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ABSTRACT 

Article History: 
Measles is an infectious disease that often occurs in children and is caused by the measles 

virus (morbillivirus) which can cause death. Thus, it is important to identify the factors 

that cause measles. The number of measles cases is used as response variable in the form 

discrete data so that Poisson Regression is commonly used. However, some assumptions 

are sometimes not met, such as overdispersion and excess zero so that can use Zero 

Inflated Poisson Regression to meet these assumptions. Because the model can overcome 

two common characteristics that are often found in count data, which are excess zero and 

overdispersion. The purpose of this study was to determine the factors that influence the 

number of measles cases in East Java. The data in the study used secondary data obtained 

from the Central Statistics Agency (BPS). The predictor variables used were the number 

of population, percentage of vaccination, percentage of poor people, and percentage of 

adequate sanitation. The results showed that the data is overdispersed because the 

variance is greater than the mean. There were four predictor variables, The 𝑝-value of the 

total population variable is <0.01, the percentage of vaccinations is 0.914, the percentage 

of poor people <0.01 and the percentage of proper sanitation is 0.014 so it can be 

concluded that the percentage of vaccinations has no effect on the number of measles cases 

and the other three variables affect the number of measles cases in East Java. The best 

model of affect the number of measles cases in East Java is Zero Inflated Poisson with AIC 

value 326.24. The ZIP model for measles case in East Java is 𝜇�̂� = exp(−11.91 +
2.9753𝑋1 − 0.08𝑋3 − 0.0223𝑋4).. 
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1. INTRODUCTION  

Measles is an infectious disease that often occurs in children and is caused by the measles virus 

(morbillivirus) which can lead to death [1]. According to the WHO, measles can be prevented by vaccination, 

measles vaccination can prevent 57 million deaths between 2000 and 2022 which can reduce the estimated 

deaths from measles from 761,000 in 2000 to 136,000 in 2022 [2]. However, according to Indonesia’s health 

profile in 2022, the number of suspected measles case in Indonesia was 21,175 case, which occurred in all 

provinces in Indonesia [3]. Measles positive cases also spread in almost all provinces except Central 

Kalimantan and Maluku [4]. In Indonesia, the high incidence of measles is caused by several factors that are 

often referred to as measles risk factors. Some of the risk factors for measles include individual-related, 

demographic, economic, social, and health factors. 

This research will focus on the number of measles cases in East Java. One of the main reasons for 

choosing East Java was due to the high prevalence of measles cases in certain areas while there were no cases 

in other areas, which can cause overdispersion in the data. Apart from being an area with a large number of 

measles problems in 2021, East Java is also an island with a dense population in Indonesia. The data used in 

this study was secondary data derived from the East Java Provincial Health Profile and the Central Statistics 

Agency (BPS). The data was only for 2021 due to incomplete data. Therefore, this study was conducted in 

38 cities and districts in East Java. 

The number of measles cases was a common count data using the Poisson regression method in its 

analysis. In Poisson regression, it is necessary to assume the existence of equidispersion conditions where the 

variance and mean values are the same, this rarely happens because of the emergence of Over dispersion 

which occurs due to several things, namely, the violation of Poisson conditions, namely the variance value is 

greater than the mean, the presence of excess zeros, and the presence of outliers in the data [5]. Therefore, 

Poisson regression is not suitable for modeling the data. There are several methods to analyze data with 

overdispersion problems in Poisson regression, including generalized Poisson regression, zero inflated 

Poisson regression, zero inflated negative binomial, and zero inflated Poisson regression.  

Zero inflated Poisson regression is used to model count data that has an excess of zero counts. Further, 

theory suggests that the excess zeros are generated by a separate process from the count values and that the 

excess zeros can be modeled independently.  Thus, the zero inflated Poisson model has two parts, a Poisson 

count model and the logit model for predicting excess zeros. Several studies that discuss various factors 

affecting the number of measles cases have been conducted such as those conducted by [6] using the 

generalized Poisson regression (GPR) approach, the results showed that the GPR model is better than the 

Poisson model, and the human development index and the percentage of working people in the labor force 

have a significant effect on the number of unemployment. Research conducted by [7] using the hurdle 

negative binomial regression approach, the results showed that in the first part with the logit model the variable 

that affected the discovery or not of measles was the variable of giving vitamin A. In the second part, the log model 

showed that each addition of one case of undernourished children under five will increase the number of measles 

cases by 1,0004 times. Research conducted by [8] using the zero inflated negative binomial regression 

approach, the results of the analysis show that in the ZINB regression, the factors that have a significant effect 

on the expected value of measles cases in West Java Province in 2020 are the percentage of vitamin A 

administration, the percentage of exclusive breastfeeding and the percentage of malnourished children under 

five. Meanwhile, factors that have a significant effect on the chance of measles in West Java Province in 2020 

are the percentage of malnourished toddlers. This is used as a comparison in determining the factors that 

affect the number of measles cases in East Java Province in 2021. The novelty of this research is the 

application of zero inflated Poisson regression using maximum likelihood estimation and then comparing the 

two models with new data, namely measles data in East Java province in 2021. 

2. RESEARCH METHODS 

2.1 Materials and Data 

The data used in this study consists of 38 districts and cities in East Java Province in 2021 and data 

published by the Central Statistics Agency (BPS) in 2021. The data used was secondary data from the East 

Java Provincial Health Profile in 2021. This study used district and city data in East Java Province. The 

response variable in this study was the number of measles cases (𝑌), while the predictor variables are 
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population (𝑋1), percentage of vaccinations (𝑋2), percentage of poor people (𝑋3), and percentage of proper 

sanitation (𝑋4). 

2.2 Non-Multicollinearity 

Non-Multicollinearity Assumption is a test to determine whether the regression model has a correlation 

between the independent variables [9]. A regression model is said to be good if it is free from multicollinearity 

problems or there is no correlation between the independent variables. Multicollinearity occurs when there is 

a high correlation between several predictor variables of a multiple linear regression model. Multicollinearity 

can be detected through the variance inflation factor (VIF), Pearson correlation, or by looking at the 

eigenvalue and condition index (CI) [10]. In this study, multicollinearity detection using VIF was used. In 

regression with more than two predictor variables, VIF can be calculated using the formula: 

𝑉𝐼𝐹 =
1

(1 − 𝑅𝑗
2)

(1) 

 

Where j is the predictor variable index and 𝑅𝑗
2 = 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
=

𝑆𝑆𝑅

𝑆𝑆𝑇
=

∑ (�̂�𝑖−�̅�)
2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)
2𝑛

𝑖=1

 the coefficient of determination 

in the regression model with 𝑗 predictor variables and the other is the response variable in the model. 

2.3 Overdispersion 

Overdispersion is a condition that occurs when the variance is greater than the mean, this is a violation 

of the assumptions on the Poisson distribution [11]. The formula for detecting overdispersion is as follows 

[12]. 

𝜙 =
𝜒𝑝
2

𝑛 − 𝑝 − 1
with 𝜒𝑝

2 =∑
(𝑦𝑖 − �̂�𝑖)

2

𝑣𝑎𝑟(�̂�𝑖)

𝑛

𝑖=1
(2) 

 

Where 𝑦𝑖 denotes the response variable of the 𝑖-th observation, 𝑛 the number of observations, 𝑝 the 

number of explanatory variables, �̂�𝑖 the mean estimate of the 𝑖-th response, and 𝑣𝑎𝑟(�̂�𝑖) the variance estimate 

of the 𝑖-th response. 

If the Pearson's Chi-squared test statistic divided by the independent degree is more than 1, then the 

data has over dispersion [13].    

2.4 Homogeneity 

Whether or not the assumptions are met can be tested with the Breusch Pagan Test using the following 

hypothesis. 

𝐻0: 𝑣𝑎𝑟(𝑢|𝑋) = 𝐸(𝑢
2|𝑋) = 𝜎2  

𝐸(𝑢2|𝑋) represents the variance, if there is a violation of the assumption, then there is a relationship between 

𝑢2 the predictor variables. One form of relationship between 𝑢2 and predictor variables that can be assumed 

is 

𝑢𝑖
2 = 𝛿1 + 𝛿2𝑋2𝑖 +⋯+ 𝛿𝑘𝑋𝑘𝑖 + 𝑣𝑖 (3) 

 

If 𝑢2 is on average independent of the predictor variable, then the hypothesis is equivalent to 

𝐻0: 𝛿2 = 𝛿3 = ⋯ = 𝛿𝑘 = 0  

𝐻1: There is at least one 𝛿𝑗 ≠ 0, 𝑗 = 2,3, … , 𝑘 

 

Using the Breusch-Pagan test statistic as follows. 

𝐵 =
1

2
𝑓𝑇𝒁(𝒁𝑻𝒁)

−1
𝒁𝑻𝑓 (4) 

 

Decision rules: 

𝐻0 is rejected if 𝐵 > 𝜒(𝑎,𝑝)
2  or 𝑝-value < 𝛼 where 𝑝 is the number of predictor variables. 
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2.5 Zero Inflated Poisson Regression 

According to Lambert in [14], the ZIP regression method is a combined method of discrete-valued data 

with many zero values in the response variable. According to Jansakul & Hindie in [15], if 𝑌𝑖  is an 

independent random variable with ZIP distribution, the zero value of the observation is expected to occur in 

two ways corresponding to separate states. The first state is called the zero-state which occurs with probability 

ω and produces zero-valued observations, while the second state is called the Poisson state which occurs with 

probability (1 − 𝜔). According to [14] the ZIP distribution function is as follows 

𝑃(𝑌 = 𝑦𝑖) = {

𝜔𝑖 + (1 − 𝜔𝑖)𝑒
−𝜇𝑖 , 𝑦𝑖 = 0

(1 − 𝜔𝑖)𝑒𝑖
−𝜇
𝜇𝑖𝑖
𝑦

𝑦𝑖!
, 𝑦𝑖 > 0

(5) 

 

With 𝑌𝑖~𝑍𝐼𝑃(𝜇, 𝜔) and to model 𝜔 generally using a logit model, i.e.  

𝜔 = exp
𝒙𝒊
𝑻𝜸

1 + exp(𝒙𝒊
𝑻𝜸)

𝜇 = exp 𝒙𝒊
𝑻𝜷 (6) 

 

Where 𝒙𝒊 is the 𝑖-th explanatory variable matrix 𝜷 and 𝜸 is the regression parameter to be estimated. The 

relationship model of 𝜇 and 𝜔 is as follows  

𝜔 ln(𝜇) =𝑿𝑖
𝑇𝜷 and 𝑙𝑜𝑔𝑖𝑡 (𝜔) = ln (

𝜔

1 − 𝜔
) = 𝑿𝑖

𝑇𝜸 (7) 

 

where 𝑿 is the matrix of explanatory variables, 𝜷 and 𝜸 are (𝑝 + 1) × 1 and (𝑞 + 1) × 1 matrices of 

parameters to be estimated and 𝜔 is the probability at zero state. According to Jansakul & Hinde in [16], the 

mean and variance of ZIP regression are as follows [16]. 

𝐸(𝑌𝑖) =  𝜇𝑖  and 𝑉𝑎𝑟(𝑌𝑖) =  𝜇𝑖 +
𝜔

(1 − 𝜔)
𝜇𝑖
2 (8) 

 

From the equation above, it can be seen that the distribution of 𝑌𝑖 experiences overdispersion if 𝜔 > 0, 

because the variance value is greater than the average value. 

2.6 Parameter Estimate 

The estimation of ZIP regression parameters is done using the Maximum Likelihood method 

Estimation (MLE) method. The MLE method is one of the parameter estimation methods that can be used to 

estimate model parameters with known distributions. 

Equation (6) is substituted into Equation (5) to obtain the following model. 

𝑃(𝑌 = 𝑦𝑖) =

{
 
 

 
 exp

𝑥𝑖
𝑇𝛾

1 + exp(𝑥𝑖
𝑇𝛾)

+ (1 − exp
𝑥𝑖
𝑇𝛾

1 + exp(𝑥𝑖
𝑇𝛾)

) 𝑒−exp𝑥𝑖
𝑇𝛽 , 𝑦𝑖 = 0

(1 − exp
𝑥𝑖
𝑇𝛾

1 + exp(𝑥𝑖
𝑇𝛾)

) 𝑒𝑖
− exp𝑥𝑖

𝑇𝛽
exp 𝑥𝑖

𝑇𝛽𝑖
𝑦

𝑦𝑖!
, 𝑦𝑖 > 0

(9) 

 

From Equation (5), by multiplying all the probability functions of 𝑌𝑖 so that the ZIP likelihood function 

is obtained as follows. 

𝐿(𝛽, 𝛾|𝑦𝑖) =∏ 𝑃(𝑦𝑖; 𝛽, 𝛾)
𝑛

𝑖=1
 

𝐿(𝛽, 𝛾|𝑦𝑖) =

{
  
 

  
 
∏ [

exp 𝑥𝑖
𝑇𝛾 + exp (−𝑒𝑥𝑖

𝑇𝛽)

1 + 𝑒𝑥𝑖
𝑇𝛾

]
𝑛

𝑖=1
, 𝑦𝑖 = 0

∏
exp (−𝑒𝑥𝑖

𝑇𝛽) (𝑒𝑥𝑖
𝑇𝛽)

𝑦𝑖

(1 + 𝑒𝑥𝑖
𝑇𝛾) 𝑦𝑖!

𝑛

𝑖=1
, 𝑦𝑖 > 0

(10) 
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Furthermore, from Equation (6), the equation 𝑙𝑛 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 is obtained: 

 

For 𝑦𝑖 = 0, function of ln 𝐿(𝛽, 𝛾|𝑦𝑖) is obtained as follows. 

ln 𝐿(𝛽, 𝛾|𝑦𝑖) =∑ ln (exp 𝑥𝑖
𝑇𝛾 + exp (−𝑒𝑥𝑖

𝑇𝛽))
𝑛

𝑖=1
−∑ ln (1 + 𝑒𝑥𝑖

𝑇𝛾)
𝑛

𝑖=1
(11) 

 

For 𝑦𝑖 > 0, function of ln 𝐿(𝛽, 𝛾|𝑦𝑖) is obtained as follows. 

ln 𝐿(𝛽, 𝛾|𝑦𝑖) =∑ (exp 𝑥𝑖
𝑇𝛽)𝑦𝑖 − 𝑒

𝑥𝑖
𝑇𝛽 −∑ ln(1 + exp 𝑥𝑖

𝑇𝛾)
𝑛

𝑖=1
 −∑ ln𝑦𝑖!

𝑛

𝑖=1

𝑛

𝑖=1
(12) 

 

The summation of the 𝑙𝑛 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 functions in Equation (11) and Equation (12) will complicate 

the calculation because it is not known which zero value comes from the zero state and which zero value 

comes from the zero state. calculation because it is not known which zero value comes from the zero state 

and which comes from the Poisson state. Poisson state, the 𝑙𝑛 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑜𝑑 function cannot be solved using 

ordinary numerical methods. using ordinary numerical methods.   

To maximize the 𝑙𝑛 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 function in Equation (11) and Equation (12) then using the EM 

(Expectation Maximization) algorithm. 

Suppose variable Y is related to indicator variable Z, namely. 

𝑍 = {
1, if 𝑦𝑖  comes from zero state
0, if 𝑦𝑖  comes from poisson state

 

 

Where Z is a random discrete variable in function distribution with data information missing value.  

The problem is that if the value of the response variable 𝑦𝑖 = 1,2,3, …, then the value of 𝑧𝑖 = 0. 

Conversely, if the value of the response variable is 𝑦𝑖 = 0, then 𝑧𝑖 may be 0 or may be 1. Therefore, the value 

of 𝑧𝑖 is considered missing. To overcome this problem, parameter estimation is performed using the EM 

algorithm. 

2.7 Model Significance Testing 

For testing significant model use test statistic 𝐺2 which is maximum likelihood ratio test statistic with 

the following hypotheses. 

𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑗 , 𝑗 = 1,2, … ,4   

𝐻1: there is at least one 𝛽𝑗 ≠ 0, 𝑗 = 1,2, … ,4 

 

The test statistic used is the 𝐺2 statistic: 

𝐺2 = −2 ln (
𝐿0
𝐿1
)~𝜒𝑘

2 (13) 

 

Where  𝐿0 is likelihood model without predictor variable, 𝐿1 is likelihood with predictor variable. The 

test criteria for the 𝐺2 statistic reject 𝐻0 if test statistic 𝐺2 > 𝜒(𝑎,𝑘)
2 , 𝑘 is number of predictor variable. 

2.8 Parameter Significance Testing    

This test aims to see the significance of the regression coefficient parameters from each of the Zero 

Inflated Poisson regression parameters as follows:  

1. For Poisson State  

𝐻0: 𝛽𝑗 = 0 (The 𝑗-th predictor variable has no significant effect on the response variable)  

𝐻0: 𝛽𝑗 ≠ 0 (The 𝑗-th predictor variable has a significant effect on the response variable)  

 

2. For Zero State  
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𝐻0: 𝛾𝑗 = 0 (The 𝑗-th predictor variable has no significant effect on the probability that the response 

variable is zero)  

𝐻0: 𝛾𝑗 ≠ 0 (The 𝑗-th predictor variable has a significant effect on the probability of the response 

variable being zero).  

The test statistic used is the Wald test statistic: 

𝑊𝑗 = (
�̂�𝑗

𝑆𝐸(�̂�𝑗)
) or 𝑊𝑗 = (

𝛾�̂�

𝑆𝐸(𝛾�̂�)
) (14) 

 

The test criteria for the Wald statistic that follows a standard normal distribution is reject 𝐻0 if |𝑊𝑗| > 𝑍1−𝑎
2
. 

2.9 Best Model Selection 

To choose the best model using Akaike's Information Criterion (AIC).   

𝐴𝐼𝐶 = −2 ln 𝐿(�̂�) + 2𝑝 (15) 

 

Where 𝐿(�̂�) is the likelihood value and 𝑝 is the number of parameters. The better model to use is the 

one with the smallest AIC value. 

3. RESULTS AND DISCUSSION 

3.1 Descriptive Statistics of Data 

Based on the data that has been obtained, the descriptive analysis of the data is as follows. 

Table 1. Summary of Descriptive Analysis 

Statistic 
Variable 

𝒀 𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 

Minimum 0 131216 48.23 4.09 51.64 

Median 0.5 1025335 89.20 10.56 99.85 

Mean 11.55 1056754.53 83.77 11.32 95.92 

Maximum 97 2918543 100 23.76 100 

Standard Deviation 24.88 677056.10 18.33 4.72 7.19 

 

Based on Table 1, shows that the lowest number of measles incidences is 0, meaning that there are no 

measles cases in an area, while the highest measles incidence is 97, which occurred in Surabaya City. The 

average number of measles cases that occurred in East Java in 2021 was 11.55. The population variable shows 

that Surabaya City with a total of 2.918,543 people followed by Malang Regency as much as 2,637,160 

people. Meanwhile, the city/district with the lowest population level is Mojokerto City with 131,216 people. 

Surabaya City as a metropolitan city, has a much larger population compared to other cities/districts, which 

may be due to urbanization, economic activity centers, and better public facilities. The percentage of 

vaccination variable shows that in some areas the highest percentage is 100%. This indicates that vaccination 

coverage in most of these areas is close to or has even reached the expected target, while the lowest percentage 

is 48.23. These low vaccination coverage areas represent about 10.5% of the total districts/municipalities in 

East Java, indicating challenges in vaccination distribution in certain areas. The percentage of poor people 

variable shows that the lowest value is 4.09% while the highest is 23.76%. The average percentage of poor 

people in East Java is 11.32. The percentage of proper sanitation variable shows that the lowest value is 

51.64% while the highest is 100%. The average percentage of proper sanitation in East Java is 95.92. 

3.2 Non-Multicollinearity 

Multicollinearity check is used to determine whether there is a correlation between two or more 

predictor variables. Multicollinearity is checked through the VIF values in Table 2 below which shows the 

VIF score of each predictor variable. 
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Table 2. VIF Value for Predictor Variable 

Variable  VIF Value 

Population (𝑋1) 1.17 

Percentage of Vaccination (𝑋2) 1.35 

Percentage of Poor People (𝑋3) 1.22 

Percentage of Proper Sanitation (𝑋4) 1.44 

 

Based on the results in Table 2, VIF on the variable population (𝑋1), variable percentage of vaccination 

(𝑋2), variable percentage of poor people (𝑋3), and variable percentage of proper sanitation (𝑋4) all VIF 

values are smaller than 10 for all predictor variables. The small VIF value in this study indicates that there is 

no correlation between the predictor variables. Therefore, it can be concluded that there is no indication of 

multicollinearity in the predictor variables. 

3.3 Overdispersion 

Overdispersion this is greater than 1 so the data is overdispersed in the Poisson regression model.  

Was checked by calculating the Pearson's chi-squared value divided by the degrees of freedom. The result 

shows a value of 29.26 this is greater than 1 so the data is overdispersed in the Poisson regression model. 

3.4 Homogeneity 

The homogeneity test was conducted using the Breusch-Pagan test. The following is the hypothesis of 

the Breusch-Pagan test. 

𝐻0: 𝜎1
2 = 𝜎2

2 = ⋯ = 𝜎𝑛
2 = 𝜎2 (variety is homogeneous) 

𝐻1: 𝜎𝑖
2 ≠ 𝜎2, 𝑖 = 1,2, … , 𝑛 (variety is not homogeneous) 

 

Based on the results of the BP analysis of 8.551 and 𝜒0,05
2 = 9.488 because 8.551 < 9.488, it can be 

concluded that the data is homogeneous, or the variance between variables is the same. 

3.5 Poisson Regression 

Poisson regression model for measles cases in East Java is presented in Table 3. 

Table 3. Zero Inflated Poisson Parameter Estimation 

Variable Parameter Estimation 𝒑-value 

Intercept  𝛽0 −13.551  < 𝟎. 𝟎𝟏 

𝑋1 𝛽1 2.558  < 𝟎. 𝟎𝟓 

𝑋2 𝛽2 0.011  𝟎. 𝟎𝟏𝟑 

𝑋3 𝛽3 −0.160  < 𝟎. 𝟎𝟓 

𝑋4 𝛽4 0.010  0.383 

AIC   760.51   

𝑮𝟐  673.9   

Note: the 𝑝-value in bold is a significant predictors variable. 

 

Simultaneous test with the following hypotheses. 

𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑗 , 𝑗 = 1,2, … ,4   

𝐻1: there is at least one 𝛽𝑗 ≠ 0, 𝑗 = 1,2, … ,4 

 

Based on Table 3, it can be concluded that 𝐻0 is rejected because 𝐺2 =  673.9 and value of 𝜒(0,05;4)
2 =

9.488 where 673.9 > 9.488 which means that there is at least one predictor variable that affects the number 

of measles cases. 

Partial test for parameters is carried out with the following hypotheses. 

𝐻0: 𝛽𝑖 = 0  

𝐻1: 𝛽𝑖 ≠ 0, 𝑖 = 1,2,3,4  
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Based on the Table 3, it can be seen that the parameter coefficient 𝛽1 is 2.558 with a 𝑝-value < 0.05, 

which means that there is a real influence between the variable population (𝑋1) and the number of measles 

cases (𝑌). The parameter coefficient 𝛽2 is 0.011 with a 𝑝-value = 0.013, this also means that there is a real 

influence between the variable percentage of vaccinations (𝑋2) on the number of measles cases (𝑌). The 

coefficient of 𝛽3 is −0.160 with a 𝑝-value < 0.05, this means that there is an influence between the variable 

percentage of poor people (𝑋3) on the number of measles cases (𝑌). While the parameter coefficient 𝛽4 is 

0.010 with a 𝑝-value = 0.383, this means that there is no real influence between the variable percentage of 

proper sanitation (𝑋4) on the number of measles cases (𝑌). 

3.6 Zero Inflated Poisson Regression 

Poisson regression is used as an alternative when overdispersion conditions occur in the Poisson 

regression model. Because overdispersion occurs in the Poisson model, the zero inflated Poisson model is 

used to analyze the data. Table 4, shows the parameter estimation results of the zero inflated Poisson model. 

Table 4. Zero Inflated Poisson Parameter Estimation 

Variable Parameter Estimation p-value 

Intercept  𝜷𝟎          −11.910 < 0.01 

𝑋1 𝜷𝟏           2.9753 < 0.01 

𝑋2 𝜷𝟐        −0.0007 0.9137 

𝑋3 𝜷𝟑        −0.0800 < 0.01 

𝑋4 𝜷𝟒        −0.0022 0,0135 

Intercept 𝜸𝟎          −4.203    0.651 

𝑋1 𝜸𝟏             1.061   0.385 

𝑋2 𝜸𝟐             0.003   0.877 

𝑋3 𝜸𝟑             0.057   0.498 

𝑋4 𝜸𝟒                      −0.032   0.539 

AIC        326.24   

𝑮𝟐     897.5   

 

Simultaneous test with the following hypotheses. 

𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑗 , 𝑗 = 1,2,3,4   

𝐻1: there is at least one 𝛽𝑗 ≠ 0, 𝑗 = 1,2,3, 4 

 

Based on Table 4, it can be concluded that 𝐻0 is rejected because 𝐺2 =  897.5 and value of 𝜒(0,05;4)
2 =

9.488 where 897.5 > 9.488 which means that there is at least one predictor variable that affects the number 

of measles cases. 

Partial test for parameters is carried out with the following hypotheses. 

𝐻0: 𝛽𝑖 = 0  

𝐻1: 𝛽𝑖 ≠ 0, 𝑖 = 1,2,3,4  
 

Based on Table 4, model Poisson state variable 𝑋1, 𝑋3, and 𝑋4 has 𝑝-value < 0.05. Therefore, variable 

population size (𝑋1), percentage poor people (𝑋2), and variable percentage proper sanitation (𝑋4) affect the 

number of measles cases and significant. while in the zero state model there are no variables that have a 

significant effect on the number of measles cases. The insignificant zero-state variable indicates that it does 

not affect the additional zero mechanism in the ZIP model, but indicate that the zero-state component is not 

significantly affected by the predictor variables. When the zero-state is insignificant, the main attention in 

interpretation can be directed more towards the count-state component, which models the count distribution 

(including zeros derived from Poisson processes). 
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3.7 Best Model Selection 

The best model is determined using the AIC value of each model. The better model to use is the one 

with the smallest AIC value Table 5 shows AIC values for every models. 

Table 5. AIC Values for every Models 

Model AIC 

Poisson Regression 760.51 

Zero Inflated Poisson Regression 326.24 

 

Based on Table 5, the smallest AIC value is the AIC value for the Zero Inflated Poisson Regression 

model which is 326.24. Therefore, it can be concluded that the best model in this study is Zero Inflated 

Poisson Regression. 

3.8 Interpretation 

Parameter estimates for the Poisson state model and the zero state model are as follows. 

log(𝜇𝑖) = −11.91 + (2.9753)𝑋1 − (0.0006593)𝑋2 − (0.08)𝑋3 − (0.0223)𝑋4 

log 𝑖𝑡(𝜔𝑖) = −4.203 + 1.061𝑋1 − 0.003𝑋2 + 0.057𝑋3 − 0.032𝑋4 

 

Based on testing the significance of the parameters of the Zero Inflated Poisson regression model, only 

significant parameters can be interpreted, namely: 𝑋1 (the population), 𝑋3 (the percentage of poor people),  

and 𝑋4 (the percentage of proper sanitation).  

For 𝛽1 equal to 2.9753, it holds that every increase in population (𝑋1) by 1 person assuming the value 

of other variables is held constant, the average number of measles (𝑌) tends to increase by 𝜇𝑖 =
exp(2.9753) = 19.6 ≈ 20 cases of measles in East Java. This indicates that an increase in population is 

directly related to an increase in the number of measles cases. Therefore, as the population increases, the 

probability of more measles cases is also higher. For 𝛽3 equal to -0,08 states that every increase in percentage 

poor people (𝑋3) by 1% assuming the values of other variables is held constant, the average number of 

measles (𝑌) tends to decrease by 𝜇𝑖 = exp(−0.08) = 1.1 ≈ 1 case of measles in East Java. This suggests 

that despite an increase in the number of poor people, a higher poverty rate is more or less associated with a 

decrease in the number of measles cases. This could indicate that other factors (such as decreased mobility 

or better disease control in poor communities) may reduce measles case numbers. For 𝛽4 equal to -0,0223 

state that every increase in percentage proper sanitation (𝑋4) by 1% assuming the values of other vaariables 

is held constant, the average number of measles (𝑌) tends to decrease by 𝜇𝑖 = exp(−0.0223) = 1,02 ≈ 1 

case of measles in East Java.  The improved sanitation contributed to a decrease in the number of measles 

cases, demonstrating the importance of health and sanitation infrastructure in controlling the spread of the 

disease.  

This research is in line with research conducted by [17] with the results of his research show that 

measles immunization status results obtained 𝑝-value 0.02 < 0.05, the influence maternal knowledge on the 

incidence of measles 𝑝-value 0.00 < 0.05, and the effect of housing density on the incidence of measles 

house 𝑝-value 0.00 < 0.05. Conclusion that was an effect of immunization status, maternal knowledge and 

density of residential home with a case of measles in the health centers Tejakula I. The research by [18] the 

results show that immunization status, nutritional status, mother’s knowledge, and occupancy density. The 

variable with the highest risk factor value for measles incidence in Indonesia is the occupancy density, 

followed by the mother’s knowledge, immunization status, and nutritional status. 

4. CONCLUSIONS 

Based on the results of the analysis that has been done, it can be concluded that the data on the number 

of measles cases in East Java is overdispersed so that the Zero Inflated Poisson (ZIP) regression model can 

be used to overcome this problem. The ZIP model can model additional zeros through the zero inflation 

process and model other count data using the Poisson distribution. There are three variables that are influential 
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and significant, namely the population variable (𝑋1), the percentage of poor people (𝑋3), and the percentage 

of proper sanitation (𝑋4). The ZIP model for measles cases in East Java is as follows. 

𝜇�̂� = exp(−11.91 + 2.9753𝑋1 − 0.08𝑋3 − 0.0223𝑋4) 
 

The AIC value in the ZIP regression model is 326.24, this shows that the AIC value of ZIP is smaller 

than the Poisson regression model, therefore the appropriate model to determine the factors that affect the 

number of measles patients in East Java is the Zero Inflated Poisson Regression model. 
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