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ABSTRACT 

Article History: 
One of the many challenges encountered by most pension fund administrators (PFAs) in the 

Defined Contribution (DC) pension plan is the determination of a sustainable and suitable 

investment plan for their members under mortality risk. To achieve this, there is need to 

develop an optimal portfolio which considers the volatility of the stock market price 

consisting of one risk-free asset and a risky asset which follows the Heston volatility model 

(HVM). Also, the portfolio considers additional voluntary contributions (AVC) by members, 

tax on the stock market price, charge on balance (CB), and the mortality risk of the pension 

scheme members (PSM) modeled by the Weibull mortality force function.  Furthermore, an 

optimization problem is established from the extended Hamilton Jacobi Bellman (EHJB) 

equation using variational method. By applying the variable separation technique and 

mean variance utility, the optimal control strategy (OCS) and the efficient frontier are 

obtained. Finally, some numerical simulations are presented to study the behavior of the 

OCS with respect to some sensitive parameters. It was discovered that the composition of 

the OCS depends on the instantaneous volatility, tax on investment, AVC, risk aversion 

coefficient (RAC), CB and the correlation coefficient. Hence, the understanding of the 

behaviour these parameters are very crucial in the determination of OCS. 
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1. INTRODUCTION 

The role of pension scheme as it concerns employee’s welfare during working period (accumulation 

phase) and after working period (distribution phase) cannot be over emphasized as it plays key role with 

respect to social security system and has become so popular among working class members [1]-[2]. Very 

importantly, there two basic types of pension scheme in which employees can be enroll in; they include the 

defined benefit (DB) pension scheme and the DC pension scheme. In the former, the employer bears the 

burden of contribution and set aside certain percentage of its yearly budget toward taking care of his retired 

employees. The benefit of members of this scheme depends on years spent during active service, rank 

before retirement and salary scale before retirement. As good as this scheme is to PSM, there are 

challenges of nonpayment and late payment of benefit to members due to poor management of the funds 

and insufficient funds. However, these challenges necessitate the introduction of the later scheme. In the 

DC pension scheme, there is joint contribution by both employer and employee where employees 

contribute 8% and employers contribute 10% [3]. These funds are paid into individual member’s unique 

account known as the retirement savings account (RSA) under the custody of pension fund custodians 

(PFC) and managed by the pension fund administrators (PFAs) under the supervision of Nigerian pension 

commission (PENCOM). Unlike the former scheme, the retirement benefits of each member depend solely 

on the accumulations of the joint contributions and ultimately of investment returns during the 

accumulation period. However, this investment returns depend heavily on the investment strategy and 

efficiency of the pension fund managers. Hence, this has led to the study of OCS which simply described 

the best distributions of members’ wealth into different assets with the goal of obtaining optimal returns. 

Several authors such as [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], and [17] have 

studied the OCS under different assumptions.  

It is worthy of note that it is impossible to determine the OCS of any investor without the 

understanding of the satisfaction an investor intends to achieve at the expiration of such investment and this 

has led to the study of utility maximization and these utility functions are often refers to as objective 

functions [1][15] There are two classes of utility goals; they include utility functions which maximize the 

accumulation at the expiration of an investment or retirement and the one that balance the return of 

investment and the risk involvement of such investment, i.e maximizing the accumulated fund and 

minimizing risk. The first class includes exponential utility function which exhibits constant absolute risk 

aversion (CARA) [6][18][19][20]. Next is logarithm or power utility functions which exhibit constant 

relative risk aversion (CRRA) [8][9][20] and the quadratic loss functions [21][22]. The second class 

includes the mean variance utility function and value at risk (VAR) utility. The first utility function, which 

originates from [23], studied a single-phase portfolio optimization problem under mean variance utility. 

[24], extended the work of [23] to a continuous time model and determined the efficient frontier under 

mean variance utility. Several authors such as [1], [25], [26], and [27] all used mean variance utility under 

different assumptions. The second utility equals the problem of maximizing the terminal accumulation with 

minimum guarantee [28]. 

In DC pension scheme, the accumulation period requires that members of the scheme contribute and 

wait till after retirement for distribution. However, this has not been the case in recent years due to 

mortality risk involved in the scheme. This implies that PFAs are mandated to return the accumulated funds 

of death members to their next of kin during the accumulation phase; this has somehow affected the 

dynamics of the investment strategies already in existence. Hence this has led to the study of OCS with 

return of premium clauses under different assumptions.  

Several authors have since engaged in this study under different assumptions. The OCS with return 

of premium clause was first studied in [1] under mean variance utility function. In their paper, they 

considered investment in bond and equity where the price process of the equity followed the geometric 

Brownian motion (GBM). In [25], the OCS with return of premium clause was studied under the Heston 

volatility model; they considered investment in a risk-free asset and a risky asset where the price process 

of the risky asset followed the Heston volatility model and went on to determine the efficient frontier of the 

members. The OCS with return of premium clause was also studied in [26]. They considered investment in 

one risk free asset and two risky assets modeled by GBM and constant elasticity of variance (CEV) model 

and solved for the OCS under mean variance utility. [29] obtained the OCS in a DC scheme where the price 

process of the risky asset followed the jump diffusion process. In [30], the OCS for inflation index bond 

and the stock market price was studied for a portfolio with a risk free asset, stock and inflation index bond 
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where the stock market price followed the Heston’s volatility model. [31] further extended the work of [1] 

by studying the OCS with return of premium for a portfolio with assets such as fixed deposit, stock and 

loan. Furthermore, [32] studied the explicit solution of an OCS with voluntary contribution and return 

clause under logarithm utility. However, in the afore mentioned literature, the returned funds were without 

interest from the invested funds but in [33] they studied the OCS with return of premium including 

predetermined interest; they used the Abraham De Moivre model as their mortality force function. Very 

recently, some authors have used the Weibull force function to model their mortality rate and went on to 

study the OCS for a pension plan under different assumptions. They used Weibull force function because 

the mortality rate is proportional to the power of the PSM’s age unlike in Abraham De Moivre’s force 

function where the mortality rate is the ratio of difference between the terminal age of the PSM’s and 

PSM’s present age to the PSM’s age. [34] and [35] studied OCS with return premium with proportional 

administrative charges; in their work, they used the Weibull force function to model the mortality rate of a 

DC pension scheme and obtained the OCS under exponential and mean variance utilities respectively. 

All through the literature and to the best of our knowledge, the OCS for a DC scheme have not yet 

been studied with return of premium clause for portfolio with a combination of charge on balance and 

additional voluntary contribution under Heston volatility model when the mortality risk is modeled by 

Weibull force function. We use the mean variance utility as our objective force function and determine the 

OCS and the efficient frontier of members under this condition. Furthermore, we will study the impact of 

some sensitive parameters on the OCS. The main contribution in this paper is that we modified the work of 

[25] by modeling our mortality risk using Weibull force function instead of Abraham De Moivre model, 

introduce charge on balance similar to [34] and additional voluntary contributions similar to [36], to 

determine the OCS.  

2.  RESEARCH METHODS 

2.1 The Weibull Mortality Force Function 

In this section, we discuss a pension fund system with return clause of premium based on mortality 

risk where the mortality risk is modeled using Weibull mortality force function. 

Suppose ℓ is the pension scheme member’s (PSM’s) monthly contributions, �� the initial age of 

accumulation phase, T period of investment such that �� + � is the terminal age of the PSM. 

Also, let ���,�
�� be the mortality rate of PPMs from time 
 to 
 + ��, 
ℓ is the accumulated 

contributions at time 
, �
ℓ���,�
��  is the returned contributions to the death members’ families within the 

accumulation period. Let � represents the presence of return clause; if � = 0, the PFA returns nothing to 

the death member’s family, if ��(0,1), the PFA returns a fraction of PPM’s contributions to the death 

member’s family and if � = 1, the PFA returns all the contribution to the death member’s family. The 

return clause could be without interest [1][20][25][26] 

From the work of [1], [25], and [26], we have  

⎩⎪⎨
⎪⎧ ���,�
��1 − ���,�
�� = �(�� + 
)�
,

���,�
�� = �(�� + 
)�
,   (1) 

See [1], and [20] for more details. 

Where �(
) is the force function and � is the maximal age of the life table. From [34], the Weibull 

force function formula is given as  �(
) = �
� ,   0 ≤ 
 < �, � > 0, � > 0 (2) 

This implies that �(�� + 
) = �(�� + 
)� (3) 
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2.2 PSM’s Portfolio with CB and AVC 

In this section, we formulate a PSM’s wealth by considering a financial market comprising of an 

investment in a fixed deposit and a stock market. Also, we consider a complete probability space (Ω, ℱ� , ') 

over a real space Ω, probability measure ' and filtration ℱ�which represents the available information from 

the market generated by the Brownian motions () and (*. These two Brownian motions correlate thus; +[()(*] = .. 

Let /��(
) represent the value of the fixed deposit at time 
 and its model is given as  

0�/��(
) = /��(
)1�
/��(0) = 1 ,        (4) 

Also, let /��(
) represents the value of the stock at time 
 which follows the Heston volatility model 

[25], [36] whose dynamics is given by the system of stochastic differential equation below  

2�/��(
) = /��(
) 3(1 + ℌ5�)�
 + 65��ℳ)8/��(
)(0) = )� ,     (5) 

0�5�(
) = 9(:; − 5�)�
 + <65��ℳ=5�(0) = =� ,     (6) 

where 1 > 0 is the interest rate of the risk-free asset, 65� is the volatility of the stock market 

price, : is the long-term price variance, 9 is the rate of reversion to the long-term price variance, < is the 

volatility and ℌ is the expected appreciation rate of the stock market price. 

Furthermore, we consider a case where the PSM is allowed to invest in one risk-free asset and a risky 

asset. Let (>(
), >�(
)) be the proportion of the PPM wealth to be invested in stock and fixed deposit 

where >�(
) = 1 − >(
). Let ℬ be the charge on balance which is determined based on the value of the 

stock by the pension fund administrators [34], @ the tax rate on the stock [14] and A is the additional 

voluntary contribution made by the PPM during the accumulation period [15][33]. 

From [1] and [25], the differential form associated with the PPM wealth B(
) corresponding to 

investment strategies (>(
), >�(
)) and the accumulation phase period [
, 
 + ��], is given as:  

B C
 + 1�D =
⎣⎢⎢
⎢⎢⎡B(
) H>�(
) /����

�
/�� + >(
), /����

�
/�� I + A�ℳ) + ℓ 1�

−ℬB(
) 1� − @ 1� B(
) − �
ℓ���,�
�� ⎦⎥⎥
⎥⎥⎤ H 11 − ���,�
��I (7) 

B C
 + 1�D − B(
) =
⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎡

B(
)
⎝
⎜⎜⎜
⎛Q1 − >(
)R H/����

� − /��/�� I
+>(
) H/����

� − /��/�� I ⎠
⎟⎟⎟
⎞

−(ℬ + @)B(
) 1� + A�ℳ) + ℓ 1� − �
ℓ���,�
��⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎤

H1 + ���,�
��1 − ���,�
��I (8) 

From [1], we have 

W(ℬ + @) 1� = (ℬ + @)�
, ℓ 1� → ℓ�
, /����
� − /��/�� → �/��/�� , /����

� − /��/�� → �/��/�� (9) 

Substituting Equation (1) and Equation (9) into Equation (8), we have 
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�B(
) = ZB(
) [>(
) �/��/�� + Q1 − >(
)R �/��/�� − (ℬ + @)�
\+A�ℳ) + ℓ�
 − �
ℓ�(�� + 
)�
 ] (1 + �(�� + 
)�
) (10) 

 

Substituting Equation (3), Equation (4), Equation (5) and Equation (6) into Equation 

(10), we have 

 

�B(
) = ⎣⎢
⎢⎡WB(
) C >(
)(ℌ − 1)5�+�(�� + 
)� + 1 − (ℬ + @)D+ℓ(1 − �
�(�� + 
)�) ^ �
 + QB(
)>(
)65� + AR�ℳ)

B(0) = _� ⎦⎥
⎥⎤ (11) 

 

2.3 Mean Variance Utility and EHJB Equation 

The mean variance utility is best suitable for time inconsistent problem which is similar to our type. In 

this section, we take into consideration a PFA who is interested to maximize the wealth of his members 

especially the surviving ones by protecting their wealth in the presence return clause and minimize the 

volatility of the accumulated wealth. Hence, there is need to develop an optimal control problem using the 

mean-variance utility as follows: 

 ℐ(
, _, =) = supℓ d+�,_,=B>(�) − efg�,_,=B>(�)h    (12) 

 

Next, we follow the approach in [1], [26] by using the variational inequality technique. The control 

problem in Equation (12) is equivalent to the following Markovian time inconsistent stochastic optimal 

control problem with value function ℐ(
, _, =) 

⎩⎪⎨
⎪⎧ i(
, _, =, >) = +�,_,=[B>(�)] − jk efg�,_,=[B>(�)]= (+�,_,=[B>(�)] − jk Q+�,_,=[B>(�)kl − (+�,_,=[B>(�)])k)) ℐ(
, _, =)  = sup> i(
, _, =, >)    (13) 

Following [1], the OCS >∗ satisfies: ℐ(
, _, =) = sup> i(
, _, =, >∗) (14) 

Where o is the risk-averse coefficient of the PPM. 

Let  p>(
, _, =) = +�,_,=[B>(�)] q>(
, _, =) = +�,_,=[B>(�)k] 
Then ℐ(
, _, =) = supℓ r 3
, _, =,  p>(
, _, =), q>(
, _, =)8 

where r(
, _, =, p, q) = p − o2 (q − pk) (15) 

Our interest here is to maximize the PSM utility in Equation (12) subject to his wealth in Equation 

(11) and applying the Ito’s lemma and maximum principle, we obtain the EHJB equation summarized by 

the verification theorem below. 

Theorem 1. (verification theorem) If there exist three real functions t, u, v:[0, �] × ℜ → ℜ satisfying 

the following EHJB equations: 
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⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧

sup>
⎩⎪⎪
⎨
⎪⎪⎧t� − r� + Qt_ − r_R Z_ C >=(ℌ − 1)+�(�� + 
)� + 1 − (ℬ + @)D+ℓ(1 − �
�(�� + 
)�) ]

+9( : − =)(t= − r=) + 12 Q_>(
)√= + ARkQt__ − ℒ__R
+ 12 <k=(t== − ℒ==) + Q<_=>. + A<√=RQt_= − ℒ_=R ⎭⎪⎪

⎬
⎪⎪⎫ = 0

t(�, _, =) =  r(�, _, =, _, _k)
(16) 

  

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧

⎩⎪⎪
⎨
⎪⎪⎧u� + u_ Z_ C >=(ℌ − 1)+�(�� + 
)� + 1 − (ℬ + @)D+ℓ(1 − �
�(�� + 
)�) ]

+9( : − =)u= + 12 Q_>(
)√= + ARku__
+ 12 <k=u== + Q<_=>. + A<√=Ru_= ⎭⎪⎪

⎬
⎪⎪⎫ = 0

u(�, _, =) =  _
(17) 

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧

⎩⎪⎪
⎨
⎪⎪⎧v� + v_ Z_ C >=(ℌ − 1)+�(�� + 
)� + 1 − (ℬ + @)D+ℓ(1 − �
�(�� + 
)�) ]

+9( : − =)v= + 12 Q_>(
)√= + ARkv__
+ 12 <k=v== + Q<_=>. + A<√=Rv_= ⎭⎪⎪

⎬
⎪⎪⎫ = 0

v(�, _, =) =  _k

(18) 

where: ℒ__ = ou_k,  ℒ�= = ou_u=,  ℒ== = ou=k     (19) 

0�� = �_ = �= = �== = �__ = �_p = �_q = �pq = �qq = 0�p = 1 + of, �pp = o, �q = − jk    (20) 

Then ℐ(
, _, =) = t(
, _, =), p>∗ = u(
, _, =), q>∗ = v(
, _, =) for the OCS>∗. 

Proof. The proof is similar to one in [37], [38], and [39]. 

3. RESULTS AND DISCUSSION  

3.1 Main Results 

Proposition 1. The OCS for the stock market price is given by 

>∗ = �j_ �ℌ − 1 − .<(ℌ − 1)k C����(���)Q9���(ℌ�1)Rl9��� D� �� (1�ℬ��)(���)� ����((�
��)����(�
��)��� � − ��√= (21) 

 

Proof. First, we simplify Equation (16) by substituting Equation (19) and Equation (20) into 

Equation (16) to have 
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⎩⎪⎪
⎨
⎪⎪⎧sup>

⎩⎪⎪
⎨⎪
⎪⎧ t� + t_ Z_ C >=(ℌ − 1)+�(�� + 
)� + 1 − (ℬ + @)D+ℓ(1 − �
�(�� + 
)�) ]

+9( : − =)t= + �k Q_>(
)√= + ARkQt__ − ou_kR+ �k <k=(t== − ou=k) + Q<_=>. + A<√=RQt_= − ou_u=R⎭⎪⎪
⎬⎪
⎪⎫ = 0

t(�, _, =) =  r(�, _, =, _, _k)
                         (22) 

Differentiating Equation (22) with respect to >(
) and solve for >(
), we have 

>∗ = − �(ℌ�1)t_���Qt_=�ju_u=R��√** Qt__�ju_�R_Qt__�ju_�R �,    (23) 

substituting Equation (23) into Equation (17) and Equation (22), we have 

⎩⎪⎨
⎪⎧

⎩⎪⎨
⎪⎧t� + t_ � _Q�(�� + 
)� + 1 − (ℬ + @)R−A√=(ℌ − 1) + ℓ(1 − �
�(�� + 
)�)� + 9( : − =)t=

+ �k <k=(t== − ou=k) − =k �t_(ℌ�1)�Qt_=�ju_u=R��l�
(t__�ju_�) ⎭⎪⎬

⎪⎫ = 0
t(�, _, =) =  r(�, _, =, _, _k)

           (24) 

⎩⎪⎪
⎨
⎪⎪⎧

⎩⎪⎪
⎨⎪
⎪⎧u� + u_ � _Q�(�� + 
)� + 1 − (ℬ + @)R−A√=(ℌ − 1) + ℓ(1 − �
�(�� + 
)�)� + 9( : − =)u=

−=(u_(ℌ − 1) + <.u_=) �t_(ℌ�1)�Qt_=�ju_u=R��t__�ju_� �
+ �k =u__ �t_(ℌ�1)�Qt_=�ju_u=R��(t__�ju_�) �k ⎭⎪⎪

⎬⎪
⎪⎫ = 0

u(�, _, =) =  _
                                    (25) 

Next, we conjecture a solution for t(
, _, =) and u(
, _, =) as follows 

2t(
, _, =) = ��(
)_ + ��(
) =j + ��(�)j ,��(�) = 1, ��(�) = 0, ��(�) = 0       (26) 

2u(
, _, =) = �k(
)_ + �k(
) =j + ��(�)j ,�k(�) = 1, �k(�) = 0, �k(�) = 0       (27) 

Differentiating Equation (26) and Equation (27), we have 

�t� = ���_ + =���j + ���(�)j , t_ = ��, t= = ��(�)j , t__ = t_= = t== = 0  (28) 

�u� = �k�_ + =���j + ���(�)j , u_ = �k, u= = ��(�)j , u__ = u_= = u== = 0  (29) 

Substituting Equation (28) and Equation (29) into Equation (26) and Equation (27), we have: 

⎩⎪⎨
⎪⎧

⎩⎨
⎧_���(
) + =���(�)j + ���(�)j + � _Q�(�� + 
)� + 1 − (ℬ + @)R−A√=(ℌ − 1) + ℓ(1 − �
�(�� + 
)�)� ��(
)

+ 9(:�=)��(�)j − ��=���kj − =[��(ℌ�1)�������]�kj��� ⎭⎬
⎫ = 0

��(�) = 1, ��(�) = 0, ��(�) = 0
                         (30) 
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⎩⎪⎨
⎪⎧

⎩⎨
⎧_�k�(
) + =���j + ���(�)j + �k(
) � _Q�(�� + 
)� + 1 − (ℬ + @)R−A√=(ℌ − 1) + ℓ(1 − �
�(�� + 
)�)�

+ 9(:�=)��(�)j + =(ℌ − 1) ���(ℌ�1)�������j�� � ⎭⎬
⎫ = 0

�k(�) = 1, �k(�) = 0, �k(�) = 0
                            (31) 

Simplifying Equation (30) and Equation (31), we have 

⎩⎪
⎨⎪
⎧ ����(
) + C �(�� + 
)�+1 − (ℬ + @)D ��(
)� _ + Z���(
) − 9��(
) − �k <k�kk− [��(ℌ�1)�������]�k���

] =j
+ ����(
) + o 3ℓ(1 − �
�(�� + 
)�) − A√=(ℌ − 1)8 ��(
) + 9:��(
)� �j��(�) = 1, ��(�) = 0, ��(�) = 0 ⎭⎪

⎬⎪
⎫

= 0                            (32) 

⎩⎪⎨
⎪⎧ ��k�(
) + C �(�� + 
)�+1 − (ℬ + @)D �k(
)� _ + ��k�(
) − 9�k(
) + ��(ℌ�1)���−�k<.(ℌ − 1) � =j

+ ��k�(
) + o 3ℓ(1 − �
�(�� + 
)�) − A√=(ℌ − 1)8 �k(
) + 9:�k(
)� �j�k(�) = 1, �k(�) = 0, �k(�) = 0 ⎭⎪⎬
⎪⎫ = 0                            (33) 

Since _ ≠ 0, = ≠ 0, o ≠ 0, Equation (32) and Equation (33) reduces to 

0���(
) + Q�(�� + 
)� + 1 − (ℬ + @)R��(
) = 0��(�) = 1             (34) 

2���(
) − 9��(
) − �k <k�kk − [��(ℌ�1)�������]�k��� = 0,��(�) = 0             (35) 

0����(
) + o 3ℓ(1 − �
�(�� + 
)�) − A√=(ℌ − 1)8 ��(
) + 9:��(
)� = 0��(�) = 0          (36) 

0�k�(
) + Q�(�� + 
)� + 1 − (ℬ + @)R�k(
) = 0�k(�) = 1             (37) 

2�k�(
) − 9�k(
) + ��(ℌ�1)��� − �k<.(ℌ − 1) = 0,�k(�) = 0             (38) 

0�k�(
) + o 3ℓ(1 − �
�(�� + 
)�) − A√=(ℌ − 1)8 �k(
) + 9:�k(
) = 0�k(�) = 0          (39) 

Solving Equation (34) – Equation (39), we obtain: 

��(
) = ��(1�ℬ��)(���)� ����((�
��)����(�
��)����
                              (40) 

�k(
) = ��(1�ℬ��)(���)� ����((�
��)����(�
��)����
                        (41) 

 

��(
) =
⎝
⎜⎜⎛

C ��(ℌ�1) 9Q9���(ℌ�1)R + ��Q����Rk9 3 ℌ�19���(ℌ�1)8k + (ℌ�1)�k9 D �9(���)
+ H3 (ℌ�1)�9���(ℌ�1) + �Q����R(ℌ�1)�(9���(ℌ�1)�)8 Q1 − ���(ℌ�1)(���)R− �9���(ℌ�1) �1 − �Q9���(ℌ�1)Rl I �9(���)⎠

⎟⎟⎞                 (42) 

�k(
) = C���3Q9���(ℌ�1)R(���)8D(¡�ℛ)�
9���               (43) 



BAREKENG: J. Math. &App., vol. 19(1), pp. 0427 - 0440, March, 2025.  435 

 

��(
) =

⎝
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛o 3ℓ − A√=(ℌ − 1)8 �� ����(�
��)��� H£ (�� + �)��� �� (1�ℬ��)(��¤)� ����(�
�¤)�����¥I

+o 3ℓ − A√=(ℌ − 1)8 ���(1�ℬ�¦)(���)� ����Q(�
��)����(�
��)���R��(�
��)� − ��(�
��)��
�9� C ��(ℌ�1) 9���(ℌ�1) + ��Q����Rk 3 ℌ�19���(ℌ�1)8k + (ℌ�1)�k D Q�9(���) − 1R

�9 3 (ℌ�1)�9���(ℌ�1) + �Q����R(ℌ�1)�(9���(ℌ�1)�)8 Q�9(���) − 1R
− �9���(ℌ�1) H�Q9���(ℌ�1)R(���) + �9 Q�9(���) − 1R − 1− �k9���(ℌ�1) Q�Qk9���(ℌ�1)R(���) − 1R I ⎠

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

                       (44) 

�k(
) =
⎝
⎜⎜⎜
⎜⎛o 3ℓ − A√=(ℌ − 1)8 �� ����(�
��)��� H£ (�� + �)��� �� (1�ℬ��)(��¤)� ����(�
�¤)�����¥I

+o 3ℓ − A√=(ℌ − 1)8 ���(1�ℬ�¦)(���)� ����Q(�
��)����(�
��)���R��(�
��)� − ��(�
��)��
(ℌ�1)�(���)9���(ℌ�1) + 3 ℌ�19���(ℌ�1)8k C�3Q9���(ℌ�1)R(���)8 − 1D ⎠

⎟⎟⎟
⎟⎞

          (45) 

Substituting Equation (40), Equation (42) and Equation (44) into Equation (26) and Equation (41), 

Equation (43), and Equation (45) into Equation (27), t(
, _, =) and u(
, _, =) are solved. 

From Equation (28) and Equation (29), we have 

⎩⎪⎪
⎨
⎪⎪⎧t_ = �� = ��(1�ℬ��)(���)� ����((�
��)����(�
��)����

u_ = �k = ��(1�ℬ��)(���)� ����((�
��)����(�
��)����
u= = ��(�)j = �j C���3Q9���(ℌ�1)R(���)8D(¡�ℛ)�

9���t__ = t_= = 0
             (46) 

Substituting Equation (46) into Equation (23), we obtain Equation (21) which completes the proof. 

Next, we proceed to solve the efficient frontier which shows the relationship between the expectation 

and variance. 

Proposition 2. The efficient frontier of the pension fund is given as follows +�,_,=[B>∗(�)] 
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_��(1�ℬ��)(���)� ����((�
��)����(�
��)����
+ 3ℓ − A√=(ℌ − 1)8 �� ����(�
��)��� H§(�� + �)��

� �� (1�ℬ��)(��¤)� ����(�
�¤)�����¥I
+ 3ℓ − A√=(ℌ − 1)8 Z��(1�ℬ��)(���)� ����Q(�
��)����(�
��)���R��(�� + 
)� − 1�(�� + �)�] +

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎛ ⎣⎢⎢

⎢⎡= Q1 − �Q9���(ℌ�1)R(���)R(ℌ − 1)k9 + .<(ℌ − 1) + (ℌ − 1)k(� − 
)9 + .<(ℌ − 1)
+ C ℌ − 19 + .<(ℌ − 1)Dk Q�Q9���(ℌ�1)R(���) − 1R ⎦⎥⎥

⎥⎤ ×

⎷⃓⃓
⃓⃓⃓⃓⃓
⃓⃓⃓⃓⃓
⃓⃓⃓⃓⃓
⃓⃓⃓⃓⃓
⃓⃓⃓⃓⃓
⃓⃓⃓⃓⃓
ª⃓ efg�,_,=[B>∗(�)]

⎝
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎛ 2 �= 3���Q9���(ℌ�1)R(���)8(ℌ�1)�9���(ℌ�1) + (ℌ�1)�(���)9���(ℌ�1)+ 3 ℌ�19���(ℌ�1)8k Q�Q9���(ℌ�1)R(���) − 1R� − =�9(���) ×

⎝
⎜⎜⎜
⎜⎜⎜
⎛ « k��(ℌ�1) 9Q9���(ℌ�1)R+ ��(����)9 3 ℌ�19���(ℌ�1)8k + (ℌ�1)�9

¬

+H k(ℌ�1)�9���(ℌ�1)+ k�(����)(ℌ�1)�(9���(ℌ�1)�)I (1 − ���(ℌ�1)(���))
− k9���(ℌ�1) �1 − �Q9���(ℌ�1)Rl ⎠

⎟⎟⎟
⎟⎟⎟
⎞

−
⎝
⎜⎜⎜
⎜⎜⎜
⎛ k9� H ��(ℌ�1) 9���(ℌ�1)+ ��(����)k 3 ℌ�19���(ℌ�1)8k + (ℌ�1)�k

I (�9(���) − 1)
− k9���(ℌ�1) ⎝

⎛ �Q9���(ℌ�1)R(���)+ �9 (�9(���) − 1) − 1− �k9���(ℌ�1) Q�Qk9���(ℌ�1)R(���) − 1R⎠
⎞

+ k9 3 (ℌ�1)�9���(ℌ�1) + �(����)(ℌ�1)�(9���(ℌ�1)�)8 ⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎞

(47) 

 

Proof. Recall that +�,_,=[B>∗(�)] = p>∗(
, _, =) = u(
, _, =),       (48) 

From Equation (15) and Theorem 1, we have efg�,_,=[B>∗(�)] = Q+�,_,=[B>∗(�)kl − (+�,_,=[B>∗(�)])k) = kj (u(
, _, =) − t(
, _, =))(49) 

Substituting Equation (40) - Equation (45) into Equation (28) and Equation (29) and 

simplify it, we have 

�j =

⎷⃓⃓
⃓⃓⃓⃓⃓
⃓⃓⃓⃓⃓
⃓⃓⃓⃓⃓
⃓⃓⃓⃓⃓
⃓⃓⃓⃓ª ­® �̄,_,=[B>∗(�)]

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛ k⎣⎢⎢

⎢⎡=C��°Q9���(ℌ�1)R(���)D(ℌ�1)�9���(ℌ�1) �(ℌ�1)�(���)9���(ℌ�1)�3 ℌ�19���(ℌ�1)8�3�Q9���(ℌ�1)R(���)��8 ⎦⎥⎥
⎥⎤�

⎝
⎜⎜⎜
⎜⎜⎜
⎛ « ���(ℌ�1) 9Q9���(ℌ�1)R���Q����R9 3 ℌ�19���(ℌ�1)8��(ℌ�1)�9

¬

�« �(ℌ�1)�9���(ℌ�1)���Q����R(ℌ�1)�Q9���(ℌ�1)�R¬Q�����(ℌ�1)(���)R
� �9���(ℌ�1)����Q9���(ℌ�1)R� ⎠

⎟⎟⎟
⎟⎟⎟
⎞

=�9(���)�

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛ �9�« ��(ℌ�1) 9���(ℌ�1)���Q����R� 3 ℌ�19���(ℌ�1)8��(ℌ�1)�� ¬Q�9(���)��R

� �9���(ℌ�1)⎝⎜
⎛ �Q9���(ℌ�1)R(���)��9Q�9(���)��R��� ��9���(ℌ�1)3�Q�9���(ℌ�1)R(���)��8⎠⎟

⎞
��9C (ℌ�1)�9���(ℌ�1)� �Q����R(ℌ�1)�Q9���(ℌ�1)�RD

         (50)

        

Substituting Equation (41), Equation (43), Equation (45) and Equation (50) into Equation (48), 

we obtain Equation (47) which completes the proof. 

3.2 Numerical Simulations 

In this section, numerical simulations showing the relationship between the OCS and some sensitive 

parameters are presented. To achieve this, the following data are used similar to [25], [34] unless otherwise 
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stated: ± = 0.5, ℬ = 0.01, 1 = 0.01, o = 0.5, � = 1, . = 0.1, < = 0.1, ℵ = 0.01,  @ = 0.01, � = 0.01, ´ = 0.001, �� = 20, � = 30. 

 
Figure 1. Relationship Between the OCS and RAC 

 

 
Figure 2. Relationship Between OCS and tax with Different AVC 

 
Figure 3. Relationship Between the Optimal Fund Size and Entry Age Members 
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Figure 4. Relationship Between OCS and Tax with Different Predetermined Interest 

 
 

Figure 5. Relationship Between OCS and CB 

 

 
 

Figure 6. Relationship between OCS and Appreciation Rate of the Stock Price 
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3.3 Summary of Results and Discussion 

In Figure 1, the relationship between OCS and the RAC was presented. It was observed that the 

OCS for the risky asset is a decreasing function of the RAC. Also, from the graph in figure 4, it was 

observed that the PSM with higher RAC will invest a smaller proportion of his wealth in the risky asset 

(stock) and increase investment in risk free asset while members with lower RAC will invest more in the 

risky assets while reducing investment in the risk-free asset. In Figure 2, the relationship between OCS and 

tax with different AVC was presented. It was observed that as the OCS increases, the tax on the risky asset 

increases likes wise. Also, it was observed that the OCS for the risky asset is a decreasing function of the 

AVC. It was also observed, that if PSM have more AVC in his RSA, such member may tend to invest less 

proportion of his wealth in the risky asset (stock) and increase investment in risk-free asset and vice versa. 

This is consistent with other literature [36]. 

 In Figure 3, the relationship between the optimal fund size and entry age of the PSM. It was 

observed that the optimal fund size grows as the entry age of the PSM grows. This implies that with late 

entry into the scheme, PSM tens to increase the percentage of their investment in risky asset, thereby 

leading to an increase in the optimal fund size of the PSM. Also, in Figure 4, the relationship between the 

OCS and tax with different risk-free interest rate of the PSM was simulated. It was seen that the OCS falls 

as the risk-free interest rate grows and grows when the risk-free interest rate falls. This simply indicates 

that PSM will likely wish to invest less in risky asset if the interest rate from the risk-free asset is very high 

and attractive. However, if the risk-free interest rate is less attractive, PSM member may be advised by 

their fund administrators to move to fund I investment platform for more profitable investment in risky 

assets, thereby reducing their investment in risk free asset. Also, we observed similar to Figure 2, that OCS 

is an increasing function of tax and vice versa. 

In Figure 5, the relationship between the OCS and CB was presented. It was seen that the OCS is a 

decreasing function of CB. This implies that if the CB imposed on investment in risky asset is high, this 

may discourage PSM from investing in risky asset, hence invest more in risk free assets. In Figure 6, the 

relationship between the OCS and appreciation rate of the stock market was presented. It was seen that the 

OCS is an increasing function of the appreciation rate. This implies that if the stock appreciates 

impressively over time, the PSM may be advised by the PFA to increase his investment in such asset for 

the purpose of increasing his returns on investment and may do otherwise if the value of the stock 

depreciates. 

4. CONCLUSION 

In conclusion, we developed an optimal portfolio considering the volatility of the stock market price 

consisting of a risk-free asset and a risky asset under the Heston volatility model (HVM). Also, the PFA 

takes into consideration the additional voluntary contributions (AVC) by PSM, tax on the stock market 

price, charge on balance (CB), and the mortality risk of the PSM using Weibull model. The investment 

model obtained under this assumption in (21) is strongly dependent on the instantaneous volatility, tax on 

investment, AVC, risk aversion coefficient (RAC), CB and the correlation coefficient. Also, the efficient 

frontier which shows the relationship between the expectation and the risk was also obtained in (47). 

Hence, the understanding of the behavior these parameters are very essential, efficient and necessary in the 

formation of OCS for any PSM by PFAs.   
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