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ABSTRACT 

Article History: 
T A torsion-free module � over an integral domain � is called Unique Factorization Module 

(UFM) if satisfied some conditions: (1) Every non-zero element � ∈ � has an irreducible 

factorization, that is � � ���� … �
�, with ��, ��, … , �
 are irreducible in � and � is 

irreducible in �, and (2) if � � ���� … �
� � 
�
� … 
��� are two irreducible 

factorizations of �, then � � �, �~�� in �, and we can rearrange the order of the 
�’s so 

that ��~
� in � for every � ∈ �1, 2, … , ��. The definition of UFM is a generalization of the 

concept of factorization on the ring which is applied to the module. In this study, we will 

discuss another definition that is a generalization of UFM, namely by the Weakly Unique 

Factorization Module (w-UFM). First, some concepts that play an important role in defining 

w-UFM are given. After that, the definition and characterization of w-UFM is also given. 

The results of this study will provide the sufficient and necessary conditions of the w-UFM. 
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1. INTRODUCTION 

Let � be an integral domain. An integral domain � is called Unique Factorization Domain (UFD) if it 
satisfies: (1) every non-zero element in the set � has factorization, and (2) if � � ���� … �
 � ���� … �� 
are two factorizations of � on the set �, so � � � and there is a permutation � of �1,2, … , �� such that �� and 
��(�) are associated with each other for every � � 1,2, … , � [1]. It is well-known that rings ang modules have 
many related properties. This gives motivation in applying the concept of factorization ring into the concept 
of factorization module. In [2] introduced the definition of Unique Factorization Modules (UFM) known as 
the factorial modules. In [3], it has been the concept of factorization in the module that underlies the definition 
of UFM along with their properties and characterization. Given � be a non-zero torsion-free module over an 
integral domain �. A module � is called UFM if: (1) every non-zero element � ∈ � has a factorization, i.e. 
� � ���� … �
� where ��, ��, … , �
 is an irreducible element in � and � is an irreducible element in �, 
and if � � ���� … �
� � 
�
� … 
��′ are two factorizations of �, then � � �, �~�′ in �, and �� ~ 
� for 
each � ∈ �1,2, … , ��.  

Studies regarding factorization in modules have been carried out several times. In [4] and [5], they 
generalized the theory of factorization in integral domains to commutative rings with zero divisors into the 
modules. In [6] they studied about unique factorization in modules and symmetric algebras. Further [7] define 
and study the properties of integral modules, they got a theorem on UFD analogue for UFM. Then, [8] shows 
that if � be a commutative ring with identity and � (not necessarily torsion-free) be an �-module, then � as 
a cyclic module is necessary but not suffcient condition for � to be an UFM. Most recently, [9] defines about 
a submodule approach for UFM. 

Using the concept of factorization in rings, [10] defined the concept of weakly factorization in the 
module. The research also provides definitions of weakly prime elements and weakly prime submodule of a 
module. Based on that, it was defined more general concept of unique factorization module, they called that 
the Weakly Unique Factorization Module (w-UFM) which is a torsion-free module on a commutative ring 
with a unit element where every non-zero elements in the module have a unique weakly factorization. In this 
study, we will discuss the definition and properties of w-UFM, as well as its relationship with UFM. Then 
we will show the sufficient and necessary conditions for a module to be w-UFM.  

2. RESEARCH METHODS 

The method used in this research is literature study. The steps in this research are as follows: 

1. Study the basic concepts of factorization and unique factorization domain in rings ang their 
properties. 

2. Study the concept of factorization in modules ang unique factorization modules along with their 
properties, characterization, and examples. 

3. Study the concept of prime elements in prime modules and submodules and their properties. 
4. Study the definitions of weakly prime element and weakly prime submodules along with their 

properties and examples. 
5. Study the definition of a weakly unique factorization modules and its properties. 

3. RESULTS AND DISCUSSION 

This chapter will present the research results that include the definition and properties of w-UFM, as 
well as its relationship with UFM. 

3.1 Weakly Unique Factorization Modules 

Before discussing the definition of w-UFM, several related concepts are explained first along with their 
properties. 

Definition 1. [3] Let � be a module over integral domain �, and #(�) is a set of all unit of �. For any 
�, �� ∈ �, then: 
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(1) An element � is said to divide �′ in � (write �|�′) if there exists % ∈ � such that %�. If �|�′, then 
� is called a factor of �′ in �. 

(2) An element & ∈ � is said to divide � in � (write &|�) if there exists �' ∈ � such that � � &�'. If 
&|�, then & is called a factor of � in �. 

(3) If �|�′ and ��|�, then those two elements are called associates in � (write � ~ �′). If �|�′ but �′ 
is not associates, then � is called a proper factor of �′ in �. 

Based on [11], a non-zero element � ∈ � is called irreducible in � if � does not have a proper factor 
in �. Clearly, a non-zero element � ∈ � is irreducible if � � %�′ implies that � ~ �′ for every �′ ∈ � 
and a non-zero % ∈ �. The following theorem gives a necessary and sufficient condition of an element in a 
module to be irreducible. 

Theorem 1. [8] Let � be a module over �. A non-zero element � ∈ � is irreducible if and only if � � %� 

implies % ∈ #(�) for some % ∈ � and � ∈ �. 

Proof. (⟹) Suppose that � � %�. Since � ≠ 0 then % ≠ 0, so � ~ �. Then we have � � +� for + ∈ �. 
Futhermore, (1 − %+)� � 0 then 1 − %+ � 0 implies that % ∈ #(�). 

(⟸) It is easy to understand that � ~ � because % ∈ #(�). So, � is an irreducible element. ∎ 

Definition 2. [3] Let � be a module over � and � is a non-zero element in �. 

(1) An element � is called primitive if �|��′ implies �|�′ for every �′ ∈ � and non-zero � ∈ �. 
(2) An irreducible element � ∈ � is called prime to � if �|�� implies �|� in � or �|� in � for every � ∈

� and � ∈ �. 

The following theorem in [10] gives us a connection between primitive element and irreducible 
element in modules. 

Theorem 2. [10] Let � be a module over �. Every primitive element of � is irreducible. 

Proof. Let � ∈ � primitive element with � � %�′ for some % ∈ � and �′ ∈ �. Then �|%�′ and since � 
is primitive, we have �|�′. Since � � %�′ and �|�′ then � ~ �′. So � is irreducible. ∎ 

When talking about factorization in ring, the definition of greatest common divisor and least common 
multiple will certainly appear as on the following definition. 

Definition 3. [10] Let � be a module over �, % ∈ � and � ∈ �. 

(1) An element & ∈ � is called greatest common divisor of % and � (write & � [%, �]) if: 
(i)  element &|% in � and &|� in �, and 
(ii)  for each 1 ∈ �, if 1|% in � and 1|� in � then 1|& in �.  

(2) An element �′ ∈ � is called the least common multiple of % and � (write �� � �%, ��) if: 
(i)  element %|�′ and �|�′ in �, and 
(ii)  for each 2 ∈ � if %|2 and �|2 in � then ��|2. 

Theorem 3.  Let � be a module over GCD-Domain � where [�, �] exists for every � ∈ � and � ∈ �. For 

every 
 ∈ �, the following statement satisfies: 

(1) 3[�, 
], �4 ~ [�, [
, �]], 
(2) [
�, 
�] ~ 
[�, �] and 

(3) If  �|
� and [�, �] � 1, then �|
. 

Proof.  

(1) We will prove 3[�, 
], �4|[�, [
, �]] and 3�, [
, �]4|[[�, 
], �]. It is clear that 3[�, 
], �4|[�, 
] and 

3[�, 
], �4|�, which means 3[�, 
], �4|� and 3[�, 
], �4|
. Based on that, we get 3[�, 
], �4|[
, �]. 
Then, we get 3[�, 
], �4|[�, [
, �]]. It is clear that 3�, [
, �]4|� and 3�, [
, �]4|[
, �]. Based on that, we 

get 3�, [
, �]4|
 and 3�, [
, �]4|�. Then, we get 3�, [
, �]4|[�, 
]. Futhermore, we get 

3�, [
, �]4|[[�, 
], �]. 
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(2) We will prove [
�, 
�] ~ 
[�, �] by showing [
�, 
�] � 
[�, �]. Suppose & � [�, �], we will show 

&|
�, 
&|
� and if �|
� then 5|
�. It is clear that & � �� + �7 for some �, 7 in � so 
& � 
�� +

�7. It is clear that 5|
�� and 5|
�7, which means 5|
&. Evidently, [
�, 
�] � 
[�, �]. 

(3) We will prove �|
. Because �|
�, it means 
� � �� for some � in �. It is known that [�, �] � 1, 
means 1 � �� + �7 for some � ∈ � and 7 ∈ �. We have 
 � 
. 1 � 
(�� + �7) � 
�� + 
�7 �

�� + ��7 � �(
� + �7). So, we get �|
. ∎ 

Example 1. Given ℤ: be a module over ℤ. Pick � � 8 ∈ ℤ and � � (4  12  8)= ∈ ℤ:. It is clear that 4 ∈ ℤ 
is [�, �] because 4|� and 4|�, also because for every 1 ∈ ℤ if 1|� in ℤ and 1|� in ℤ: then 1|4 in ℤ. 

Definition 4. [10] Let � be a module over �. A non-zero element � ∈ � is called weakly prime or w-prime 

if �|�
�′ implies �|��′ or �|
�′ for some �, 
 ∈ � and �′ ∈ �. 

Note that if � is w-prime element in � then %� is also w-prime element for every % ∈ #(�) and every 
primitive element in � is a w-prime element [10]. Now we give an example of a w-prime element in modules. 

Example 2. Given � � ℤ[�] be a module over � � ℤ and 2� ∈ �. Let �, 
 ∈ � and >(�) ∈ � with 
2�|�
>(�), then there exists 1 ∈ � so �
>(�) � 12�. If 2� ∤ �>(�), then [2�, �>(�)] � 1 so there exists 
@(�), ℎ(�) ∈ � and implies 

1 � 2�@(�) + �>(�)ℎ(�)

>(�) � 2�@(�)
>(�) + �>(�)ℎ(�)
>(�)

>(�) � 
2�@(�)>(�) + �
>(�)�ℎ(�)

 

It is easy to understand that 2�|
2�@(�)>(�) and 2�|�
>(�)�ℎ(�), so we have 2�|
>(�). So, it is proved 
that 2� is a w-prime element in �. 

Theorem 4. Every primitive element of �-module � is w-prime. 

Proof. Suppose that �|�
�′ for �, 
 ∈ � and �′ ∈ �. Since � is primitive, then �|�′. Hence �|��′ and 
�|
�′, so � is w-prime element. ∎ 

Let � be a module over � and B is a proper submodule of �. A submodule B is called prime 
submodule if ��� ⊆ B implies � ∈ B or � ∈ D��E(�/B) [12]. If � ∈ D��E(�/B), then for each � ∈ � 
we have �(� + B) � 0 + B, which means �� + B � 0 + B, so we have �� ∈ B. This situation motivates 
the definition which is a weakness of the prime submodule, called the weakly prime submodule, which will 
be explained below. 

Definition 5. [10] Let � be a module over � and B be a submodule of �. The submodule B is called weakly 

prime submodule if �
� ∈ B implies �� ∈ B or 
� ∈ B for each � ∈ � and �, 
 ∈ �. 

According to [10], an element � ∈ � is w-prime if and only if �� is a weakly prime submodule in � as �-
module. Weakly prime elements will play an important role in the concept of weakly factorization in the 
module, as described in the definition of w-UFM below. ∎ 

Definition 6. [10] A module � over commutative ring with identity � is called weakly unique factorization 

module (w-UFM) if: 

(1) Every non-zero � ∈ � has a weakly factorization, so � � ���� … ���, with ��, ��, … �� are irreducible 
elements in � and � is a w-prime element in �, and 

(2) if  � � ���� … ��� � 
�
� … 
=�′ are two weakly factorizations of �, then � � G, � ~ �′, and ��  ~ 
� 
for each � ∈ �1,2, … , ��. 

It was previously known that every primitive element in � is a w-prime element. The next theorem 
will prove the opposite in the w-UFM case, as well as a necessary and sufficient condition for a module to be 
w-UFM. 

Theorem 5. Let � be a module over UFD �. Then � is a w-UFM if and only if every w-prime element in � 

is primitive. 

Proof. (⟹) Let � be a w-UFM and � ∈ � is a w-prime element. It will be shown that � is a primitive 
element. Suppose �|�
�′ for a �′ ∈ � and �, 
 ∈ �, meaning that there is % ∈ � such that %� � �
�′. It 
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is known that � is a w-UFM and � is an UFD so that there are irreducible elements in �, namely 
%�, … , %� , ��, … , �= , … , 
�, … , 
H , 1�, … , 1
 and w-prime elements �∗ ∈ � such that % � %�  … %�, � �
 ��  … �= , 
 � 
�  … 
H and �� � 1� … 1
�∗. Furthermore, we get % � %�  … %�� �
 ��  … �=
�  … 
H1� … 1
�∗. The set � is w-UFM, therefore we get � � G + J + � and %� ~ ��, %K ~ 
K, %L ~ 1L 
and � ~ �∗, therefore there is %∗ ∈ #(�) such that �∗ � %∗�. We get �� � 1� … 1
�∗ � 1� … 1
%∗�, so 
�|�′. Which is proved that � is primitive element. 
(⟸) Note that every w-prime element of � is a primitive element. We will prove � is a w-UFM. Take any 
non-zero � in � where � � ��  … �=� � ��  … 
H�′ is a factorization of �. We get �|
�  … 
H�′, 
�′|��  … �=�. It is clear that � and �′ are w-prime elements so �|�′ and ��|�. Therefore, � ~ �′ so that 
there is M ∈ #(�) such that � � M�′. As a result, ��  … �=M�� � 
�  … 
H�� so M��  … �= � 
�  … 
H. 
Based on what is known that � is UFD, it is proven that � is a w-UFM. ∎ 

3.2 Connections and Properties between w-UFM and UFM  

It is known that UFM and w-UFM are modules with different definitions which are motivated by 
applying a factorization property in rings into modules. On this part we will show the relationship between 
UFM and w-UFM and their properties for module over UFD. 

Theorem 6. Let � be a module over UFD �. The module � is a UFM if and only � is a w-UFM. 

Proof.  

(⟹) Note that � is a UFM, means that every irreducible element in � is a primitive element. It is also known 
that every w-prime element is an irreducible element from [3] and [10], so that every w-prime element in � 
is a primitive element. Evidently � is w-UFM (Based on Theorem 5.). 

(⟸) Let � be a w-UFM. It is known that every w-prime element is irreducible, so by using a proof analogous 
to Theorem 2.1 in [3], it can be shown that every irreducible element in � is a primitive element. Therefore, 
it is proven that � is UFM. ∎ 

Based on Theorem 6., it is known that at w-UFM � over UFD � case, every irreducible element in 
� is also a w-prime element. From these properties it is also found that in a torsion-free module over an UFD, 
a w-UFM can also be viewed as an UFM. Using these properties, other properties of w-UFM can be 
determined based on [3]. 

Theorem 7. Let � be a module over UFD �, then the following statements are equivalent: 

(1) � over � is a w-UFM (every w-prime element in � is a primitive element). 
(2) For each � ∈ � and � ∈ �, [�, �] is in �. 
(3) For each � ∈ � and � ∈ �, ��, �� is in �. 
(4) Every irreducible element in � is prime to �. 
(5) If � and 
 are elements of � with �� ⊆ 
�, then 
|� and for each �, 
 ∈ � there is 1 ∈ � such that 

�� ∩ 
� � 1�. 

Proof.  

(1) ⟹ (2) If � � 0, then [�, �]~ � for every � ∈ �. If � � 
� ≠ 0, with 
 ∈ � and � are irreducible 
element in �, it can be claimed that [�, �] ~ [�, 
] � & ∈ �. It is clear that & is the common divisor of � and 
�. Let &′ be the other common divisor of � and �, and � � 
� � &′�′ for some �′ ∈ �. Note that � is 
primitive and & � [�, 
], so &�|
 results in &�|&. So, & ~ [�, �] and point (2) are proved.  

(2) ⟹ (3) If � � 0, then ��, �� ~ 0 ∈ � for every � ∈ �. For any nonzero � in � and � in �, suppose 
& ~ [�, �]. We get � � &�′ and � � &�′ for some �′ ∈ � and �′ ∈ � such that [��, ��] ~ 1. Then we get 
��, �� � ��� � �′�. 
(3) ⟹ (4) Take any irreducible element % in � with %|�� for some � ∈ � and � ∈ �. If % ∤ �, then �� ∈
%� ∩ �� � �%�. Therefore, %|� thus proves that % is prime to �. 

(4) ⟹ (5) Take any �, 
 ∈ � with �� ⊆ 
�. First, we will show 
|�. If 
 � 0, then � � 0 so 
|�. If 
 ≠ 0, 
then 
|�� for an irreducible element � in �, with �|�� for each prime factor � of 
. Based on known at point 
(4), �|� for each prime factor � of 
, so we have 
|�. Second, we will show there is 1 ∈ � such that �� ∩

� � 1�. If � � 0 and 
 � 0, it is clear that 1 � 0. If � or 
 is nonzero elements, for example 1 ~ ��, 
� 
and & ~ [�, 
], it means �� ∩ 
� ⊇ 1� and 1 � ��
 � �
′, where �� � �&P� and 
′ � 
&P�. If 2 is any 
nonzero element in � with 2 � �� � 
�′ ∈ �� ∩ 
�, then ��� � 
′�′. Based on ��|
′�′ and [�, �] ~ 1, 
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it means ��|�′ with the same arguments as in first proof. Therefore, 1 � �′
 divides by 2 � 
�′. That means 
�� ∩ 
� ⊆ 1�. Evidently �� ∩ 
� � 1�. 

(5) ⟹ (1) Take any irreducible element � in � with ��� � 
� for some �, 
 in � and �′ in �. Based on 
the known, we get ��� � 
� ∈ �� ∩ 
� � 1� for some 1 ∈ �. Then we get 
|1 and �|1. Since � is 
irreducible, we get 
 ~ 1 with �|
 and �|�′. Proven � primitive. Because any irreducible element in � is 
primitive, we get � is an UFM.  It is known that the module � over UFD � is also an UFM. Then using the 
proof above, it is proven that the equivalence in points (1) to (5) holds. ∎ 

Example 3. Let � � ℤ[�] be a module over � � ℤ. Take any irreducible element � ∈ � with �|�>(�), for 
any � ∈ � and >(�) ∈ �.  
We will prove that � is prime to �. If � ∤ � in �, it means that [�, �] � 1 which means there is 1, & ∈ � so 

1 � 1� + &�
>(�) � 1�>(�) + �&>(�). 

Since �|1�>(�) and �|�&>(�), we get �|>(�) so it proves that � is a prime to �. Since any irreducible 
element in � is prime to �, it is proved that � � ℤ[�] is a w-UFM based on Theorem 7. 

We have known that every field is a UFD, every field is a vector space over itself, and every UFD is a 
module over the UFD, the following theorem show that the property can be generalize into vector space. 

Theorem 8. Every vector space is a w-UFM. 

Proof. Based on [3], we know that every vector space is a UFM. Since vector space is a module over field 
and field is an UFD, according to Theorem 6 it can be concluded that every vector space is also a w-UFM. 

Now we will show how the w-UFMs relate to it submodule and its products as well as it direct sums. 
Firstly, it is introduced the notion of pure submodule. Research on pure submodule was first carried out by 
[13] and was continued by [14]. Then in [15] they make a generalization of pure submodules. However, this 
time we will only give a definition of pure submodule. 

Definition 7. [13] Let � be a module over � and B be a submodule of �. A submodule B is called pure 

submodule if �� ∩ B � �B for each � ∈ �. 

Example 4. Let � be a module over �. Any direct summand of � is a pure submodule. 

Example 5. Let � � ℤ� be a module over ℤ and B � �(�  0)= | � ∈ ℤ �  ⊆ ℤ�. We will prove that �� ∩ B �
�B for some � ∈ ℤ.  

It is clear that �B ⊆ �� ∩ B. Take any � ∈ �� ∩ B, so we have � ∈ �� and � ∈ B. Furthermore, � �
�(�  �)= � (��  ��)= and � � (M  0)= for some �, �, M ∈ ℤ. Then � � (��  0)= � �(�  0)= and we have � ∈
�B. So, �� ∩ B � �B and B is a pure submodule. 

Lu in [3] introduce the theorem showing the sufficient condition a submodule of UFM over UFD is also a 
UFM. Because in a module over UFD we already shown an UFM can be viewed as w-UFM, we have the 
following theorem. 

Theorem 9. If � is a module over UFD � which is a w-UFM and B is a pure submodule of �, then B is 

also a w-UFM. 

Proof. It is clear that B satisfies the first property of the UFM definition. For every � ∈ � and � ∈ �, we 
have 

�B ∩ �� � (�� ∩ B) ∩ �� � (�� ∩ ��) ∩ B � �� ∩ B � �� 

for an � ∈ � based on the point (3) in Theorem 7 and the nature of B as a pure submodule. Therefore, it is 
proven that B is a UFM. Because � is a module over UFD �, by using Theorem 6 it is proven that B is a 
w-UFM. ∎ 

Theorem 10. Let � �� | � ∈ Q � be the set of modules over UFD �. The following statements are equivalent: 

(1) ∏ ���∈S  is a w-UFM over �, 
(2) ⊕�∈S �� is a w-UFM over �, 
(3) every �� is a w-UFM over �.  
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Proof. Note that for every � ∈ Q, if �� � �(… , 0, 0, ��, 0, 0, … )|�� ∈ ��  � then �� ≅ ��. It was clear that 
⊕�∈S �� is a submodule of ∏ ���∈S . Therefore, it is easy to understand that �� ≅ �� ⊆ ⊕�∈S ��  ⊆  ∏ ���∈S .  

It is also clear that �� is a pure submodule of ⊕�∈S �� and ⊕�∈S �� is a pure submodule of ∏ ���∈S  because 
for any � ∈ �, we have a � ⊕�∈S �� ∩ �� � ��� and � ∏ ���∈S ∩ ⊕�∈S �� � � ⊕�∈S ��. Based on Theorem 

9, it is proved that (1) ⟹ (2) ⟹ (3). 

(3) ⟹ (1) Note that each �� is a UFM over �. Suppose ∏ ���∈S � �. If � � (��)�∈S ∈ �, with every �� �
����′ for some �� ∈ � and the irreducible element ��′ ∈ ��, then � is irreducible if and only if the set 
� �� | � ∈ Q � doesn’t have g.c.d. in �. Therefore, it is clear that � satisfies the first point in the UFM definition. 

We will show that � is UFM by proving that every irreducible element in � is prime to �. Take any 
irreducible element � ∈ � such that �|�� in � for some � ∈ � and � � (��)�∈S ∈ �, we get �|��� in �� 
for every �. If � ∤ � in �, then �|�� in �� for every �, because every �� is a UFM. Therefore, we get �|� in 
� so that � is prime to �. Because of that, it is proven � � ∏ ���∈S  is a UFM. It is known that in module 
over UFD, an UFM is also w-UFM. Therefore, based on the proof in [3] Corollary 2.5, it is easy to see those 
equivalences (1) to (3) also can be applied. ∎ 

4. CONCLUSIONS 

The weakly unique factorization module (w-UFM) is a torsion-free module over commutative ring 
with identity in which each non-zero element has weakly factorization that is unique. It is known that UFM 
and w-UFM are modules with different definitions which are motivated by applying a rings factorization 
property into modules. In this study we find out that if � is an UFD and � be a module over �, then every 
w-prime element in � is a primitive element is a sufficient and necessary condition for � to be a w-UFM. 
However, in a torsion-free module over UFD, a module that is a w-UFM can also be viewed as an UFM. This 
causes every irreducible element in a w-UFM over an UFD to be a w-prime element. Because of these facts, 
it can be derived the properties of w-UFM based on the known properties of UFM. 
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