛⊗𝐾𝑚𝑛⊗𝐼𝑚)(𝐷𝑛

∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐴) ⊗𝐷𝑚
∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐵))         (26) 

By using Theorem 5 [1], consider that 

𝑣𝑒𝑐𝑝∗(𝐴⊗ 𝐵) = 𝐷𝑛𝑚
∗(𝑝)+(𝐼𝑛⊗𝐾𝑚𝑛⊗ 𝐼𝑚)(𝐷𝑛

∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐴) ⊗ 𝐷𝑚
∗(𝑝)𝑣𝑒𝑐𝑝∗(𝐵))  

 = 𝐷𝑛𝑚
∗(𝑝)+(𝐼𝑛⊗𝐾𝑚𝑛⊗ 𝐼𝑚)(𝐷𝑛

∗(𝑝)⊗𝐷𝑚
∗(𝑝))(𝐵𝑛

∗(𝑝)𝑣𝑒𝑐ℎ∗(𝐴) ⊗ 𝐵𝑚
∗(𝑝)𝑣𝑒𝑐ℎ∗(𝐵))  

= 𝐷𝑛𝑚
∗(𝑝)+(𝐼𝑛⊗𝐾𝑚𝑛⊗ 𝐼𝑚)(𝐷𝑛

∗(𝑝)⊗𝐷𝑚
∗(𝑝))(𝐵𝑛

∗(𝑝)⊗𝐵𝑚
∗(𝑝))(𝑣𝑒𝑐ℎ∗(𝐴) ⊗ 𝑣𝑒𝑐ℎ∗(𝐵))  

Thus, Equation (26) becomes 

                                                        𝑣𝑒𝑐𝑝∗(𝐴⊗ 𝐵) = 𝑋𝑌                                                         (27) 

where  

𝑋 =  𝐷𝑛𝑚
∗(𝑝)+(𝐼𝑛⊗𝐾𝑚𝑛⊗ 𝐼𝑚) 

𝑌 = (𝐷𝑛
∗(ℎ)⊗𝐷𝑚

∗(ℎ))(𝑣𝑒𝑐ℎ∗(𝐴) ⊗ 𝑣𝑒𝑐ℎ∗(𝐵)) 

 (b) By using Equation (1) and premultiplying both sides by 𝐵𝑛𝑚
∗(𝑝)−1

, Equation (27) becomes 

            𝑣𝑒𝑐ℎ∗(𝐴⊗ 𝐵) = 𝐵𝑛𝑚
∗(𝑝)−1𝑋𝑌                                             (28) 

Based on Corollary 1, we have𝐵𝑛𝑚
∗(𝑝)−1 = 𝐵𝑛𝑚

∗(𝑝)𝑇
 and by using Theorem 11(a) and 9(a), Equation (28) 

becomes  
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𝑣𝑒𝑐ℎ∗(𝐴⊗ 𝐵) = 𝑃𝑄                                                     (29) 

where 

𝑃 = 𝐷𝑛𝑚
∗(ℎ)+(𝐼𝑛⊗𝐾𝑚𝑛⊗ 𝐼𝑚) 

𝑄 = (𝐷𝑛
∗(𝑝)𝐵𝑛

∗(𝑝)⊗𝐷𝑚
∗(𝑝)𝐵𝑚

∗(𝑝))(𝑣𝑒𝑐ℎ∗(𝐴) ⊗ 𝑣𝑒𝑐ℎ∗(𝐵)) 

By using Theorem 5 [1] and Equation (1), Equation (29) becomes  

𝑣𝑒𝑐ℎ∗(𝐴⊗ 𝐵) = 𝐷𝑛𝑚
∗(ℎ)+(𝐼𝑛⊗𝐾𝑚𝑛⊗ 𝐼𝑚)(𝐷𝑛

∗(𝑝)⊗𝐷𝑚
∗(𝑝))(𝑣𝑒𝑐𝑝∗(𝐴) ⊗ 𝑣𝑒𝑐𝑝∗(𝐵)) 

The proof is complete. ∎ 

 

4. CONCLUSIONS 

This article provides the properties of matrices that transform 𝑣𝑒𝑐ℎ∗ to 𝑣𝑒𝑐𝑝∗, 𝑣𝑒𝑐ℎ∗ to 𝑣𝑒𝑐, and 𝑣𝑒𝑐𝑝∗ 
to 𝑣𝑒𝑐, as well as the relationships of each of these matrices. It is suggested for further research is to find the 

relationship between the 𝑣𝑒𝑐ℎ∗ and 𝑣𝑒𝑐𝑝∗ operators in the field of statistics. 
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