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ABSTRACT 

Article History: 
The Volatility, Uncertainty, Complexity, and Ambiguity (VUCA) era causes turmoil in the 

capital markets, stocks, commodities, etc. The impact is a decline in the Composite Stock 
Price Index (IHSG) in 2020. Therefore, future data is needed to inform investors and business 

people when making portfolio decisions. This paper develops a decomposition and Neural 

Network (NN) integration model to predict ICI during the VUCA era. The results are 

presented empirically to show the model's effectiveness in reducing prediction errors. First, 
the actual data is converted into three components; second, with the Neural Network 

Ensemble (NNE) approach where the initial step of decomposition results is trained using 

artificial NN with architecture, training data, and topology to produce individual networks; 

The output is selected using Principal Component Analysis (PCA) and becomes input to the 
ensemble model, then combined using a simple average and weighted average. The empirical 

results from ICI predictions illustrate: (1) decomposition has the potential to overcome data 

that is characterized by high volatility; (2) NNE is able to reduce errors (MSE≤0.100e-4, 

MAE≤0.01) compared to individual networks (MSE=0.0024 MAE=0.0376); (3) ensemble 
combinations using weighted averages (MSE≤3.00e-5,MAE≤0.002) are superior to simple 

averages (MSE≤5.00e-5,MAE≤0.01); (4) the integration carried out shows effectiveness in 

predicting ICI and provides better prediction results. 
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1. INTRODUCTION 

The emergence of COVID-19 impacted not only the health sector but also the economic sector, which 

was marked by negative signals on financial markets that caused losses for the whole world, including 

Indonesia [1], [2]. The VUCA era presents challenges and threats from various directions. It causes a business 

environment that is increasingly fluctuating, complex, and increasingly uncertain, such as uncertainty in the 

capital market caused by technological disruption, high competition, market instability, and changing 

consumer desires, and this is a challenge that must be faced by every business person and investor, where 

both must always be prepared for all possibilities that may occur. 

Many countries have experienced a decline in stock prices due to economic uncertainty and stated that 

the stock market belongs to a VUCA environment [3]. Insignificantly, the VUCA era affected the movement 

of stock exchanges in Indonesia. The impact of the global economy can be seen from the data released by the 

Intrinsic Mode Function (IMF) in October, during which a decline of -4.4% and a global trade volume of -

10.4% [4]. In the meantime, Indonesia had economic growth in the first quarter of 2020, down 2.97% from 

economic growth in the same period of 2019 [5]. The stock exchange indicated by ICI also experienced a 

decrease of -28.21%, which was recorded for May 18, 2020, of Rp. 4,511 from the price on January 2, 2020, 

of Rp. 6,284. The high level of economic uncertainty resulting from the VUCA era makes investors and 

business people sell their investment portfolios to countries with more robust economic fundamentals or 

countries with a low level of risk. This fact shows a strong relationship between the VUCA era and capital 

market conditions, and ICI continues to experience sharp fluctuations and tends to decline. Financial data 

predictions, especially ICI, are a series of continuous predictions because stock prices will continue to change 

over time [6]. 

Many business people and investors routinely need several time series data from various sources to 

make decisions and more strategic planning by making predictions [7]. The data can be developed to provide 

scientific information that can support decision-making. Forecast data will only be ultimately able to provide 

accurate future predictions sometimes. Still, if investors and business people only rely on judgment or wrong 

estimates, the consequence is that business people and investors will suffer losses. Therefore, one of the roles 

of prediction is to deal with future uncertainties by analyzing trends and variations in data [8]. 

ICI time series data experiences fluctuations with nonstationary and nonlinear characteristics; this is a 

challenge in predicting this data for the future. Experts have used many prediction approaches, including 

using statistical and econometric methods [9], [10], artificial intelligence methods [11], [12] and integration 

approaches [13], [14]. The three methods have their advantages and disadvantages. Statistical and 

econometric methods can produce good predictive results based on the assumptions of linearity and 

stationarity in time series. However, in reality, statistical and econometric methods need help capturing data's 

nonlinear and nonstationary characteristics. Because of these limitations, many researchers have used 

artificial intelligence to predict. This method is used because it is considered to have adaptive training 

capabilities [15], [16], and can provide increased accuracy and stability of prediction results. However, in 

reality, single artificial intelligence methods still have limitations, such as sensitivity to the parameters used, 

which often causes overtraining, especially in some complex models such as Neural Networks (NN). Because 

both methods have limitations and advantages, many researchers have used integration methods to overcome 

these problems. Purohit et al. stated that the integration method provides better results than individual models 

in predicting crop prices [17], Albari et al. concluded that the integration method provides low residual 

performance for predicting the value of Indonesian exports [18]. 

Statistical and econometric methods commonly applied include exponential smoothing, ARIMA, and 

decomposition, and artificial intelligence uses include NN and Long Short Term Memory (LSTM). Research 

that has used both methods in integrating, among others, Qian et al. used an integration approach between 

decomposition methods (wavelet transformation, empirical mode decomposition, other decomposition 

methods) with three types, then continued with several methods in artificial intelligence approaches (NN, 

LSTM) to predicting wind energy, this research only combines the two approaches where an artificial 

intelligence approach is used even though this approach requires many parameters that are carried out 

repeatedly to get the best model performance which can cause overtraining in the training process [19]. 

Subsequent research uses variational mode decomposition to transform time series data and NN with the 

same architecture, then continues with an ensemble approach by adding up all the prediction results to predict 

product future prices. Still, the ensemble approach used in this research only adds up the results from each 

model obtained [20]. Sun et al.'s research integrates through recombination decomposition using Fast 
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Ensemble Empirical Mode Decomposition (FEEMD) to decompose non-stationary data followed by Partial 

Autocorrelation Function (PACF) analysis. It ends by using the Stacking Driven Ensemble Model (SDEM) 

from several artificial intelligence approaches (BPNN, IBPNN, GRNN, ELM). Still, this research only 

compares the performance results of the decomposition process with various artificial intelligence approaches 

[21]. Jamei et al. use multiple decomposition training algorithms to estimate monthly rainfall. The data 

collection was decomposed into Intrinsic Mode decomposition Functions (IMFs) using the TVF-EMD 

method, and substantial delays were identified using the Partial Autocorrelation Function (PACF). 

Meanwhile, machine training algorithms include Bidirectional Encoder-Decoder (EDBi-LSTM), Adaptive 

Boosting Regression (Adaboost), Generalized Regression Neural Network (GRNN), and Random Forest 

(RF). Furthermore, the study assesses the error performance of the machine training algorithms used [22]. Li 

et al. apply four decomposition methods to break down Electroencephalogram (EEG) data into components 

of various complexity, followed by a Convolutional Neural Network (CNN) architecture and an averaging 

approach [23]. 

Based on previous research, research gaps were found in integrating and overcoming overtraining from 

using artificial intelligence models. In particular, this study suggests using decomposition techniques to 

divide accurate data into three components that explain time series data. Decomposition separates data into 

three components: seasoning, trending, and random, a unique characteristic (non-stationary and non-linear) 

of time series data. This method was chosen because of the severe volatility of the ICI time series data. In 

contrast, previous research used a decomposition methodology that transformed the original data into 

numerous signals by focusing on the correlation value of each data point without paying attention to the 

characteristics of the data. The second portion of this study involved an ensemble with many steps. First, 

individual network generation employs NN with a combination of architecture, training data, and topologies 

to predict all components separately; second, personal networks are selected using the PCA technique; and 

third, a combination of individual networks with simple average (selected dimensions are combined by taking 

the average) and weighted average (selected dimensions are weighted according to their performance) to 

produce a model capable of correcting bias and systematic errors in data distribution. The ensemble in this 

work concentrates on the parameters of the NN to be trained and develops a predictor to overcome the NN's 

overtraining problem and provide optimal prediction outputs. 

 

2. RESEARCH METHODS 

2.1 Architecture Models 

This section describes the integration developed in detail. The study includes two parts: actual data 

transformation using decomposition techniques and NNE, while NNE consists of four steps: individual 

network generation using NN, network selection with PCA, a network combination (weight and simple 

average), and evaluation of prediction results. Figure 1 shows the implementation procedure of the proposed 

model and is the result of a modification from [19], [20], [21] for the integration approach. Part 1, the actual 

data transformation. This section divides the data into three components: seasonal, trend, and random, with 

two types of decomposition. The goal is to reduce the volatility and complexity of the actual data while 

minimizing the computational burden. Part 2, NNE. NNE consists of four steps. The first is generating 

individual networks by varying parameters related to the design of network training (architecture, algorithm, 

and training data set). The algorithm used in this section is a backpropagation neural network (BPNN), which 

trains each component of the decomposition results. BPNN is used to train decomposition components 

because of its powerful ability to model complex nonlinear relationships, which is critical for accurately 

capturing the underlying structure in decomposed data. BPNN is very flexible and can be adapted to various 

tasks, making it suitable for multiple types of decomposition, whether for capturing trends, seasonality, or 

noise. Gradient-based optimization ensures efficient learning and convergence, allowing the network to adjust 

and minimize errors effectively. Additionally, the universal approximation capabilities of BPNNs mean they 

can approximate any continuous function, providing a powerful tool for modeling complex patterns in 

components. Its scalability and an established body of research and practical applications further support its 

use, making BPNN a reliable choice for tasks involving complex data parsing. Second, network selection. 

PCA is used to select individual networks. Third, network combination. The NNE is built by integrating the 

selected networks and combining the best networks using averaging techniques. Fourth, the prediction results 

(MSE and MAE) are evaluated. The resultant error is used to assess performance.  
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Figure 1. Structures of decomposition-NNE based approach  

 

2.2 Decomposition Techniques 

Researchers frequently employ decomposition models to partition big data sets [24]. Several prior 

researchers have investigated the goal of sharing this data to address issues with time series data. As Wu and 

Huang stated, using decomposition techniques can reduce the overall complexity of predictions without 

requiring additional data so that it can improve prediction performance [25]; Altan et al. stated that the 

decomposition technique was able to reduce volatility problems and was able to increase prediction accuracy 

decomposition technique was able to reduce volatility problems and was able to increase prediction accuracy 

[26]; Huang et al. noted that the divide and conquer strategy is the central concept for solving prediction 

problems [27]. 

Since its introduction in the 1920s, economists have utilized the decomposition approach extensively 

to recognize and manage business cycles. In practice, the decomposition technique divides the data into 

several components and identifies these components separately to obtain high accuracy [28]. Data distribution 

consists of three components: trend, seasonality, and random. Decomposition modeling is presented in the 

following equation [29]: 

𝑦𝑡 = 𝑓(𝐼𝑡, 𝑇𝑡 , 𝐶𝑡 ) + 𝐸𝑡                  (1) 
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2.3 Neural Network Ensemble 

Many parameters are required to create a BPNN network architecture, such as a hidden layer, initial 

random weights, learning rate, and momentum rate. Parameter selection and small changes in the training set 

can significantly change prediction output. Many studies show that individual network generalizations are 

not unique or that networks are unstable. The instability of individual networks is a problem in predictions 

using individual networks [28], [29]. Hence, instead of training many individual networks, it is more optimal 

to combine several individual networks. Combining several individual networks is known as the NNE 

technique. 

NNE has been widely used in many studies. The purpose of doing NNE is to avoid overtraining when 

carrying out training by combining several individual networks that have been trained. The proposed NNE 

approach consists of three stages: individual network generation, individual network selection, and network 

combination, as shown in Figure 2. 

 

Figure 2. Neural network ensemble framework 

Step 1: Generation of Individual Networks 

NN is an algorithm designed according to the work of brain function [30], [31], [32], which consists 

of three layers [33], [34], [35]. Each layer consists of a certain number of neurons that will connect one layer 

to another. The relationship between neurons will be calculated iteratively in the training stage [36], [37], 

[38]. The network will initialize randomly in the training process, and the training process is obtained based 

on adjusting the weights until the desired criteria are met [39]. NN is a (nonlinear) function with many 

parameters where the parameters and functions are arranged in layers [40]. NN network modeling can be 

mapped in the following equations [19], [41], [42]: 

𝒚�̂� = 𝝍𝒌 (𝒘𝒌𝟎 + ∑ 𝒘𝒌𝒋𝝍𝒋(𝒗𝒋𝟎 + ∑ 𝒗𝒊𝒋𝒙𝒊
𝒏
𝒊=𝟏 )

𝒑
𝒋=𝟏 )                          (2) 

This study uses the type of BPNN. The BPNN used consists of three layers: the input layer, the hidden 

layer, and the output layer, each consisting of neurons. The input layer consists of p neurons, a hidden layer 

of p neurons, and an output layer of k neurons. Based on equation (2), BPNN can be mathematically derived 

as the following equation [43]. 

�̂�(𝑡+1) 
= 

[

𝑦1̂(𝑡 + 1)
𝑦2̂(𝑡 + 1)

⋮
𝑦�̂�(𝑡 + 1)

] 
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= 

[
 
 
 
 
 
 
 
 
 
 
𝑓2 [∑𝑓1 (∑𝑤𝑖𝑗(𝑡)𝑥𝑗(𝑡) + 𝑤𝑖0(𝑡)𝑣1𝑖(𝑡) + 𝑣10(𝑡)

𝑝

𝑗=1

)

𝑞

𝑖=1

]

𝑓2 [∑𝑓1 (∑𝑤𝑖𝑗(𝑡)𝑥𝑗(𝑡) + 𝑤𝑖0(𝑡)𝑣2𝑖(𝑡) + 𝑣20(𝑡)

𝑝

𝑗=1

)

𝑞

𝑖=1

]

⋮

𝑓2 [∑𝑓1 (∑𝑤𝑖𝑗(𝑡)𝑥𝑗(𝑡) + 𝑤𝑖0(𝑡)𝑣𝑘𝑖(𝑡) + 𝑣𝑘0(𝑡)

𝑝

𝑗=1

)

𝑞

𝑖=1

]

]
 
 
 
 
 
 
 
 
 
 

 

 

= 

[
 
 
 
 
 
 
 
 
 
 
𝑓2 [∑𝑓1 (∑𝑤𝑖𝑗(𝑡)𝑥𝑗(𝑡)

𝑝

𝑗=1

)𝑣1𝑖(𝑡)

𝑞

𝑖=1

]

𝑓2 [∑ 𝑓1 (∑𝑤𝑖𝑗(𝑡)𝑥𝑗(𝑡)

𝑝

𝑗=1

)𝑣2𝑖(𝑡)

𝑞

𝑖=1

]

⋮

𝑓2 [∑𝑓1 (∑𝑤𝑖𝑗(𝑡)𝑥𝑗(𝑡)

𝑝

𝑗=1

)𝑣𝑘𝑖(𝑡)

𝑞

𝑖=1

]

]
 
 
 
 
 
 
 
 
 
 

 

 

= 

[
 
 
 
 
𝑓2[𝑉1

𝑇(𝑡)𝐹1(𝑊(𝑡)𝑋(𝑡))]

𝑓2[𝑉2
𝑇(𝑡)𝐹1(𝑊(𝑡)𝑋(𝑡))]

⋮
𝑓2[𝑉𝑘

𝑇(𝑡)𝐹1(𝑊(𝑡)𝑋(𝑡))]]
 
 
 
 

 

�̂�(𝑡+1) = 𝐹2[𝑉
𝑇(𝑡)𝐹1(𝑊(𝑡)𝑋(𝑡))] 

and the following equation is obtained: 

�̂�(𝑡+1) = 𝐹2[𝑉
𝑇(𝑡)𝐹1(𝑊(𝑡)𝑋(𝑡))      (3) 

BPNN trains individual networks by altering the architecture, training data, and topology. 

1) Architectural variations 

Selection of the optimal number of neurons in the hidden layer is one of the important problems in 

determining an NN. Many previous studies have found approaches to determine the number of hidden 

neurons. Meng, et al with the equation 
𝟑𝑵𝒊

(𝑵𝒊+𝟑)
, proposed a strategy to determine the number of hidden 

neurons in predicting wind speed, and the results showed good performance [44], Wang and Hu used the 

equation 
√𝑵𝒊+𝑵𝒐

𝟐
 to determine the number of neurons from the hidden layer and the research results show 

an increase in prediction accuracy so that it can be used for predictions [45], and Sheela and Deepa uses 

the equation 
𝟒𝑵𝒊

𝑵𝒊−𝟐
 in selecting the number of hidden neurons in the NN network, and the results of the 

approach used can increase network stability and can reduce errors with  𝑵𝒊 being the number of input 

neurons and 𝑵𝒐 being the output neurons [46]. 

2) Variation of training data 

They used different training data when training could provide different prediction results. This study 

generated various training data by resampling (cross-validation) and preprocessing the time series data. 

3) Topology variations 

Each trained network undergoes topological changes by altering its initial random weights, learning, and 

momentum rates. 
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Step 2: Network Selection 

The selection of parameters as a variation in the generation of individual networks, with each 

experiment three times, gives different individual network performances. PCA is used to select and train 

individual networks to avoid correlations from each network. Using the PCA, a multivariate technique, 

several associated individual networks are transformed into uncorrelated networks while keeping their 

maximum variance [47]. 

PCA is applied to reduce the dimensionality of a data set [48]. In individual network selection, PCA is 

used to find a new coordinate system from several networks that have been trained so that they are 

concentrated on a few coordinates. Simply put, PCA will find an orthonormal basis as a new basis from a set 

of trained individual networks. The procedure for selecting several individual networks follows the following 

steps. 

1) Compute the average vector of all data in the individual network. 

�̅� =
𝟏

𝑵
∑ 𝒚𝒏

𝑵
𝒏=𝟏           (4) 

2) Subtract the average vector from each data point for all data. 

�̂� = 𝑦𝑛 − �̅�           (5) 

3) Let �̂� = [�̂�𝟏, �̂�𝟐,⋯ , �̂�𝒑] , an orthonormal matrix with a covariance matrix: 

𝑺 =
𝟏

𝑵
�̂��̂�𝑻                   (6) 

4) Calculate the eigenvalues and eigenvectors of the covariance matrix and arrange them in descending order. 

5) Choose the 𝑳 eigenvector that corresponds to the largest 𝑳 eigenvalue to build the 𝑽𝑳matrix by forming 

an orthogonal system column. The vector 𝑳 is called the principal component which forms a subspace 

close to the orthonormal matrix. 

6) Project the orthonormal data matrix into the obtained subspaces. 

7) New data is the coordinates of data points in new space. 

𝑍 = 𝑉𝐿
𝑇�̂�                                (7) 

The original data will be approximated by the new data with the following equation: 

                                 𝑦 ≈ 𝑉𝐿𝑍 + �̂�                   (8) 

Step 3: Network Combination 

Ensembling combines prediction results [49], [50]. In this research, the ensemble preparation uses 

training data samples that have been decomposed first, as shown in Figure 1. In the first step, several 

networks are built using three different variations. In the second stage, the individual networks formed are 

then selected using PCA, and finally, in the third stage, a network combination is carried out using the 

averaging technique. 

Assume that the function 𝑓:𝑹𝑵 → 𝑹𝑴, with p samples, (𝑥𝑢, 𝑦𝑢) for a particular problem where 𝑦𝑢 =
𝑓(𝑥𝑢) where 𝑢 = 1,2, ⋯ , 𝑝. The sample is assumed to be taken randomly from the distribution of 𝑝(𝑥). The 

ensemble of individual networks consists of 𝑛 forecast results of a single NN network and the output of the 

ith single network at input x is called 𝑓𝑖(𝑥). Then the ensemble technique with weighted averaging in the 

following form. 

𝑓(𝑥) = ∑ 𝑤𝑖𝑓𝑖(𝑥)𝑛
𝑖=1          (9) 

Step 4: Evaluation of Predictive Results 

Evaluation of the prediction results of this research is measured using Mean Absolute Error (MAE) 

and Mean Square Error (MSE) which are error metrics used in time series data predictions [51], [52]. 

                                        𝑀𝐴𝐸 =
1

𝑁
∑ (𝑦𝑖

′ − 𝑦𝑖)
𝑁
𝑖=1 , 

  𝑀𝑆𝐸 = ∑
(𝑦𝑖

′−𝑦𝑖)
2

𝑁
𝑁
𝑖=1                       (10) 
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where 𝒚𝒊 is the predicted output, 𝒚𝒊
′ is the actual output, and 𝑵 N is the number of samples used. The network 

design process plays an important role in determining network performance. 

 

3. RESULTS AND DISCUSSION 

3.1 Indonesia Composite Index Price 

The data in this study is time series data from ICI data from 1 July 2021 to 15 July 2022, with a total 

of 253 observations. Researchers only took data from the past year to see the impact of the pandemic and the 

arrival of the VUCA era in Indonesia. Hence, the data became unstable and experienced rapid changes marked 

by data volatility [53], [54]. ICI time series data was obtained from the website finance.yahoo.com and is 

presented in Figure 3. 

 
Figure 3. Indonesia composite index 2021-2022 

Figure 3 shows very volatile fluctuations from the ICI data that will be studied, marked by a very high 

29-time spike for rising and falling prices. This surge continued until the end of this research data was used. 

Extreme increases occur at the end of 2021, and extreme decreases around May 2022. 

Table 1. Statistical Parameters of Daily ICI Using Observations 2021-2022 

Number of data points Value 

Minimum 5979.21 

Maximum 7276.19 

Mean 6620.9 

Median 6647.06 

Standard deviation 363.86 

Skewness -0.21 

Kurtosis -1 

Table 1 shows the statistical parameters of the data used. It can be seen from the table that the range 

between the lowest and highest data is 1,296.98 points; this shows quite a long movement. For the 

centralization measure, it can be seen that the average value is smaller than the median, so the frequency 

distribution curve formed is left skewed or negatively skewed. The standard deviation number is the measure 

of dispersion. In Table 1, this value is relatively significant, showing that prices change substantially daily, 

demonstrating the price volatility in the data. For a skewness value smaller than zero, this indicates that the 

ICI data is distributed skewed to the left, indicating a high level of fluctuation in the data. For a kurtosis size 

smaller than 3, the curve formed is platykurtic (tends to be flat). 
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3.2 Empirical Result and Discussion 

This section presents empirical results and discusses the effectiveness of decomposition models and 

ensembles with an integration approach between decomposition techniques and the NNE approach. The 

performance of each model will be measured using MSE and MAE. In addition, different models were used 

for comparison. Several experimental results are discussed to demonstrate the superiority of the 

decomposition and NNE approaches. Daily data spanning one year with a total of 253 observations were used 

for the empirical study. 

According to the model development step, part 1 transforms the data using decomposition to break 

down the original ICI data set into three components: seasonal, trend, and random. In general, the component 

with the highest frequency factor is the random component, the middle component is seasonal, which has 

sinusoidal solid fluctuation characteristics, and the lowest component is a trend, which will show the trend of 

time series data for the long-term in the future. This research uses additive (type 1) and multiplicative (type 

2) decomposition. The results of the first decomposition are presented Figure 4 and Figure 5. 

 
Figure 4. Daily ICI price after decomposition process with additive decomposition 

 
Figure 5. Daily ICI price after decomposition process with multiplicative decomposition 

 

Figure 4 and Figure 5 show the results of the transformation using decomposition. The two types of 

decomposition provide almost the same picture, such as an upward trend in the data with three spikes; for 

seasonal, the cycle is visible, while for random data, the data set is volatile, and the data is mostly found in 

the random component. This is because decomposition aims to separate the main elements of the data, such 

as trend, seasonality, and noise, even though the methods are different. 
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Part 2 of individual network development begins with single network prediction, accompanied by 

phases of constructing ensemble members for the three previously stated components. Table 2 provides a 

complete report of the results of the ensemble model for training and testing groups, as well as the results of 

creating ensemble members. Three different methods were used to create ensemble members. They are as 

follows: (1) architectural variations, carried out using the three approaches described previously, neurons 

obtained from hidden layers were 5, 1, and 12; (2) variations in training data, carried out using cross-

validation with variations of 60%, 70%, and 80% training and 40%, 30% and 20% testing [55]; and (3) 

topology variations, this variation is carried out by varying initial random weights, activation function, 

different training rates for each network being trained. This stage is carried out to train a single network with 

various variations, demonstrated by empirical results from the performance of each single network. The 

Table 2 and Table 3 uses the terms 𝑨 for architecture, 𝑻𝒓 for training data, and 𝑻𝒑 for topology. 

 Table 2. The MSE and MAE of Decomposition-NNE Approach for Different Creating Ensemble 

Members Type 1 

Creating Ensemble Criteria 
Training Testing 

MSE MAE MSE MAE 

Seasonal Component 

Architecture 

𝐴1 2.5344e-07 4.3028e-04 4.1994e-06 0.0013 

𝐴2 0.1269 0.2822 0.1274 0.2755 

𝐴3 5.5546e-08 1.9031e-04 3.9932e-09 5.5743e-05 

Training Data 

𝑇𝑟1 8.1826e-07 6.6954e-04 1.1130e-08 7.0378e-05 

𝑇𝑟2 4.2613e-07 4.3515e-04 4.4819e-07 5.4105e-04 

𝑇𝑟3 1.7767e-07 2.9704e-04 1.2715e-07 2.7980e-04 

Topology 

𝑇𝑝1 8.7841e-07 5.7118e-04 3.8067e-05 0.0029 

𝑇𝑝2 3.4593e-0 8 1.7597e-04 0.0094 0.0634 

𝑇𝑝3 1.2641e-18 8.0822e-10 6.3088e-19 3.5139e-10 

Trend Component 

Architecture 

𝐴1 0.0198 0.0292 0.0010 0.0175 

𝐴2 0.0209 0.0392 0.0028 0.0360 

𝐴3 0.0196 0.0306 2.5669e-04 0.0124 

Training Data 

𝑇𝑟1 0.0198 0.0282 0.0012 0.0162 

𝑇𝑟2 0.0099 0.0222 9.0560e-04 0.0221 

𝑇𝑟3 0.0050 0.0145 6.1836e-04 0.0184 

Topology 
𝑇𝑝1 0.0199 0.0350 0.0014 0.0191 

𝑇𝑝2 0.0202 0.0303 0.0020 0.0311 

Creating Ensemble Criteria 
Training Testing 

MSE MAE MSE MAE 

Random Component      

Architecture 

𝑇𝑝3 0.0179 0.0326 1.3954e-04 0.0087 

𝐴1 0.0043 0.0158 0.0010 0.0177 

𝐴2 0.0049 0.0265 0.0022 0.0301 

𝐴3 0.0042 0.0148 5.5842e-04 0.0140 

Training Data 

𝑇𝑟1 0.0042 0.0149 0.0016 0.0231 

𝑇𝑟2 0.0099 0.0235 0.0016 0.0219 

𝑇𝑟3 0.0051 0.0159 4.4501e-04 0.0146 

Topology 

𝑇𝑝1 0.0042 0.0154 0.0013 0.0163 

𝑇𝑝2 0.0044 0.0208 0.0017 0.0275 

𝑇𝑝3 0.0035 0.0115 1.6386e-04 0.0098 

 

Overall, the table presented can be explained that Table 2 shows an evaluation of the performance of 

the type 1 model. The best variation of neurons in the hidden layer is 12 neurons, the most significant variation 

in training data is 80% with 202 observations for training and 51 testing data, and for topological variations, 

it is using the bipolar sigmoid activation function (tansig), training rate 0.1. 

Table 3 shows the performance results of type 2 decomposition continued with individual networks. 

Seasonal components and network performance trends that provide optimum values for different architectures 

are architecture type 3, training data 2, and topologies 3 and 1, while for the optimum network performance 

evaluation components are architecture 3, training data 1, and topology 3. 
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Table 3. The MSE And MAE of Decomposition-NNE Approach for Different Creating Ensemble Members 

Type 2 

Creating Ensemble Criteria 
Training Testing 

MSE MAE MSE MAE 

Seasonal Component 

Architecture 

𝐴1 7.04E-09 8.03E-05 4.41E-09 4.72E-05 

𝐴2 0.0791 0.1923 0.0799 0.1936 

𝐴3 2.60E-09 3.89E-05 5.26E-09 6.78E-05 

Training Data 

𝑇𝑟1 5.21E-09 5.79E-05 9.02E-09 7.61E-05 

𝑇𝑟2 4.48E-09 4.99E-05 1.87E-15 3.85E-08 

𝑇𝑟3 6.80E-09 5.27E-05 3.88E-27 4.35E-14 

Topology 

𝑇𝑝1 2.11E-09 4.25E-05 3.87E-11 4.80E-06 

𝑇𝑝2 1.07E-04 0.0098 3.71E-15 5.11E-08 

𝑇𝑝3 5.47E-17 5.40E-09 2.21E-19 4.14E-10 

      

Creating Ensemble Criteria 
Training Testing 

MSE MAE MSE MAE 

Seasonal Component      

Trend Component 

Architecture 

𝐴1 9.37E-08 1.95E-04 2.03E-06 0.001 

𝐴2 1.06E-09 2.54E-05 1.25E-09 3.31E-05 

𝐴3 2.28E-08 8.30E-05 5.73E-09 3.06E-05 

Training Data 

𝑇𝑟1 2.50E-06 1.10E-03 9.76E-09 9.01E-05 

𝑇𝑟2 1.31E-07 1.52E-04 1.83E-06 0.0012 

𝑇𝑟3 3.80E-07 4.42E-04 3.13E-10 1.49E-05 

Topology 

𝑇𝑝1 6.93E-07 2.85E-04 9.19E-11 8.82E-06 

𝑇𝑝2 5.12E-07 3.95E-04 5.43E-16 1.56E-08 

𝑇𝑝3 3.47E-15 3.16E-08 8.75E-07 6.46E-04 

Random Component 

Architecture 

𝐴1 3.66E-09 5.18E-05 7.98E-09 7.49E-05 

𝐴2 0.0865 0.1978 0.0845 0.193 

𝐴3 2.63E-09 3.62E-05 4.37E-09 5.45E-05 

Training Data 

𝑇𝑟1 2.92E-10 1.46E-05 2.15E-09 3.89E-05 

𝑇𝑟2 8.29E-10 2.07E-05 2.25E-10 1.33E-05 

𝑇𝑟3 3.09E-09 4.05E-05 1.08E-09 2.99E-05 

Topology 

𝑇𝑝1 1.36E-13 2.81E-07 8.26E-09 8.44E-05 

𝑇𝑝2 1.01E-09 2.31E-05 3.51E-09 5.26E-05 

𝑇𝑝3 3.77E-17 4.83E-09 1.57E-22 1.00E-11 

 

Table 3 shows the performance evaluation of type 2. The results show that the best variation of 

architecture with neurons in the hidden layer in an individual network is 12 neurons. For the best variation of 

training data, a variety of three cross-validations were carried out, as well as for variations of network 

architecture topology, which provides performance. The best is the third type, which 5 hidden layer neuron 

variations, a training rate of 0.1, bipolar sigmoid activation function (tansig), and a training method called 

Lavenberg Marquat. 

Empirical results in Table 2 and Table 3 show that the use of a single network can result in overtraining 

if the network is continuously trained. At the same time, this research aimed to overcome the occurrence of 

overtraining to provide optimal predictions by performing an ensemble so that a single network is selected 

that represents the characteristics of the data next based on the results of observations from each type of 

model development. It was found that individual networks became more complex due to an increase in 

neurons in the hidden layer, and MSE and MAE in the training and testing groups using the PCA approach 

decreased when measuring the error of each network. Using the PCA technique, the table findings are then 

used to identify an appropriate NN predictor. The PCA method is used to select individual networks while 

eliminating correlation between separate networks. The PCA results were then combined using simple, 

average, and weighted averages, and the performance results were evaluated using MSE and MAE, which 

are presented in Table 4. 
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Table 4. The MSE And MAE of Random Component for Different Combination and Individual Networks 

 Training Testing 

MSE MAE MSE MAE 

Model Development (Type 1) 

Weighted Average 
3.0134e-05 0.0023 4.3090e-16 1.6773e-08 

Model Development (Type 1) 

Simple Average 
5.2354e-05 0.0174 5.7277e-15 2.0573e-07 

Model Development (Type 2) 

Weighted Average 
3.0708e-09 2.6921e-05 4.3110e-10 6.2522e-06 

Model Development (Type 2) 

Simple Average 
6.7429e-08 4.8733e-05 5.9330e-09 1.0834e-05 

NN 0.0024 0.0376 1.0733e-04 0.0063 

Table 4 compares MSE and MAE decomposition and ensemble approaches with individual networks. 

Based on Table 4 MSE and MAE, the decomposition and NNE models, both type 1 or 2, can perform better 

than individual networks. This is because the development of decomposition and NNE techniques first 

decomposes the original time series data into several components periodically so that it can be predicted more 

efficiently and thus becomes more effective. When the results from all components are combined, the final 

result of the prediction is better than the original time series.  

The results of the complete ensemble based on decomposition by thoroughly describing components 

with types 1 and 2 are presented in the table above. The two types of model development have been compared. 

Based on the experiments that have been carried out, it can be concluded that: (1) decomposition is able to 

capture seasonal, trend and random features from actual data containing high volatility, (2) in almost all cases 

of both types it produces good performance evaluations for all predictions, not only for during training but 

also on data testing when compared to individual networks; (3) integration of decomposition and NNE for 

both types can effectively improve prediction accuracy, and (4) the combination of using weighted average 

shows better performance than simple average. 

Figure 6 presents the predicted results of the ICI price. This section compares prediction plots using 

the decomposition technique, development, NNE types 1 and 2, NN, and actual data from ICI. From the 

picture, it can be seen that the decomposition technique and NNE can follow the exact price of ICI compared 

to individual NN, which makes it difficult to follow the movement of actual ICI data with high volatility. 

Based on the prediction results from the developed integration, which can follow daily data from ICI, it can 

provide helpful information in carrying out investments in running a portfolio. 

 

Figure 6. Predicted result plot 
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4. CONCLUSIONS 

The amount of risk that business people and investors will accept in running portfolios in the VUCA 

era causes the need to predict the prices of commodities, stocks, and so on in the capital market. If business 

people and investors only make wrong judgments or predictions, the consequence is that business people and 

investors will suffer huge losses. This study uses an approach that integrates decomposition and NNE. The 

framework is used to predict ICI prices using two different types. The first objective of this approach is to 

separate time series data into three components: seasonal component, high volatility characterized by a trend 

component, and random component. Then, NNE is used to combine individual networks. To assess the 

effectiveness of this approach, network performance evaluation is carried out using MSE and MAE. The 

experimental results show that integrating decomposition and NNE can reduce errors and provide better 

performance than individual NNs. The decomposition integration and NNE approaches in this research use a 

linear approach; in reality, this approach still requires a nonlinear approach to the prediction output to reduce 

differences in prediction error. 
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