NUMERICAL SOLUTION OF THE SEIR MODEL USING THE FOURTH-ORDER RUNGE-KUTTA METHOD TO PREDICT THE SPREAD OF HEPATITIS B DISEASE IN AMBON CITY

Anita Papalia 1, Yopi Andry Lesnussa 2, M. E. Rijoly 3*, Olumuyiwa James Peter 4

1,2,3 Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Pattimura
2,3 Lab. of Applied Mathematics, Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Pattimura
Jln. Ir. M. Putuhena, Poka, Ambon, 97233, Maluku Province, Indonesia

4 Department of Mathematical and Computer Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria

Corresponding author’s e-mail: *engellinomalisa@gmail.com

ABSTRACT

Hepatitis B is a dangerous type of hepatitis and has a high risk of death. This research aims to predict the spread of Hepatitis B in Ambon using the fourth-order Runge-Kutta method. The mathematical model for the spread of Hepatitis B takes the form of a system of differential equations that includes the variables Susceptible (S) namely the subpopulation that is susceptible to infection with the hepatitis B virus, Exposed (E), namely the subpopulation that is exposed to the hepatitis B virus when it comes into contact with the Infected (I) subpopulation, I, namely the subpopulation infected with hepatitis B and Recovered (R), namely the recovered subpopulation. The values b, β_1, β_2, α_1, α_2, α_3, μ_1, and μ_2 are the parameter values used to be solved numerically using the fourth order Runge Kutta method which was carried out in 20 iterations with step size $h=1$ using data from the Maluku Provincial Health Service and the Central Bureau of Statistics from 2013 to 2022. In the research results, it was obtained that subpopulation (S) decreased significantly in the 20th year with a total of 299,239 people, for subpopulation (E) increased in 18th year with a total of 4,309 people, and decreased in 20th year with a total of 4,298 people, for subpopulation (I) subpopulation increased until 20th year with a total of 254 people, and for subpopulation (R) subpopulation increased significantly in 20th year with a total of 10,776 people.

Keywords:
Hepatitis B; Runge-Kutta Method; SEIR Model.
1. INTRODUCTION

To date, there are approximately seven types of hepatitis that have been discovered, namely Hepatitis A, Hepatitis B, Hepatitis C, Hepatitis D, Hepatitis E, Hepatitis G, and Hepatitis TTV (Transmission Transfusion Virus). Hepatitis B itself is an infectious disease caused by the Hepatitis B Virus (VHB) that can lead to hardening of the liver (liver cirrhosis) and can develop into liver cancer (hepatocellular carcinoma). Hepatitis is an infectious disease affecting morbidity, mortality, public health status, life expectancy, and other socioeconomic impacts [1], [2].

Based on the WHO (Word Health Organization) report in 2013, 2 billion people worldwide suffer from hepatitis disease, 240 million people suffer from chronic hepatitis B disease, and 1.46 million of them experience death. The deaths of this disease are comparable to HIV deaths, which is 1.3 million deaths, tuberculosis 1.2 million deaths, and malaria 0.5 million deaths. However, hepatitis has not received serious attention like these three diseases [3]. One way to analyze the spread of viral hepatitis is through mathematical models. A mathematical model is a representation that uses mathematical symbols to study certain real-world systems or phenomena. Mathematical models can be of various kinds: equations, inequalities, and systems of linear and non-linear equations [4].

Previous research on the spread of Hepatitis B has been conducted, such as determining the numerical solution of the mathematical model of Hepatitis B disease in South Sulawesi Province using the fourth-order Runge-Kutta method with the SEIV (Susceptible Exposed Infected Vaccinated) model [5]. Furthermore, research on mathematical models for Hepatitis B disease using the SLAICRV (Susceptible, Latent, Acute Infections, Carrier, Recovered, and Vaccinated) model [6]. There is also research on the numerical solution of the SIR model on the spread of Hepatitis B disease with the Homotopy Perturbation Method [7]. These studies related to the spread of Hepatitis B. In addition, these studies used different methods, case studies, and data used are also different. In these studies, a fairly good numerical solution to the mathematical model of the spread of Hepatitis B disease was obtained.

The SIR model was first developed to determine the rate of spread and extinction of a disease outbreak in a closed and epidemic population. SEIR mathematical modeling is a development of the SIR Model. SIR and SEIR mathematical modeling can be used to detect and predict the spread of disease. Previous research related to the SIR and SEIR models has been carried out, such as analyzing the dynamics of the spread of COVID-19 with vaccination factors using the Fehlberg Runge-Kutta Method [8]. and research to model the spread of Tuberculosis disease [9]. In the research to analyze the stability of the Hepatitis A disease spread model [10], the SIR and SEIR models can model various diseases and obtain good results.

Based on the above considerations and considering previous research in Ambon City [11], this research was conducted to find numerical solutions to the spread of the Hepatitis B disease in Ambon City using the SEIR mathematical model. In particular, research on the numerical solution of the SEIR model for spreading Hepatitis B disease using the fourth-order Runge-Kutta method in Ambon City has never been done. Therefore, this research is fundamental to predicting the spread of Hepatitis B disease in the following years.

2. RESEARCH METHODS

This research uses a numerical data process to solve problems by first compiling concepts as needed regarding the SEIR model using the fourth-order Runge-Kutta method in the form of a system of differential equations. This study's secondary data source is from the Maluku Provincial Health Office and the Central Bureau of Statistics of Ambon City in 2017 - 2021. Researchers simulated the number of people with Hepatitis B disease in Ambon City. The research steps are as follows [12]:

1. Collecting and processing data
2. Constructing the SEIR model.
4. Numerical simulation using Matlab software

We are concluding the numerical solution of the SEIR model using fourth-order Runge-Kutta.
3. RESULTS AND DISCUSSION

3.1 Mathematical Model of Hepatitis B Disease Spread

The SEIR model of Hepatitis B disease spread described in this study consists of 4 subpopulation variables with the following assumptions:

a. Closed population
b. Susceptible sub populations (S) are susceptible individuals. Susceptible subpopulation (S) increases due to human births.
c. Exposed sub populations (E) are exposed individuals. An individual is declared Exposed (E) if there is contact between a susceptible individual and an infected individual.
d. Infected sub population (I) is an infected individual. An individual is declared Infected (I) if there is contact between an exposed individual and an infected individual.
e. The Recovered subpopulation (R) is the recovered individuals. Infected individuals (I) can become a Recovered (R) because they have received medical treatment.
f. Susceptible subpopulations (S) can become Infected individuals (I) due to sexual contact, shared syringe use, and mother-to-child (pregnant women).
g. Exposed subpopulation (E) can become Recovered (R) due to strong immunity and treatment when individuals show symptoms.
h. The Recovered subpopulation (R) subpopulation will not revert to Susceptible (S) because they have a high body capacity.

Based on these assumptions, the spread of Hepatitis B disease is schematically presented in a compartment chart, as shown in Figure 1.

Based on the compartment chart above, a Mathematical Model of the spread of Hepatitis B disease is formed, written in the form of differential equations as Equation (1) - Equation (4).

\[
\frac{dS}{dt} = b - (\alpha_1 + \beta_2 + \mu_1)S \\
\frac{dE}{dt} = \alpha_1S - (\alpha_2 + \beta_1 + \mu_1)E \\
\frac{dI}{dt} = \beta_2S + \alpha_2E - (\alpha_3 + \mu_1 + \mu_2)I \\
\frac{dR}{dt} = \mu_2I
\]
\[
\frac{dR}{dt} = \beta_4 E + \alpha_3 I - \mu_4 R
\]
(4)

with:

\[
\begin{align*}
S &= \text{Number of vulnerable subpopulations} \\
E &= \text{Number of exposed subpopulations} \\
I &= \text{Number of infected subpopulations} \\
R &= \text{Number of recovered subpopulations} \\
b &= \text{Birth rate} \\
\beta_1 &= \text{The recovery rate from individual E to individual R} \\
\beta_2 &= \text{Transmission rate from individual S to individual I} \\
\alpha_1 &= \text{Transmission rate from individual S to individual E} \\
\alpha_2 &= \text{Transmission rate from individual E to individual I} \\
\alpha_3 &= \text{The recovery rate from individual I to individual R} \\
\mu_1 &= \text{Natural mortality rate} \\
\mu_2 &= \text{Hepatitis B disease mortality rate}
\end{align*}
\]

3.2 Solving the SEIR Model using the Fourth Order Runge-Kutta Method

The Fourth Order Runge-Kutta Method provides high accuracy for solving ODEs. It is a fourth-order method, meaning the error per step is on the order of \(O(h^5)\) where \(h\) is the step size. This high accuracy allows for reliable and precise solutions. The Fourth Order Runge-Kutta Method is known for its numerical stability. It is suitable for solving stiff differential equations where other methods might fail or require extremely small step sizes. Based on the System of Equations in Equations (1) to (4), it is solved using the fourth-order Runge-Kutta method like in this equation, \(y_{k+1} = y_k + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)\). The Hepatitis B disease spread model to be solved is already a system of equations, so there is no need to change it. The system of equations consisting of Equation (1)-Equation (4) is substituted into the fourth-order Runge-Kutta equation to obtain Equation (5)-Equation (8).

\[
\begin{align*}
S_{0+1} &= S_0 + \frac{1}{6}(f_{1S} + 2f_{2S} + 2f_{3S} + f_{4S}) \\
E_{0+1} &= E_0 + \frac{1}{6}(f_{1E} + 2f_{2E} + 2f_{3E} + f_{4E}) \\
I_{0+1} &= I_0 + \frac{1}{6}(f_{1I} + 2f_{2I} + 2f_{3I} + f_{4I}) \\
R_{0+1} &= R_0 + \frac{1}{6}(f_{1R} + 2f_{2R} + 2f_{3R} + f_{4R})
\end{align*}
\]

with:

\[
\begin{align*}
&f_{1S} = b - (\alpha_1 + \beta_2 + \mu_1)S_i \\
&f_{1E} = \alpha_1 S_i - (\alpha_2 + \beta_1 + \mu_1)E_i \\
&f_{1I} = \beta_2 S_i + \alpha_2 E_i - (\alpha_3 + \mu_1 + \mu_2) I_i \\
&f_{1R} = \beta_1 E_i + \alpha_3 I_i - \mu_1 R_i \\
&f_{2S} = b - (\alpha_1 + \beta_2 + \mu_1) \left(S_i + \frac{h}{2} f_{1S} \right) \\
&f_{2E} = \alpha_1 \left(S_i + \frac{h}{2} f_{1S} \right) - (\alpha_2 + \beta_1 + \mu_1) \left(E_i + \frac{h}{2} f_{1E} \right) \\
&f_{2I} = \beta_2 \left(S_i + \frac{h}{2} f_{1I} \right) + \alpha_2 \left(E_i + \frac{h}{2} f_{1E} \right) - (\alpha_3 + \mu_1 + \mu_2) \left(I_i + \frac{h}{2} f_{1I} \right) \\
&f_{2R} = \beta_1 \left(E_i + \frac{h}{2} f_{1E} \right) + \alpha_3 \left(I_i + \frac{h}{2} f_{1I} \right) - \mu_1 \left(R_i + \frac{h}{2} f_{1R} \right) \\
&f_{3S} = b - (\alpha_1 + \beta_2 + \mu_1) \left(S_i + \frac{h}{2} f_{2S} \right) \\
&f_{3E} = \alpha_1 \left(S_i + \frac{h}{2} f_{2S} \right) - (\alpha_2 + \beta_1 + \mu_1) \left(E_i + \frac{h}{2} f_{2E} \right) \\
&f_{3I} = \beta_2 \left(S_i + \frac{h}{2} f_{2I} \right) + \alpha_2 \left(E_i + \frac{h}{2} f_{2E} \right) - (\alpha_3 + \mu_1 + \mu_2) \left(I_i + \frac{h}{2} f_{2I} \right)
\end{align*}
\]
3.3 Numerical Model Simulation using the Fourth Order Runge-Kutta Method.

The SEIR model was simulated using the fourth-order Runge-Kutta method. This simulation was done by substituting the initial value in the form of secondary data and parameter values that have been determined. The following data used in the simulation is presented in the form of the following Table 1.

Table 1. Hepatitis B disease distribution data

<table>
<thead>
<tr>
<th>Year</th>
<th>N</th>
<th>S</th>
<th>E</th>
<th>I</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>444.797</td>
<td>444.225</td>
<td>536</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>2018</td>
<td>443.055</td>
<td>442.335</td>
<td>642</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>2019</td>
<td>478.616</td>
<td>477.972</td>
<td>592</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>2020</td>
<td>347.288</td>
<td>346.434</td>
<td>768</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>2021</td>
<td>347.644</td>
<td>346.599</td>
<td>927</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>Total</td>
<td>2,061.400</td>
<td>2,057.565</td>
<td>3,465</td>
<td>185</td>
<td>185</td>
</tr>
<tr>
<td>Average</td>
<td>412.280</td>
<td>411.513</td>
<td>693</td>
<td>37</td>
<td>37</td>
</tr>
</tbody>
</table>

(Source: Central Bureau of Statistics of Ambon City and Maluku Provincial Health Office) [13], [14], [15], [16], [17]

Based on data obtained at the Central Bureau of Statistics of Ambon City and the Maluku Provincial Health Office in 2017-2021, it is known that the average subpopulation S (Susceptible) is 411.513 people, subpopulation E (Exposed) is 693 people, subpopulation I (Infected) is 37 people and subpopulation R (Recovered) is 37 people. Therefore, the initial value is obtained as in Table 2.

Table 2. Initial value

<table>
<thead>
<tr>
<th>Variables</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_i</td>
<td>411.513</td>
<td>Data on the average number of human subpopulations susceptible to Hepatitis B disease at the Central Bureau of Statistics of Ambon City</td>
</tr>
<tr>
<td>E_i</td>
<td>693</td>
<td>Average data on the number of human subpopulations exposed to Hepatitis B disease at the Maluku Provincial Health Office</td>
</tr>
<tr>
<td>I_i</td>
<td>37</td>
<td>Average data on the number of human subpopulations that have been infected with Hepatitis B disease at the Maluku Provincial Health Office</td>
</tr>
<tr>
<td>R_i</td>
<td>37</td>
<td>Data on the average number of human subpopulations that recovered after being infected with Hepatitis B disease at the Maluku Provincial Health Office</td>
</tr>
</tbody>
</table>

The birth rate can be calculated based on the baby birth rate of Ambon City 2021. According to data from the Central Bureau of Statistics of Ambon City in 2021, the number of infants born was 5,293. Thus, the birth rate is [18]

$$b = \frac{\text{Number of infant births}}{\text{Resident Population}}$$

$$= \frac{5,293}{412.280} = 0.01284$$
The natural death rate of individuals can be calculated based on the life expectancy of the people of Ambon City. According to data from the Central Bureau of Statistics of Ambon City in 2021, the life expectancy of Ambon City is 70.63 years [19]. Thus, the natural death rate of individuals in Ambon City is [20]:

\[\mu_1 = \frac{1}{\text{life expectancy rate}} = \frac{1}{70.63 \text{ years}} = 0.01416 \text{ year} \]

Meanwhile, the death rate due to Hepatitis B infection is calculated based on data on patients who died from Hepatitis B infection. Based on the data obtained, it is known that the number of patients who died from Hepatitis B infection is 0 per year. Thus, the individual death rate in Ambon City due to Hepatitis B infection is:

\[\mu_2 = \frac{\text{Number of patients who died of infection}}{\text{average number of infected patients}} = \frac{0}{37} = 0.00000 \]

From the data in Table 1 and Table 2, it can be obtained the parameter values of \(\beta_1, \beta_2, \alpha_1, \alpha_2, \) and \(\alpha_3 \) as follows:

\[
\begin{align*}
\beta_1(t) &= \frac{R}{E} = \frac{37}{693} &= 0.05339 \\
\beta_2(t) &= \frac{E}{I} = \frac{693}{37} &= 0.00009 \\
\alpha_1(t) &= \frac{N}{E} = \frac{412,280}{37} &= 0.00168 \\
\alpha_2(t) &= \frac{N}{I} = \frac{412,280}{37} &= 0.05339 \\
\alpha_3(t) &= \frac{R}{I} = \frac{693}{37} &= 1
\end{align*}
\]

The parameter values are then presented in Table 3 below.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>Individual birth rate</td>
<td>0.01284</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>The recovery rate of individual (E) to the individual (R)</td>
<td>0.05339</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>The transmission rate of individual (S) to the individual (I)</td>
<td>0.00009</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>The transmission rate of individual (S) to the individual (E)</td>
<td>0.00168</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>The transmission rate of individual (E) to the individual (I)</td>
<td>0.05339</td>
</tr>
<tr>
<td>(\alpha_3)</td>
<td>The recovery rate of individual (I) to the individual (R)</td>
<td>1</td>
</tr>
<tr>
<td>(\mu_1)</td>
<td>The natural mortality rate of individuals</td>
<td>0.01416</td>
</tr>
<tr>
<td>(\mu_2)</td>
<td>Hepatitis B disease mortality rate</td>
<td>0</td>
</tr>
</tbody>
</table>

The total human population \((N) \) in Ambon City in 2017-2021 is 2,061,400 people (Central Bureau of Statistics). The simulation was carried out by substituting the initial values and parameter values in Table 2 and Table 3 into Equation (5) - Equation (8), which are numerical solutions to the Hepatitis B disease model using the fourth-order Runge-Kutta method and will then be simulated using the Matlab application.

The step size used was \(h = 1 \). Furthermore, given \(S_i = S_0, E_i = E_0, I_i = I_0, R_i = R_0 \) as the initial value that the numerical solution results of the Hepatitis B disease model using the fourth-order Runge-Kutta method as in Equation (5) to Equation (8) are obtained. Then, by substituting the value of \(f_{3S} \) to \(f_{3S}, f_{3E} \) to \(f_{4E}, f_{4I} \) until \(f_{4I}, \) and \(f_{4R} \) into Equation (5) - Equation (8), the numerical solution of the Hepatitis B disease spread model using the Fourth Order Runge-Kutta method is obtained as follows:
\[
\begin{align*}
S_{0+1} &= S_0 + \frac{1}{6}(f_{1S} + 2f_{2S} + 2f_{3S} + f_{4S}) \\
S_1 &= 411.513 + \frac{1}{6}(-6,555.38925 + 2(-6,503.17557) + 2(-6,503.59146) - (6,451.78704) \\
S_1 &= 405.00954827 \\
E_{0+1} &= E_0 + \frac{1}{6}(f_{1E} + 2f_{2E} + 2f_{3E} + f_{4E}) \\
E_1 &= 693 + \frac{1}{6}(607.53042 + 2(571.30338) + 2 (573.46360) + 539.13915) \\
E_1 &= 1,265.70059 \\
I_{0+1} &= I_0 + \frac{1}{6}(f_{1I} + 2f_{2I} + 2f_{3I} + f_{4I}) \\
I_1 &= 37 + \frac{1}{6}(36.51152 + 2 (18.97358) + 2 (27.39775) + 10.19105) \\
I_1 &= 60.24087 \\
R_{0+1} &= R_0 + \frac{1}{6}(f_{1R} + 2f_{2R} + 2f_{3R} + f_{4R}) \\
R_1 &= 37 + \frac{1}{6}(73.47535 + 2(111.65424) + 2(131.49257) + 210.12637) \\
R_1 &= 165.31589
\end{align*}
\]

time \(t = 1 \) year was obtained \((S) = 405.009, (E) = 1.266, (I) = 60\) and \((R) = 165\). Then, the same thing was done for the next iteration with \(S_1, E_1, I_1, R_1\) where \(t = 1, 2, 3, \ldots\), so forth, as the initial value.

The iteration of the numerical solution of the Hepatitis B disease spread model used the Fourth Order Runge-Kutta method up to \(t = 20\) years using Matlab Software. The iteration results for the number of vulnerable individual classes \((S)\) are shown in the graph in Figure 2.

![Figure 2. Graph of the number of susceptible individual classes (S)](image)

Based on Figure 2, it can be seen that the prediction of the number of susceptible individual classes \((S)\) decreased significantly in 20th year, with a total of 299,239 people. Furthermore, the iteration results for the number of exposed individual classes \((E)\) are shown in Figure 3.
Based on Figure 3, it can be seen that the prediction of the number of exposed individual classes (E) has increased in 18th year with a total of 4,309 people and has decreased in 20th year with a total of 4,298 people. Furthermore, the iteration results for the number of infected individual classes (I) are shown in Figure 4.

Based on Figure 4, it can be seen that the prediction of the number of infected individual classes (I) has increased in the 20th year with 254 people. Furthermore, the iteration results for the number of recovered individuals (R) are shown in Figure 5.

Based on Figure 5, it can be seen that the prediction of the number of recovered individual classes (R) has increased significantly in 20th year with a total of 10,776 people. Furthermore, the results of iteration $t = 1$ to $t = 20$ are displayed in Table 4.
Table 4. Calculation results using Matlab software

<table>
<thead>
<tr>
<th>Time (t)</th>
<th>Sub Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>S</td>
</tr>
<tr>
<td>0</td>
<td>411,513</td>
</tr>
<tr>
<td>1</td>
<td>405,009</td>
</tr>
<tr>
<td>2</td>
<td>398,609</td>
</tr>
<tr>
<td>3</td>
<td>392,309</td>
</tr>
<tr>
<td>4</td>
<td>386,109</td>
</tr>
<tr>
<td>5</td>
<td>380,007</td>
</tr>
<tr>
<td>6</td>
<td>374,002</td>
</tr>
<tr>
<td>7</td>
<td>368,091</td>
</tr>
<tr>
<td>8</td>
<td>362,274</td>
</tr>
<tr>
<td>9</td>
<td>356,549</td>
</tr>
<tr>
<td>10</td>
<td>350,914</td>
</tr>
<tr>
<td>11</td>
<td>345,368</td>
</tr>
<tr>
<td>12</td>
<td>339,910</td>
</tr>
<tr>
<td>13</td>
<td>334,538</td>
</tr>
<tr>
<td>14</td>
<td>329,251</td>
</tr>
<tr>
<td>15</td>
<td>324,048</td>
</tr>
<tr>
<td>16</td>
<td>318,927</td>
</tr>
<tr>
<td>17</td>
<td>313,886</td>
</tr>
<tr>
<td>18</td>
<td>308,926</td>
</tr>
<tr>
<td>19</td>
<td>304,044</td>
</tr>
<tr>
<td>20</td>
<td>299,239</td>
</tr>
</tbody>
</table>

Based on Table 4, we can see that the predicted rate of susceptible individuals classes (S) decreased every year, and in 20th year, with a total 299,239 people, the predicted rate of exposed individuals classes (E), infected individuals classes (I), and recovered individuals classes (R) are increased every year except exposed individuals classes has decreased in 20th year.

4. CONCLUSION

The subpopulation of susceptible individuals (S) saw a significant decrease until the 20th year of 299,239 people, the subpopulation of exposed individuals (E) saw an increase in the 18th year of 4,309 people and a decrease in the 20th year of 4,298 people, the subpopulation of infected individuals (I) saw an increase until the 20th year of 254 people, and the subpopulation of recovered individuals (R) saw a significant increase until the 20th year of 10,776 people. These predictions were made using Matlab software.

REFERENCES

