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ABSTRACT 

Article History: 
Any complex valued S-metric space where each Cauchy sequence converges to a point in this 

space is said to be complete. However, there are complex valued S-metric spaces that are 

incomplete but can be completed. A completion of a complex valued S-metric space (𝑋, 𝑆𝑐) is 

defined as a complete complex valued S-metric space (�̂�, 𝑆�̂�) with an isometry 𝑖: 𝑋 → �̂� such 

that 𝑖(𝑋) is dense in �̂�.  In this paper, we prove the existence of a completion for a complex 

valued S-metric space. The completion is constructed using the quotient space of Cauchy 
sequence equivalence classes within a complex valued S-metric space. This construction 

ensures that the new space preserves the essential properties of the original S-metric space 

while being completeness. Furthermore, isometry and denseness are redefined regarding a 

complex valued S-metric space, generalizing those established in a complex valued metric 
space. In addition, an example is also presented to illustrate the concept, demonstrating how 

to find a unique completion of a complex valued S-metric space. 
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1. INTRODUCTION 

One knows that the set of all rational numbers ℚ is incomplete because it contains Cauchy sequences 

that do not converge.  Indeed, the set of all real numbers ℝ can be defined as the completion of ℚ which is 

constructed using equivalence classes of Cauchy sequences. Due to the specific convergence properties of 

the metric and the fact that convergent sequences are Cauchy sequences, the completion of an incomplete 

metric space by a Cauchy sequence can also be obtained.  

Several authors have proposed different types of metric space generalizations, such as [1], [2], [3], [4], 

[5], [6], [7], [8]. Completing these spaces has also been studied, and many results have been proven. For 

instance, Dun and Hang [9] demonstrated that the metrization theorem on 𝑏-metric spaces of Paluszyn ́ski 

and Stempak [10] can be used to complete any 𝑏-metric space. This approach overcomes the restriction of 

using the quotient space of Cauchy sequence equivalence classes for constructing the completion of a metric 

space.  Ge and Lin [11] proved the existence and uniqueness completion theorem for partial metric spaces by 

introducing symmetrically dense subsets. In response to Ge and Lin's question about the denseness property, 

Dung [12] provided an example of a partial metric space. Furthermore, Hasanah and Supeno [13] investigated 

the completion characteristics of complex valued metric space. They constructed the completion of this space 

by redefining the concepts of isometry and denseness, as defined in metric spaces. In their recent paper, Beg 

et al. [14] explored the completion of a complex valued strong 𝑏-metric space. 

The completion of a metric space using Cauchy sequences can be obtained due to convergence 

properties possessed by the metric and the fact that convergent sequences are Cauchy sequences. Inspired by 

Azam et al. [4], a new space has recently been proposed as a generalization of the 𝑆-metric space, known as 

complex valued 𝑆-metric space [15]. However, there is no work discussing the notion of completion for 

complex valued 𝑆-metric space. Motivated by prior research, this paper aims to show the existence and 

uniqueness of completion in terms of complex valued 𝑆-metric space. 

 

 

2. RESEARCH METHODS 

First, we recall some fundamental concepts needed to discuss completion in complex valued 𝑆-metric 

space, including the partial order on the set of all complex numbers ℂ given in Azam et. al. [4] and the 

complex valued 𝑆-metric space described in Mlaiki [15] and Tas and Ozgur [16].  

Definition 1. (see [4]) Let ℂ be the set of all complex numbers and 𝑧1, 𝑧2 ∈ ℂ. The partial order ≾ on ℂ is 

defined as follows: 

𝑧1 ≾ 𝑧2 if and only if 𝑅𝑒(𝑧1) ≤ 𝑅𝑒(𝑧2) and 𝐼𝑚(𝑧1) ≤ 𝐼𝑚(𝑧2). 

From Definition 1, it implies that 𝑧1 ≾ 𝑧2 if one of these conditions is satisfied:  

(i) 𝑅𝑒(𝑧1) = 𝑅𝑒(𝑧2)  and 𝐼𝑚(𝑧1) < 𝐼𝑚(𝑧2),  

(ii) 𝑅𝑒(𝑧1) < 𝑅𝑒(𝑧2)  and 𝐼𝑚(𝑧1) = 𝐼𝑚(𝑧2),  

(iii) 𝑅𝑒(𝑧1) < 𝑅𝑒(𝑧2)  and 𝐼𝑚(𝑧1) < 𝐼𝑚(𝑧2),  

(iv) 𝑅𝑒(𝑧1) = 𝑅𝑒(𝑧2)  and 𝐼𝑚(𝑧1) = 𝐼𝑚(𝑧2).  

It is written as 𝑧1 ⋨ 𝑧2 if 𝑧1 ≠ 𝑧2 and one of the conditions (i), (ii), or (iii) holds. If only the condition (iii) is 

satisfied then we can write 𝑧1 ≺ 𝑧2.  

The properties of partial order on ℂ are given by 

(i) 0 ≾ 𝑧1 ⋨ 𝑧2 implies |𝑧1| < |𝑧2|, 
(ii) 𝑧1 ≾ 𝑧2 and 𝑧2 ≺ 𝑧3 imply 𝑧1 ≺ 𝑧3, 

(iii) 0 ≾ 𝑧1 ≾ 𝑧2 implies |𝑧1| ≤ |𝑧2| 
(iv) If 𝑎, 𝑏 ∈ ℝ, 0 ≤ 𝑎 ≤ 𝑏 and 𝑧1 ≾ 𝑧2 then 𝑎𝑧1 ≾ 𝑏𝑧2, for all 𝑧1, 𝑧2 ∈ ℂ. 

Definition 2. (see [15], [16]) Let 𝑋 be a nonempty set. A complex valued 𝑆-metric on 𝑋 is a map 𝑆𝑐: 𝑋3 → ℂ 

such that the following conditions hold for all 𝑧1, 𝑧2, 𝑧3, 𝑎 ∈  𝑋. 

(𝔦) 0 ≾ 𝑆𝑐(𝑧1, 𝑧2, 𝑧3), 
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(𝔦𝔦) 𝑆𝑐(𝑧1, 𝑧2, 𝑧3) = 0 if and only if 𝑧1 = 𝑧2 = 𝑧3 

(𝔦𝔦𝔦) 𝑆𝑐(𝑧1, 𝑧2, 𝑧3) ≾ 𝑆𝑐(𝑧1, 𝑧1, 𝑎) + 𝑆𝑐(𝑧2, 𝑧2, 𝑎) + 𝑆𝑐(𝑧3, 𝑧3, 𝑎). 
Henceforth, the pair (𝑋, 𝑆𝑐) is called a complex valued 𝑆-metric space. 

Definition 3. (see [15], [16]) Let (𝑋, 𝑆𝑐) be a complex valued 𝑆-metric space. 

1) A sequence {𝑧𝑛} ⊂ 𝑋 converges to 𝑧 ∈ 𝑋 if  𝑆𝑐(𝑧𝑛,𝑧𝑛, 𝑧) → 0 as 𝑛 → ∞. That is for all 𝑐 such that 0 ≺

𝑐 ∈  ℂ, there exists 𝑛0 ∈ ℕ such that for all 𝑛 ≥  𝑛0 we have 𝑆𝑐(𝑧𝑛,𝑧𝑛,𝑧 ) ≺ 𝑐. We denote this by 

𝑙𝑖𝑚
𝑛→∞

𝑧𝑛 = 𝑧. 

2) A sequence {𝑧𝑛} ⊂ 𝑋 is called a Cauchy sequence if 𝑆𝑐(𝑧𝑛,𝑧𝑛, 𝑧𝑚 ) → 0. That is for all 𝑐 such that 0 ≺

𝑐 ∈  ℂ, there exists 𝑛0 ∈ ℕ such that for all 𝑛, 𝑚 ≥ 𝑛0 we have 𝑆𝑐(𝑧𝑛,𝑧𝑛, 𝑧𝑚)  ≺ 𝑐.  

3) A complex valued 𝑆-metric space (𝑋, 𝑆𝑐) is said to be complete if every Cauchy sequence is convergent. 

Lemma 1. (see [15], [16]) Let (𝑋, 𝑆𝑐) be a complex valued 𝑆-metric space and {𝑧𝑛} be a sequence in 𝑋. Then 

{𝑧𝑛} converges to 𝑧 if and  only if |𝑆𝑐(𝑧𝑛,𝑧𝑛,𝑧 )|→ 0 as 𝑛 → ∞. 

Lemma 2. (see [15], [16]) Let (𝑋, 𝑆𝑐) be a complex valued 𝑆-metric space and {𝑧𝑛} be a sequence in 𝑋. Then 

{𝑧𝑛} is a cauchy sequence if and only if |𝑆𝑐(𝑧𝑛,𝑧𝑛, 𝑧𝑚 )|→ 0 as 𝑛, 𝑚 → ∞. 

Lemma 3. (see [15], [16]) If (𝑋, 𝑆𝑐) be a complex valued 𝑆-metric space, then 𝑆𝑐(𝑧1, 𝑧1, 𝑧2) = 𝑆𝑐(𝑧2, 𝑧2, 𝑧1) 

for all 𝑧1, 𝑧2  ∈  𝑋. 

Following the steps to show the existence of completion. Let a complex valued 𝑺-metric space (𝑿, 𝑺𝒄) 

which is not 𝑺-complete. First, we identify any two Cauchy sequences in (𝑿, 𝑺𝒄) and define ∁[𝒙] as the 

equivalence classes of these sequences. Next, we form a new space consisting of these classes, denoted as �̂�. 

Furthermore, we define a map 𝑺�̂� that maps from the product space �̂�𝟑 to ℂ and prove that it is a complex 

valued 𝑺-metric. Thus, (�̂�, 𝑺�̂�) is a complex valued 𝑺-metric space. To show that (𝑿, 𝑺𝒄) and (�̂�, 𝑺�̂�) are 

isometric, we define a map 𝒊: 𝑿 → �̂�. Moreover, we prove that 𝒊(𝑿) is a dense in �̂�. Using this denseness, we 

prove that (�̂�, 𝑺�̂�) is a complete space. 

The next step is to show that the completion is unique. We assume (�̂�, 𝑆�̂�) and (𝑋∗, 𝑆𝑐
∗) are two 

completions of (𝑋, 𝑆𝑐), where 𝑓: 𝑋 → �̂� and 𝑔: 𝑋 → 𝑋∗ are respective isometries and 𝑓(𝑋) is a dense in �̂� 

and 𝑔(𝑋) is a dense in 𝑋∗.  Then, we define a map ℎ: �̂� → 𝑋∗. We prove that ℎ is an isometry and that ℎ(�̂�) =

𝑋∗. 
 

 

3. RESULTS AND DISCUSSION 

Before proving the existence and uniqueness of completion in complex valued 𝑆-metric space, we first 

give some new concepts in this space. Adopting the definitions for complex metric case in Dahliatul and 

Imam [13], we also define two definitions of isometry and dense in terms of complex valued 𝑆-metric space.  

Definition 4. Let (𝑋, 𝑆𝑐) and  (�̂�, 𝑆�̂�) be complex valued 𝑆-metric spaces.  

(i) A mapping 𝑓: 𝑋 → �̂� is called to be an isometry if 𝑆�̂�(𝑓(𝑧1), 𝑓(𝑧1), 𝑓(𝑧2))  = 𝑆𝑐(𝑧1, 𝑧1, 𝑧2), for all 

𝑧1, 𝑧2 ∈ 𝑋. 
(ii) The spaces (𝑋, 𝑆𝑐) and  (�̂�, 𝑆�̂�) are said to be isometric if there exists a bijective isometry. 

Definition 5. Let (𝑋, 𝑆𝑐) be complex valued 𝑆-metric spaces and 𝑌 be a subset of 𝑋. A subset 𝑌 is a dense in 

𝑋 if every 𝑧 ∈  𝑋 is a limit point of  𝑌. This is equivalent to its closure �̅� is equal to 𝑋.  

The following lemmas, which characterize the denseness and the convergence by means of complex 

valued 𝑆-metric space.  

Lemma 4. Let (𝑋, 𝑆𝑐) be complex valued 𝑆-metric spaces and 𝑌 be a subset of 𝑋. A subset 𝑌 is dense in 𝑋 if 

and only if for every 𝑥 ∈ 𝑋 there is a sequence in 𝑌 converging to 𝑥. 

Proof. ⟹ Let 𝑥 be any point in 𝑋. Since 𝑌 is dense in 𝑋, then there are 2 cases: 

• If 𝑥 ∈ 𝑌 then there is constant sequence {𝑥, 𝑥, ⋯ } ⊂ 𝑌 converging to 𝑥. 

• If 𝑥 ∉ 𝑌 then 𝑥 be a limit point of 𝑌. This means that for all 𝑐𝑛 =
1

𝑛
+ 𝑖

1

𝑛
  there exists 𝑥𝑛 ∈ 𝑌 such that 
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𝑥𝑛 ∈ 𝐵𝑐𝑛
(𝑥)⋂𝑌 − {𝑥}. 

Consider that {𝑥𝑛} ⊂ 𝑌 such that 𝑆𝑐(𝑥𝑛, 𝑥𝑛 , 𝑥) ≺ 𝑐𝑛, for all 𝑛 ∈ ℕ. Now, we prove that {𝑥𝑛} converges to 𝑥. 
For all 𝑐 ∈ ℂ, 𝑐 ≻ 0 with 𝑐 = 𝑐1 + 𝑖𝑐2, since 𝑅𝑒(𝑐) = 𝑐1 > 0 and 𝐼𝑚(𝑐) = 𝑐2 > 0, then by the Archimedian 

property, there exist 𝑛1, 𝑛2 ∈ ℕ such that 
1

𝑐1
< 𝑛1 and 

1

𝑐2
< 𝑛2. 

Choose 𝑛0 = max{𝑛1, 𝑛2}. Then for all 𝑛 ≥ 𝑛0 we have  

𝑆𝑐(𝑥𝑛, 𝑥𝑛, 𝑥𝑛0
) ≺

1

𝑛1
+ 𝑖

1

𝑛2
≺ 𝑐1 + 𝑖𝑐2 

Therefore, {𝑥𝑛} converges to 𝑥. 
⇐ If 𝑥 ∈ 𝑌 then 𝑥 ∈ �̅�. Hence, 𝑌 ⊆ �̅�. Next, if 𝑥 ∈ 𝑋 − 𝑌, by hypothesis there exist {𝑦𝑛} ⊂ 𝑌 such that {𝑦𝑛} 

converges to 𝑥. Hence, for every 𝑐 ∈ ℂ, 𝑐 ≻ 0 we have 𝑦𝑛 ∈ 𝐵𝑐(𝑥)⋂𝑌 − {𝑥}. Therefore, 𝑥 is a limit point of 

𝑌, implies 𝑥 ∈ �̅�. So, 𝑋 ⊆ �̅�. 

Conversely, if 𝑦 ∈ 𝑌 then 𝑦 ∈ 𝑋. Hence, 𝑌 ⊆ 𝑋. Morover, if 𝑦 ∈ 𝑌′, where 𝑌′ be a set of all limit point of 𝑌, 
then for every 𝑐 ∈ ℂ, 𝑐 ≻ 0 we have there exist 𝑧 ∈ 𝑌 such that 𝑧 ∈ 𝐵𝑐(𝑦)⋂𝑌 − {𝑦}. Consequently, 𝑦 ∈ 𝑋. 

Since �̅� = 𝑌⋃𝑌′ then �̅� ⊆ 𝑋. 

Hence, �̅� = 𝑋.  

Lemma 5. Let (𝑋, 𝑆𝑐) and (�̂�, 𝑆�̂�) be complex valued 𝑆-metric spaces and a map 𝑓: 𝑋 → �̂�. If 𝑓(𝑋) is a dense 

in �̂� then there exist a sequence {𝑥𝑛} ⊂ 𝑋 such that {𝑓(𝑥𝑛)} converges to 𝑥 ∈ �̂�. 

Proof. Given 𝑓(𝑋) is a dense in �̂�.  

For all 𝑐𝑛 =
1

𝑛
+ 𝑖

1

𝑛
, 𝑛 ∈ ℕ, choose 𝑥𝑛 ∈ 𝑋 such that  

𝑆�̂�(𝑓(𝑥𝑛), 𝑓(𝑥𝑛), 𝑥) ≺ 𝑐𝑛 

We proof that {𝑓(𝑥𝑛)} is convergent in �̂�. 
For any 𝑥  ∈  �̂�, by Lemma 4, then there exists {𝑦𝑛} ⊂ �̂� converging to 𝑥. In particular, for all 𝑐 ∈ ℂ, 𝑐 ≻ 0 

with 𝑐 = 𝑐1 + 𝑖𝑐2 there exist 𝑛1, 𝑛2 ∈ ℕ such that 
1

𝑐1
< 𝑛1 and 

1

𝑐2
< 𝑛2. Choose 𝑛0 = max{𝑛1, 𝑛2}. Then for 

all 𝑛 ≥ 𝑛0 we have  

𝑆�̂�(𝑦𝑛, 𝑦𝑛, 𝑥) ≺ 𝑐 

Since 𝑓(𝑋) is a dense in �̂�, for each 𝑛 ∈ ℕ, there exists 𝑥𝑛 ∈ 𝑋 such that 𝑓(𝑥𝑛) = 𝑦𝑛. Moreover, for all 𝑛 ≥
𝑛0, 

𝑆�̂�(𝑓(𝑥𝑛), 𝑓(𝑥𝑛), 𝑥) ≺
1

𝑛1
+ 𝑖

1

𝑛2
≺ 𝑐1 + 𝑖𝑐2 = 𝑐 

Hence, {𝑓(𝑥𝑛)} converges to 𝑥 ∈ �̂�. 

Lemma 6. Let (𝑋, 𝑆𝑐) and (�̂�, 𝑆�̂�) be complex valued 𝑆-metric spaces and an isometry 𝑓: 𝑋 → �̂� with 𝑓(𝑋) 

being dense in �̂�. If {𝑥𝑛} is sequence in 𝑋 then it is a Cauchy sequence.  

Proof. Let 𝑥 ∈ �̂�. Since 𝑓(𝑋) is a dense in �̂�, by Lemma 5 there exist a sequence {𝑥𝑛} ⊂ 𝑋 such that 

{𝑓(𝑥𝑛)} ⊂ 𝑓(𝑋) converges to 𝑥 ∈ �̂�. It implies {𝑓(𝑥𝑛)} is Cauchy sequences in 𝑓(𝑋). In particular, for all 

0 ≺ 𝑐 ∈ ℂ, there exists 𝑛0 ∈ ℕ such that for all 𝑚, 𝑛 ≥ 𝑛0 we have 𝑆𝑐(𝑓(𝑥𝑛), 𝑓(𝑥𝑛), 𝑓(𝑥𝑚)) ≺ 𝑐. 
Since 𝑓 is an isometry, for all 𝑚, 𝑛 ≥ 𝑛0 we have  

𝑆𝑐(𝑥𝑛, 𝑥𝑛 , 𝑥𝑚) = 𝑆�̂�(𝑓(𝑥𝑛), 𝑓(𝑥𝑛), 𝑓(𝑥𝑚)) ≺ 𝑐. 
Hence, {𝑥𝑛} is a Cauchy sequence in 𝑋.  

Furthermore, we introduce the concept of completion in complex valued 𝑆-metric space. 

Definition 6. Let (𝑋, 𝑆𝑐) be a complex valued 𝑆-metric space. A complete complex valued 𝑆-metric space 

(�̂�, 𝑆�̂�) is called a completion of (𝑋, 𝑆𝑐) if there exists an isometry 𝑖: 𝑋 → �̂� such that 𝑖(𝑋) is dense in �̂�.  
 

Lemma 7. Let ∁[𝑥] be the collection of all Cauchy sequences on a complex valued 𝑆-metric space, i.e. ∁[𝑥] =

{{𝑥𝑛} ⊂ 𝑋|{𝑥𝑛} 𝑖𝑠  𝐶𝑎𝑢𝑐ℎ𝑦 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖𝑛 𝑋}. For any two sequences {𝑥𝑛} and {𝑦𝑛} in ∁[𝑥], define the 

relation "~" as 

{𝑥𝑛}~{𝑦𝑛} ⟺ 𝑙𝑖𝑚
𝑛→∞

|𝑆𝑐(𝑥𝑛 , 𝑥𝑛 , 𝑦𝑛)| = 0 

then "~" is an equivalence relation. 

Proof. Given (𝑋, 𝑆𝑐) a complex valued 𝑆-metric space and ∁[𝑥] =
{{𝑥𝑛}|{𝑥𝑛} is an arbitrary sequence in X}. We proof that "~" is reflexive, symmetric and transitive. 



BAREKENG: J. Math. & App., vol. 18(4), pp. 2747 - 2756, December, 2024. 2751 

 

1.  Let {𝑥𝑛} ∈ ∁[𝑥]. By the property of 𝑆𝑐, we obtain 𝑆𝑐(𝑥𝑛, 𝑥𝑛, 𝑥𝑛) = 0, which implies 

lim
𝑛→∞

|𝑆𝑐(𝑥𝑛, 𝑥𝑛 , 𝑥𝑛)| = 0. Hence, "~" is reflexive. 

2.  Let {𝑥𝑛}, {𝑦𝑛} ∈ ∁[𝑥]. By Lemma 3, we have 𝑆𝑐(𝑥𝑛, 𝑥𝑛 , 𝑦𝑛) = 𝑆𝑐(𝑦𝑛, 𝑦𝑛, 𝑥𝑛), for all 𝑛 ∈ ℕ. 
 Taking modulus and limit as 𝑛 → ∞ on both sides, we have 

0 = lim
𝑛→∞

|𝑆𝑐(𝑥𝑛, 𝑥𝑛, 𝑦𝑛)| = lim
𝑛→∞

|𝑆𝑐(𝑦𝑛, 𝑦𝑛, 𝑥𝑛)| 

Hence, "~" is symmetric. 

3. Let {𝑥𝑛}, {𝑦𝑛}, {𝑧𝑛} ∈ ∁[𝑥] such that {𝑥𝑛}~{𝑦𝑛} and {𝑦𝑛}~{𝑧𝑛}. Then 

lim
𝑛→∞

|𝑆𝑐(𝑥𝑛, 𝑥𝑛 , 𝑦𝑛)| = 0 and lim
𝑛→∞

|𝑆𝑐(𝑦𝑛, 𝑦𝑛, 𝑧𝑛)| = 0. 

By the property of 𝑆𝑐, we get  

𝑆𝑐(𝑥𝑛 , 𝑥𝑛 , 𝑧𝑛) ≾ 2𝑆𝑐(𝑥𝑛 , 𝑥𝑛 , 𝑦𝑛) + 𝑆𝑐(𝑧𝑛, 𝑧𝑛, 𝑦𝑛) 

Taking modulus and limit as 𝑛 → ∞ on both sides, we obtain  

lim
𝑛→∞

|𝑆𝑐(𝑥𝑛, 𝑥𝑛, 𝑧𝑛)| ≤ 2 lim
𝑛→∞

|𝑆𝑐(𝑥𝑛 , 𝑥𝑛 , 𝑦𝑛)| + lim
𝑛→∞

|𝑆𝑐(𝑧𝑛, 𝑧𝑛, 𝑦𝑛)| = 0 

Hence, "~" is transitive. 

This proves that "~" is an equivalence relation on ∁[𝑥]. 

Next, we define a set �̂� be the set of all equivalence classes in ∁[𝑥] over the relation "~", that is 

�̂� = {[{𝑥𝑛}]|{𝑥𝑛} ∈ ∁[𝑥] } 

In particular, {𝑥𝑛} ∈ [{𝑥𝑛}] means that {𝑥𝑛} is a member of [{𝑥𝑛}], i.e. a representative of the class [{𝑥𝑛}].  

Lemma 8. Let �̂� be the set of all equivalence classes in ∁[𝑥] over the relation "~". If for every [{𝑥𝑛}], [{𝑦𝑛}] ∈
�̂� holds 

𝑆�̂�([{𝑥𝑛}], [{𝑥𝑛}], [{𝑦𝑛}]) = 𝑙𝑖𝑚
𝑛→∞

𝑆𝑐(𝑥𝑛, 𝑥𝑛, 𝑦𝑛) 

then 𝑆�̂� is a complex-valued 𝑆𝑐-metric and (�̂�, 𝑆�̂�) is a complex valued 𝑆-metric space. 

Proof. We prove that 𝑆�̂� is well-defined by proving that the limit exists and is independent of the choice of 

Cauchy sequences from equivalence classes. 

(i) Let {𝑥𝑛},{𝑦𝑛}∈ 𝑋. 

Consider 

𝑆𝑐(𝑥𝑛 , 𝑥𝑛 , 𝑦𝑛) ≾ 2𝑆𝑐(𝑥𝑛, 𝑥𝑛 , 𝑥𝑚) + 2𝑆𝑐(𝑦𝑛, 𝑦𝑛, 𝑦𝑚) + 𝑆𝑐(𝑥𝑚 , 𝑥𝑚 , 𝑦𝑚) 

which implies 

𝑆𝑐(𝑥𝑛 , 𝑥𝑛 , 𝑦𝑛) − 𝑆𝑐(𝑥𝑚 , 𝑥𝑚 , 𝑦𝑚) ≾ 2[𝑆𝑐(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑚) + 𝑆𝑐(𝑦𝑛, 𝑦𝑛, 𝑦𝑚)] 
Also 

𝑆𝑐(𝑥𝑚 , 𝑥𝑚 , 𝑦𝑚) − 𝑆𝑐(𝑥𝑛, 𝑥𝑛, 𝑦𝑛) ≾ (−2)[𝑆𝑐(𝑥𝑛, 𝑥𝑛, 𝑥𝑚) + 𝑆𝑐(𝑦𝑛, 𝑦𝑛, 𝑦𝑚)] 
Thus, 

|𝑆𝑐(𝑥𝑛, 𝑥𝑛, 𝑦𝑛) − 𝑆𝑐(𝑥𝑚 , 𝑥𝑚 , 𝑦𝑚)| ≤ 2|𝑆𝑐(𝑥𝑛, 𝑥𝑛 , 𝑥𝑚) + 𝑆𝑐(𝑦𝑛, 𝑦𝑛, 𝑦𝑚)| 
Assume 𝑚 > 𝑛. Taking limit as 𝑛 → ∞, we get 

lim
𝑛→∞

|𝑆𝑐(𝑥𝑛 , 𝑥𝑛 , 𝑦𝑛) − 𝑆𝑐(𝑥𝑚 , 𝑥𝑚 , 𝑦𝑚)| ≤ 2 [ lim
𝑛→∞

|𝑆𝑐(𝑥𝑛, 𝑥𝑛, 𝑥𝑚)| + lim
𝑛→∞

|𝑆𝑐(𝑦𝑛, 𝑦𝑛, 𝑦𝑚)|] 

Since {𝑥𝑛} and {𝑦𝑛} are Cauchy sequences in 𝑋 then 

lim
𝑛→∞

|𝑆𝑐(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑚)| = lim
𝑛→∞

|𝑆𝑐(𝑦𝑛, 𝑦𝑛, 𝑦𝑚)| = 0. 

Hence, 

lim
𝑛→∞

|𝑆𝑐(𝑥𝑛 , 𝑥𝑛 , 𝑦𝑛) − 𝑆𝑐(𝑥𝑚 , 𝑥𝑚 , 𝑦𝑚)| = 0. 

This means that {𝑆𝑐(𝑥𝑛 , 𝑥𝑛 , 𝑦𝑛)} is a Cauchy sequences in ℂ. By the completeness of ℂ, this sequence 

converges. Indeed, lim
𝑛→∞

𝑆𝑐(𝑥𝑛, 𝑥𝑛, 𝑦𝑛) exists. 

(ii) Let {𝑥𝑛}, {𝑥𝑛
′ }, {𝑦𝑛}, {𝑦𝑛

′ } ∈ 𝑋 such that {𝑥𝑛}~{𝑥𝑛
′ } and {𝑦𝑛}~{𝑦𝑛

′ }. This means that  

lim
𝑛→∞

|𝑆𝑐(𝑥𝑛, 𝑥𝑛 , 𝑥𝑛
′ )| = 0 and lim

𝑛→∞
|𝑆𝑐(𝑦𝑛, 𝑦𝑛, 𝑦𝑛

′ )| = 0. 

With the same argument on (i), we can easily verify that  

lim
𝑛→∞

|𝑆𝑐(𝑥𝑛, 𝑥𝑛, 𝑦𝑛) − 𝑆𝑐(𝑥𝑛
′ , 𝑥𝑛

′ , 𝑦𝑛
′ )| = 0 

This means that lim
𝑛→∞

𝑆𝑐(𝑥𝑛 , 𝑥𝑛 , 𝑦𝑛) = lim
𝑛→∞

𝑆𝑐(𝑥𝑛
′ , 𝑥𝑛

′ , 𝑦𝑛
′ ). 

So, lim
𝑛→∞

𝑆𝑐(𝑥𝑛, 𝑥𝑛, 𝑦𝑛) is independent of the particular choice of the representatives. 

Then, we prove that  𝑆�̂� is a complex-valued 𝑆𝑐-metric. 

If [{𝑥𝑛}], [{𝑦𝑛}], [{𝑧𝑛}] ∈ �̂� then 

1) Since 𝑆𝑐(𝑥𝑛, 𝑥𝑛 , 𝑦𝑛) ≿ 0,  
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𝑆�̂�([{𝑥𝑛}], [{𝑥𝑛}], [{𝑦𝑛}]) = lim
𝑛→∞

𝑆𝑐(𝑥𝑛, 𝑥𝑛, 𝑦𝑛) ≿ 0. 

2) 𝑆�̂�([{𝑥𝑛}], [{𝑥𝑛}], [{𝑦𝑛}]) = 0 implies lim
𝑛→∞

𝑆𝑐(𝑥𝑛 , 𝑥𝑛 , 𝑦𝑛) = 0. 

Since {𝑥𝑛} and {𝑦𝑛} are Cauchy sequences in 𝑋, 
{𝑥𝑛}~{𝑦𝑛} ⟺ [{𝑥𝑛}] = [{𝑦𝑛}] 

3) Recall that 𝑆𝑐(𝑥𝑛 , 𝑥𝑛 , 𝑦𝑛) ≾ 2𝑆𝑐(𝑥𝑛 , 𝑥𝑛 , 𝑧𝑛) + 𝑆𝑐(𝑦𝑛, 𝑦𝑛, 𝑧𝑛) which implies  

lim
𝑛→∞

𝑆𝑐(𝑥𝑛 , 𝑥𝑛 , 𝑦𝑛) ≾ 2 lim
𝑛→∞

𝑆𝑐(𝑥𝑛 , 𝑥𝑛 , 𝑧𝑛) + lim
𝑛→∞

𝑆𝑐(𝑦𝑛, 𝑦𝑛, 𝑧𝑛) 

This means 

𝑆�̂�([{𝑥𝑛}], [{𝑥𝑛}], [{𝑦𝑛}]) ≾ 2𝑆�̂�([{𝑥𝑛}], [{𝑥𝑛}], [{𝑧𝑛}]) + 𝑆�̂�([{𝑦𝑛}], [{𝑦𝑛}], [{𝑧𝑛}]) 

Hence, 𝑆�̂� is a complex valued 𝑆-metric. Moreover, (�̂�, 𝑆�̂�) is a complex valued 𝑆-metric space.  

 

We can now state and prove the main theorem that every complex valued 𝑆-metric space has a unique 

completion. 

Theorem 1. Every complex valued 𝑆-metric space has a completion. 

Proof. Given (𝑋, 𝑆𝑐) and (�̂�, 𝑆�̂�) be any two complex valued 𝑆-metric spaces.  For each 𝑥 ∈ 𝑋,  associate the 

class 𝑥 = [{𝑥, 𝑥, 𝑥, … }] ∈ �̂� which contains the constant Cauchy sequence {𝑥, 𝑥, 𝑥, . . . }. Then, define 𝑓: 𝑋 →
�̂� with 𝑓(𝑥)  = 𝑥 .  
It is clear that 𝑓 is an isometry. Since for each 𝑥, 𝑦 ∈ 𝑋,  

𝑆�̂�(𝑓(𝑥), 𝑓(𝑥), 𝑓(𝑦)) = 𝑆�̂�(𝑥, 𝑥, �̂�) = lim
𝑛→∞

𝑆𝑐(𝑥, 𝑥, 𝑦) = 𝑆𝑐(𝑥, 𝑥, 𝑦) 

Next, we show that 𝑓(𝑋) is a dense in �̂�.  
Consider 𝑥 = [{𝑥𝑛}]. Let {𝑥𝑛} ∈ 𝑥. Since {𝑥𝑛} is Cauchy, then for every 𝑐 ≻ 0 there is a 𝑛0 ∈ ℕ such that 

for all 𝑛 ≥ 𝑛0 we have 𝑆(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛0
) ≺ 𝑐. 

Let {𝑥𝑛0
, 𝑥𝑛0

, 𝑥𝑛0
, … } ∈ 𝑥𝑛0̂

∈ 𝑓(𝑋). We obtain 

𝑆�̂�(𝑥, 𝑥, 𝑥𝑛0̂
) = lim

𝑛→∞
𝑆𝑐(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛0

) ≺ 𝑐. 

Thus, every neighbourhood of 𝑥 ∈ �̂� contains an element of 𝑓(𝑋). This means that every 𝑥 ∈ �̂� is a limit 

point of  �̂�. Hence, by Definition 5, 𝑓(𝑋) is a dense subset of �̂�. 

Furthermore, we show that (𝑋,̂ 𝑆�̂�) is complete. 

Let {𝑥�̂�} be any Cauchy sequence in �̂�. Choose 𝑐𝑛 ∈ ℂ with 𝑐𝑛 =
1

2𝑛
+ 𝑖

1

2𝑛
. Since 𝑓(𝑋) is a dense in �̂�, then 

for all 𝑥�̂� ∈ �̂� there is 𝑦�̂� ∈ 𝑓(𝑋) such that  

0 ≺ 𝑆�̂�(𝑥�̂�, 𝑥�̂�, 𝑦�̂�) ≺
1

2𝑛
+ 𝑖

1

2𝑛
 

Taking modulus and limit as 𝑛 → ∞ on both sides,  

lim
𝑛→∞

|�̂�(𝑥�̂� , 𝑥�̂� , 𝑦�̂�)| = 0. 

To show that {𝑦�̂�} is a Cauchy sequence, we use Condition (iv) in the Definition of 𝑺𝒄. Then for all 𝑚, 𝑛 ∈
ℕ (assuming 𝑚 > 𝑛), we have 

𝑆�̂�(𝑦�̂�, 𝑦�̂�, 𝑦�̂�) ≼ 𝑆�̂�(𝑦�̂�, 𝑦�̂�, 𝑥�̂�) + 𝑆�̂�(𝑦�̂�, 𝑦�̂�, 𝑥�̂�) + 𝑆�̂�(𝑦�̂�, 𝑦�̂�, 𝑥�̂�) 

≼ 2𝑆�̂�(𝑦�̂�, 𝑦�̂�, 𝑥�̂�) + 2𝑆�̂�(𝑦�̂� , 𝑦�̂�, 𝑥�̂�) + 𝑆�̂�(𝑥�̂� , 𝑥�̂� , 𝑥�̂�) 

≺ 2 [
1

2𝑛
+ 𝑖

1

2𝑛
] + 2 [

1

2𝑚
+ 𝑖

1

2𝑚
] + 𝑆�̂�(𝑥�̂� , 𝑥�̂� , 𝑥�̂�) 

Since {𝑥�̂�} is a Cauchy sequence, we obtain 

lim
𝑚,𝑛→∞

𝑆�̂�(𝑦�̂�, 𝑦�̂�, 𝑦�̂�) = 0 

Consequently,  

lim
𝑚,𝑛→∞

|𝑆�̂�(𝑦�̂�, 𝑦�̂�, 𝑦�̂�)| = 0 

So, {𝑦�̂�} is a Cauchy sequence in 𝑓(𝑋). 
Next, we will show that {𝑦𝑛} is a Cauchy sequence in 𝑋. 
Suppose 𝑦𝑛 ∈ 𝑋, such that 𝑦�̂� = 𝑓(𝑦𝑛). We have 

𝑆�̂�(𝑦�̂�, 𝑦�̂�, 𝑦�̂�) = 𝑆�̂�(𝑓(𝑦𝑛), 𝑓(𝑦𝑛), 𝑓(𝑦𝑚)) 

Using the fact that 𝑓 is an isometry, we find 

𝑆�̂�(𝑦�̂�, 𝑦�̂�, 𝑦�̂�) = 𝑆𝑐(𝑦𝑛, 𝑦𝑛, 𝑦𝑚), for each 𝑚, 𝑛 ∈ ℕ 

Therefore, 

lim
𝑚,𝑛→∞

|𝑆�̂�(𝑦�̂�, 𝑦�̂�, 𝑦�̂�)| = lim
𝑚,𝑛→∞

|𝑆𝑐(𝑦𝑛, 𝑦𝑛, 𝑦𝑚)| = 0 
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This means that {𝑦𝑛} is a Cauchy sequence in 𝑋. 

Let {𝑦�̂�} ∈ 𝑥 ∈ �̂�. We will show that {𝑥�̂�} converges to 𝑥. 
Recall that 

𝑆�̂�(𝑥�̂� , 𝑥�̂� , 𝑥) ≼ 2𝑆�̂�(𝑥�̂�, 𝑥�̂�, 𝑓(𝑦𝑛)) + 𝑆�̂�(𝑥, 𝑥, 𝑓(𝑦𝑛)) 

For fixed 𝑛, constant sequence {𝑦𝑛, 𝑦𝑛, 𝑦𝑛, … } ∈ 𝑦�̂� = 𝑓(𝑦𝑛), and {𝑦𝑚} ∈ 𝑥, then 

𝑆�̂�(𝑥�̂�, 𝑥�̂�, 𝑥) ≺ 2 [
1

2𝑛
+ 𝑖

1

2𝑛
] + lim

𝑚,𝑛→∞
𝑆𝑐(𝑦𝑚, 𝑦𝑚 , 𝑦𝑛) 

Since {𝑦𝑛} is a Cauchy sequence in 𝑋, then  

𝑆�̂�(𝑥�̂�, 𝑥�̂� , 𝑥) ≺
1

𝑛
+ 𝑖

1

𝑛
, 

which implies 

lim
𝑛→∞

|𝑆𝑐(𝑥�̂�, 𝑥�̂� , 𝑥)| = 0 

Hence, {𝑥�̂�} converges to 𝑥. It means that (�̂�, 𝑆�̂�) is a complete space. 

We proof that the completion is unique by showing (�̂�, 𝑆�̂�) is isometrically equivalent to (𝑋∗, 𝑆𝑐
∗). 

Let (�̂�, 𝑆�̂�) and (𝑋∗, 𝑆𝑐
∗) be any two completions of complex valued metric space (𝑋, 𝑆𝑐). It follows that there 

exist isometries 𝑓: 𝑋 → �̂� and 𝑔: 𝑋 → 𝑋∗ such that 𝑓(𝑋) is a dense in �̂� and 𝑔(𝑋) is a dense in 𝑋∗.  
Next, consider a map ℎ: 𝑓(𝑋) → 𝑔(𝑋) with ℎ(𝑓(𝑥)) = 𝑔(𝑥), for all 𝑥 ∈ 𝑋. Obviously, ℎ is an isometry, since 

for all 𝑥, 𝑦 ∈ 𝑋 then 𝑆�̂�(𝑓(𝑥), 𝑓(𝑥), 𝑓(𝑦)) = 𝑆𝑐(𝑥, 𝑥, 𝑦) = 𝑆𝑐
∗(𝑔(𝑥), 𝑔(𝑥), 𝑔(𝑦)).  

Let 𝑥 ∈ �̂�. Since 𝑓(𝑋) is a dense in �̂�, by Lemma 4, there exist a sequence {𝑥𝑛} ⊂ 𝑋 such that it converges 

in 𝑋. Since 𝑓 is an isometry, {𝑓(𝑥𝑛)} is a Cauchy sequence in �̂�. Also, by the denseness of 𝑓, {𝑓(𝑥𝑛)} is a 

Cauchy sequence in 𝑓(𝑋), which implies {𝑥𝑛} is a Cauchy sequence in 𝑋.  
Moreover, since ℎ is an isometry, then {𝑔(𝑥𝑛)} is a Cauchy sequence in 𝑋∗. Using the fact that 𝑋∗ is a 

complete space, we find that there exist 𝑥∗ ∈ 𝑋∗ such that lim
𝑛→∞

𝑔(𝑥𝑛) = 𝑥∗.  

From these, we define a map 𝑖 to extend ℎ, i.e. 𝑖: �̂� → 𝑋∗ as follow 

𝑖(𝑥) = {
ℎ(𝑥), 𝑥 ∈ 𝑓(𝑋)

lim
𝑛→∞

ℎ(𝑓(𝑥𝑛)) = lim
𝑛→∞

𝑔(𝑥𝑛) , 𝑥 ∈ �̂� − 𝑓(𝑋), 𝑓(𝑥𝑛) ∈ 𝑓(𝑋), lim
𝑛→∞

𝑓(𝑥𝑛) = 𝑥. 

We show that 𝑖 is an isometry and 𝑖(�̂�) = 𝑋∗. 

For all 𝑥, �̂� ∈ �̂� , there exist {𝑥𝑛}, {𝑦𝑛} ⊂ 𝑋  such that lim
𝑛→∞

𝑓(𝑥𝑛) = 𝑥 and lim
𝑛→∞

𝑓(𝑦𝑛) = �̂�.  

By the definition of 𝑖, we obtain 

𝑆𝑐
∗(𝑖(𝑥), 𝑖(𝑥), 𝑖(�̂�)) = lim

𝑛→∞
𝑆𝑐

∗ (ℎ(𝑓(𝑥𝑛)), ℎ(𝑓(𝑥𝑛)), ℎ(𝑓(𝑦𝑛))) = lim
𝑛→∞

𝑆𝑐
∗(𝑔(𝑥𝑛), 𝑔(𝑥𝑛), 𝑔(𝑦𝑛)) 

From the isometry of ℎ, we find 

𝑆𝑐
∗(𝑖(𝑥), 𝑖(𝑥), 𝑖(�̂�)) = lim

𝑛→∞
𝑆�̂�(𝑓(𝑥𝑛), 𝑓(𝑥𝑛), 𝑓(𝑦𝑛)) 

Since {𝑓(𝑥𝑛)} and {𝑓(𝑦𝑛)} are convergent sequences, we have 

𝑆𝑐
∗(𝑖(𝑥), 𝑖(𝑥), 𝑖(�̂�)) = 𝑆�̂�(𝑥, 𝑥, �̂�) 

So, 𝑖 is an isometry.  

Finally, we show that 𝑖(�̂�) = 𝑋∗. 

Let 𝑥∗ ∈ 𝑋∗, based on Lemma 5, there exist {𝑥𝑛} ⊂ 𝑋 such that {𝑔(𝑥𝑛)} converges to 𝑥∗. Clearly, {𝑔(𝑥𝑛)} 

is Cauchy sequence in 𝑔(𝑋). By Lemma 6, we have {𝑥𝑛} is a Cauchy sequence in 𝑋. Also, {𝑔(𝑥𝑛)} is a 

Cauchy sequence in 𝑔(𝑋).  

Since ℎ: 𝑓(𝑋) → 𝑔(𝑋) is an isometry, {𝑓(𝑥𝑛)} is also a Cauchy sequence in �̂�. This implies, {𝑓(𝑥𝑛)} 

converges in �̂�, namely 𝑥. Since 𝑖 is an isometry, {𝑖(𝑓(𝑥𝑛))} = {𝑔(𝑥𝑛)} converges to 𝑖(𝑥). 

Therefore, 

𝑆𝑐
∗(𝑖(𝑥), 𝑖(𝑥), 𝑥∗) ≼ 2𝑆𝑐

∗(𝑖(𝑥), 𝑖(𝑥), 𝑔(𝑥𝑛)) + 𝑆𝑐
∗(𝑥∗, 𝑥∗, 𝑔(𝑥𝑛) 

Taking limit as 𝑛 → ∞ on both sides, we have 

0 ≼ lim
𝑛→∞

𝑆𝑐
∗(𝑖(𝑥), 𝑖(𝑥), 𝑥∗) ≼ 2 lim

𝑛→∞
𝑆𝑐

∗(𝑖(𝑥), 𝑖(𝑥), 𝑔(𝑥𝑛)) + lim
𝑛→∞

𝑆𝑐
∗(𝑥∗, 𝑥∗, 𝑔(𝑥𝑛) 

which implies 

𝑆𝑐
∗(𝑖(𝑥), 𝑖(𝑥), 𝑥∗) = 0 

So, for all 𝑥∗ ∈ 𝑋∗, there is  𝑥 ∈ �̂� such that 𝑖(𝑥) = 𝑥∗. In particular, 𝑖(�̂�) = 𝑋∗.  
 

We provide an example to verify the existence of completion in a complex valued 𝑆-metric space. 
 

Example 1. Consider 𝐴 ⊂ ℂ with 𝐴 = {𝑧 ∈ ℂ|0 < 𝑅𝑒(𝑧) ≤ 1}⋃{𝑧 ∈ ℂ|0 < 𝐼𝑚(𝑧) ≤ 1}. If 𝑧𝑘 ∈ ℂ with 

𝑧𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘 for all 𝑘 = 1,2,3, then define a map 𝑆𝑐: 𝐴3 → ℂ by 



2754 Kiftiah, et al.     A COMPLETION THEOREM FOR COMPLEX VALUED S-METRIC SPACE…  

𝑆𝑐(𝑧1, 𝑧2, 𝑧3) = (|𝑥1 − 𝑥3| + |𝑥2 − 𝑥3|) + 𝑖(|𝑦1 − 𝑦3| + |𝑦2 − 𝑦3|) 

It is easy to verify that 𝑆𝑐 is a complex valued 𝑆-metric. Moreover, (𝐴, 𝑆𝑐) is a complex valued 𝑆-metric 

space. 

Let {𝑧𝑛} ∈ 𝐴 with  𝑧𝑛 = {
1

𝑛
+ 𝑖

1

𝑛
} for all 𝑛 ∈ ℕ. We show that {𝑧𝑛} is a Cauchy sequence in 𝐴. 

Observe that 

𝑆𝑐(𝑧𝑛, 𝑧𝑛, 𝑧𝑚) = 2 |
1

𝑛
−

1

𝑚
| + 2𝑖 |

1

𝑛
−

1

𝑚
| = (2 + 2𝑖) |

𝑚 − 𝑛

𝑚𝑛
| ≺ (2 + 2𝑖) |

1

𝑛
| 

Since |2 + 2𝑖| = 2√2, 

|𝑆𝑐(𝑧1, 𝑧2, 𝑧3)| <
2√2

𝑛
, for all 𝑛 ∈ ℕ. 

Given a real number 𝜀 > 0. Let 

𝑐 =
𝜀

√2
+ 𝑖

𝜀

√2
 

Obviously, 𝑐 ≻ 0. Choose 𝑛0 >
2√2

|𝑐|
. Then, for all 𝑚, 𝑛 ≥ 𝑛0 we obtain 

|𝑆𝑐(𝑧𝑛, 𝑧𝑛, 𝑧𝑚)| <
2√2

𝑛
≤

2√2

𝑛
<

2√2

𝑛0
< |𝑐| = 𝜀 

In particularly, |𝑆𝑐(𝑧𝑛, 𝑧𝑛, 𝑧𝑚)| → 0 as 𝑛 → ∞. Using Lemma 2, {𝑧𝑛} is then a Cauchy sequence in 𝐴. 
However, {𝑧𝑛} does not convergent in 𝐴, because there is no 𝑥 ∈ 𝐴 such that {𝑧𝑛} converges to 𝑥. Hence, 

(𝐴, 𝑆𝑐) is incomplete complex valued 𝑆-metric space. 

We will find a complete complex valued 𝑆-metric space (𝐵, 𝑆𝑐) such that (𝐴, 𝑆𝑐) ⊂ (𝐵, 𝑆𝑐). 

Let �̅� = {𝑧 ∈ ℂ|0 ≤ 𝑅𝑒(𝑧) ≤ 1}⋃{𝑧 ∈ ℂ|0 ≤ 𝐼𝑚(𝑧) ≤ 1}. Claim that �̅� is closure of 𝐴. 

Let 𝑧 ∈ ℂ be a limit point of �̅�. Then, there is {𝑧𝑛} ⊂ �̅� such that lim
𝑛→∞

𝑧𝑛 = 𝑧. Since 𝑧𝑛 ∈ �̅� for each 𝑛 ∈ ℕ, 

it follows that 0 ≤ 𝑅𝑒(𝑧𝑛) ≤ 1 and 0 ≤ 𝐼𝑚(𝑧𝑛) ≤ 1. This implies 0 ≤ 𝑅𝑒(𝑧) ≤ 1 and 0 ≤ 𝐼𝑚(𝑧) ≤ 1. So, 

𝑧 ∈ �̅�. Therefore, any limit point of �̅� must be in �̅� then �̅� is closed. Since �̅� is closed, we have �̅� is closure 

of 𝐴. 

Next, consider (𝐵, 𝑆𝑐) = (�̅�, 𝑆𝑐). Then, every Cauchy {𝑧𝑛} ⊂ 𝐵 is convergent on 𝐵.  Hence, (𝐵, 𝑆𝑐) contains 

(𝐴, 𝑆𝑐) and is a complete complex valued 𝑆-metric space, as desired. 

Moreover, since 𝐴 ⊂ 𝐵 and 𝐵 is closed then 𝐵 = �̅�. Therefore, 𝐴 is dense in 𝐵.  

Next, we show that (𝐴, 𝑆𝑐) and (𝐵, 𝑆𝑐) are isometrics. Equivalent to showing that there exists a bijective 

isometry 𝑓: 𝐴 → 𝐵. 

Define a map 𝑓: 𝐴 → 𝐵 by 𝑓(𝑧) = 𝑧, for all 𝑧 ∈ 𝐴. 

Then, 𝑓 is an isometry. Since for any 𝑧1, 𝑧2 ∈ 𝐴, 

𝑆𝑐(𝑓(𝑧1), 𝑓(𝑧1), 𝑓(𝑧2)) = (|𝑥1 − 𝑥3| + |𝑥2 − 𝑥3|) + 𝑖(|𝑦1 − 𝑦3| + |𝑦2 − 𝑦3|) = 𝑆𝑐(𝑧1, 𝑧2, 𝑧3) 

It is clearly that 𝑓 is a bijective. So, (𝐴, 𝑆𝑐) and (𝐵, 𝑆𝑐) are isometrics. 

Now, we can conclude that (𝐵, 𝑆𝑐) is completion of (𝐴, 𝑆𝑐). 

 

4. CONCLUSIONS 

Derived from the result and discussion, a proof establishes the existence and uniqueness of completion 

for complex valued 𝑆-metric space. It begins by introducing the fundamental concepts such as isometry and 

denseness through this space, followed by the proof of some lemmas characterizing denseness and 

convergence. The main theorem states that every complex valued 𝑆-metric space has a completion. Next, this 

completion is proven unique by establishing an isometric equivalence between two completions. 
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