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ABSTRACT 

Article History: 
The Global emergency related to mpox infection outside endemic areas occurred in 2022. 

The United States is one of the areas that has been significantly impacted by the mpox virus. 
To reduce the number of infection cases, it is essential to control the spread of the disease. 

This can be achieved through optimal control. The intervention provided to combat the 

dynamic spread of mpox can be represented in the form of a mathematical model. This model 

comprises the animal population (SEI) and the human population (SEIR). Furthermore, the 
model that has been formed also divides humans into high-risk and low-risk populations. The 

classification is based on the risk of complications and death caused by infection. The model 

will be analyzed in order to ascertain its disease-free and endemic stability. The spread of 
mpox is then controlled by healthy living behaviors and antiviral administration to reduce 

the number of infection cases. To this end, numerical simulations were conducted to visualize 

the spread of mpox with and without the function of control variables so that optimal results 

were obtained. The results of the numerical simulation demonstrate that a reduction in 
infection cases by 64.62% can be achieved by implementing an average rate of healthy living 

behaviors of 93.15% and distributing an average rate of antivirus at 75.11%.  
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1. INTRODUCTION 

Mpox is one of the zoonotic infectious diseases caused by viruses of the Orthopoxvirus in the 

Poxviridae family [1]. In terms of zoonotic, mpox can be transmitted between animals and humans. The 

disease is endemic in tropical rainforest regions, particularly Central Africa and West Africa, where natural 

agents of the spread, such as the African Striped Squirrel (Funisciurus sp),  Chamca Baboon (Papio ursinus), 

chimpanzees (Pan troglodytes), and others mostly live in [2]. In non-endemic regions such as The United 

States and The United Kingdom, domestic pets are identified as potential carriers of the virus. Animals that 

are at risk or talented as agents of virus transmission include prairie dogs (Cynomys ludovicianus), squirrels, 

rats, chinchillas, marmots and groundhogs, giant-pouched rats, hedgehogs, and shrews [3]. Transmission of 

the mpox virus from animals to humans can occur through scratches, bites, and direct contact with body fluids 

from infected animals. Meanwhile, human-to-animal transmission can occur through direct contact such as 

hugging, petting, kissing, and sharing bedding and food with pets. The spread of mpox between humans can 

occur through close contact with lesions of infected individuals, splashing fluid or saliva, sexual contact, and 

direct contact with a contaminated environment [4], [5].   

In terms of prevention, there is currently no vaccine that has been specifically formulated to deal with 

the spread of mpox. Consequently, the vaccine that is currently in use is the smallpox vaccine. The vaccine 

has received approval for circulation in several regions in 2019. However, global availability remains very 

limited, so mass vaccination is not currently recommended [4], [6]. Mpox is similar to smallpox in general; 

therefore, sufferers can recover without medical intervention. However, this does not apply to several groups, 

including children under the age of eight, pregnant women, individuals with immune disorders, and those 

with comorbidities [6]. In these groups, mpox can cause a range of complications, including pneumonia, 

corneal infection, brain inflammation, and even death [4]. There have been documented cases of severe illness 

and fatalities from May 10, 2022, to March 7, 2023. There are 38 deaths (1.3 per 1,000 mpox cases) among 

individuals with probable or confirmed mpox that were reported to the CDC and classified as mpox-related. 

Of the 33 individuals with available clinical data, 93.9% (31 of 33) were immunocompromised, primarily 

due to HIV infection. Among the two immunocompromised decedents without HIV, one was presumed to 

have been immunocompromised due to undiagnosed diabetes; this individual presented with diabetic 

ketoacidosis, a severe and life-threatening complication of diabetes, at the time of mpox diagnosis [7].    

The risks and complications associated with mpox infection are not solely a concern for those residing 

in endemic areas; the entire global population is affected. On 23 July 2022, the World Health Organization 

(WHO) designated mpox as a global emergency disease due to the exponential increase in cases, which had 

reached over 87,000 in 110 non-endemic countries [5]. The increase in positive cases in 2022 has prompted 

the development of research related to the spread of mpox disease, both from the medical and mathematical 

perspectives. In the medical field, some post-infection antiviral therapies that have been developed to treat 

orthopoxvirus infection are brincidofovir and tecovirimat. The antiviral brincidofovir was approved by the 

FDA in June 2021 for use in either adult humans or neonates infected with mpox. Meanwhile, the antiviral 

tecovirimat was approved for use in adults and children weighing at least 13 kg by the FDA in July 2018, 

followed by the EMA in June 2021. The use of tecovirimat has been carried out as an adjunct to treatment in 

certain groups with smallpox, mpox, cowpox, and other infectious diseases due to infection with the 

Poxviridae virus. In the field of mathematics, the spread of mpox can be described by the formation of a 

mathematical model. Several studies have been conducted on the spread of mpox, including research [8], 

which discusses the transmission of mpox in Nigeria by grouping humans into groups that experience clinical 

symptoms after infection. Furthermore, research [9] proposed the application of optimal control to the mpox 

spread model. The model divides humans into high-risk and low-risk populations. The risk grouping is based 

on habitual, hygienic, and environmental conditions that are considered to make individuals more susceptible 

to disease.  In the study, the interventions given were the strategy of administering vaccines to susceptible 

humans and the strategy of giving tecovirimat antivirals to quarantine populations to accelerate the healing 

process of infection. The results showed that the number of exposed, quarantined, and infected humans 

decreased when the intervention was given to the population. Moreover, several mathematical models related 

to the spread of mpox were also discussed in research [10]–[13]. 

This article will discuss the development of a mathematical model of the spread of mpox based on 

various studies related to the spread of mpox that have been carried out previously. The model will divide the 

proportion of humans into high-risk and low-risk populations. In contrast to the previous research [9], the 

risk factor under consideration is the likelihood of complications and mortality resulting from the disease in 

question. An individual is considered to be at high risk if they belong to one of the following groups: children 
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under the age of eight, pregnant women, individuals with immune deficiency, and those with comorbidities 

such as HIV/AID and diabetic ketoacidosis [4], [7]. This study applies optimal control within a mathematical 

model of mpox transmission, targeting interventions in the infected human to minimize infection cases. This 

objective is achieved by reducing the exposed and infected subpopulations among both animals and humans. 

The intervention carried out is in the form of curative measures given to infected humans to accelerate the 

occurrence of recovery, which results in a smaller chance of interaction between infected and susceptible 

humans. Consequently, the implementation of this control measure can potentially reduce the incidence of 

future infection cases. Infected individuals will be intervened upon through the implementation of healthy 

living behaviors and the administration of tecovirimat antivirals. Healthy living behaviors, which may be 

considered supportive therapy, involve the adoption of beneficial habits such as balanced nutrition, adequate 

hydration, and the intake of supplements that can alleviate symptoms resulting from infection. Meanwhile, 

tecovirimat antivirals are administered to high-risk individuals infected to accelerate healing and minimize 

post-infection complications. 

 

2. RESEARCH METHODS 

This study employs a quantitative descriptive methodology, adopting a quantitative approach to 

describe the event. The first step in this study is a literature study by collecting references such as books, 

journals, and relevant information as the basis for theory and reference materials to construct a mathematical 

model for the spread of mpox disease. The references are closely related to the differential equation system, 

equilibrium and stability, optimal control theory, the mpox virus, and treatment of infected individuals 

through supportive therapy (healthy living behavior) and antiviral administration. The subsequent stage of 

the study involves the collection of data on mpox infection cases and parameter values. The deployment data 

was obtained from the CDC in the United States and utilized as the initial values in the simulation stage. 

Meanwhile, the parameter value data was sourced from previous research and information provided by 

several official websites in the United States.  

The next step is to identify and establish model assumptions for the construction of the model. At this 

stage, a mathematical model of the mpox spread is formed by involving two populations: the animal 

population and the human population. This model divides the human population into high and low risk based 

on clinical conditions and their risk of death and complications. The animal population is divided into three 

categories: susceptible animals (𝑺𝒓), exposed animal (𝑬𝒓), and infected animals (𝑰𝒓). The mathematical model 

constructed for the human population follows the SEIR (Susceptible, Exposed, Infected, Recovered), 

comprising the following subpopulations: susceptible humans (𝑺𝒉), low-risk exposed humans (𝑬𝟏), high-risk 

exposed humans (𝑬𝟐), low-risk infected humans (𝑰𝟏), high-risk infected humans (𝑰𝟐), and recovered humans 

(𝑹). In the exposed human group, risk factors are reflected by differential progression rates to infection. 

Specifically, low-risk exposed human (𝑬𝟏) exhibit partial immunity, resulting in a prolonged incubation 

period relative to high-risk exposed humans (𝑬𝟐). Similarly, low-risk infected humans (𝑰𝟏), have a lower 

mortality risk than high-risk infected humans (𝑰𝟐), leading to a higher natural recovery rate in 𝑰𝟏 compared 

to 𝑰𝟐. The existence of exposure groups in both animals and humans is based on the virus's incubation period, 

which ranges from 5-21 days.  Furthermore, the model will be analyzed to identify the equilibrium point and 

stability criteria.  

Moreover, the model will be provided with controls in the form of healthy living behavior (𝒖𝟏) and 

antiviral administration (𝒖𝟐) to see how these intervention actions can minimize cases of mpox infection. The 

rates of healthy behaviors (𝒖𝟏) and antiviral administration (𝒖𝟐) are expressed as percentages of infected 

individuals who engage in healthy behaviors and receive antivirals, respectively. Therefore, the values of 𝒖𝟏 

and 𝒖𝟐 are constrained to the interval [𝟎, 𝟏]. This stage is part of optimal control. At this stage, an objective 

function will be formulated with the aim of reducing factors that could facilitate the spread of the virus, such 

as minimizing the number of individuals who are both exposed and infected. The optimal control problem 

that has been formulated will be solved using the Potryagin Minimum Principle. The results obtained will 

then be simulated numerically to obtain a visual representation. The numerical method used is the fourth-

order Runge-Kutta method with a forward sweep approach for the state equation and a backward sweep for 

the costate equation. The results obtained will be visualized and interpreted to reach a conclusion. The 

following is a picture of the method used in the research,  
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Figure 1. Research Method 

3. RESULTS AND DISCUSSION 

3.1 Mathematical Model 

The mathematical model presented in this study is constructed based on a set of assumptions. These 

assumptions are derived by considering a range of deployment factors. The following assumptions are 

provided to delineate the boundaries of the model: 

The animal population is divided into three subpopulations: susceptible animals (𝑆𝑟), exposed animal 

(𝐸𝑟), and infected animals (𝐼𝑟). Therefore, the total animal population at the time 𝑡 is 𝑁𝑟(𝑡) = 𝑆𝑟(𝑡) +
𝐸𝑟(𝑡) + 𝐼𝑟(𝑡). 

a. The human population is divided into six subpopulations: susceptible humans (𝑆ℎ), exposed low-

risk humans (𝐸1), exposed high-risk humans (𝐸2), infected low-risk humans (𝐼1), infected high-

risk humans (𝐼2), and recovered humans (𝑅). Therefore, the total human population at the time 𝑡 

is 𝑁ℎ(𝑡) = 𝑆ℎ(𝑡) + 𝐸1(𝑡) + 𝐸2(𝑡) + 𝐼1(𝑡) + 𝐼1(𝑡) + 𝑅(𝑡). 
b. Animal and human mortality rates consist of natural mortality and infectious mortality. 

c. Human and animal populations are both open, with different rates of birth and death. 

d. Susceptible animals (𝑆𝑟) will be exposed to mpox (𝐸𝑟) if there is contact with infected animals 

(𝐼𝑟). Following this initial contact, an incubation period will elapse before the animals become 

infected. 

e. An individual is considered to be at high risk if they belong to one of the following groups: 

children under the age of eight, pregnant women, individuals with immune deficiency, and those 

with comorbidities.  

f. High-risk individuals are acutely aware of the dangers of mpox to their clinical condition, so they 

limit their interactions with animals. As a result, this group becomes exposed (𝐸2) when 

interacting with infected humans. 

g. Healthy susceptible can be exposed to the mpox virus (𝐸1) if there is contact between infected 

humans and susceptible humans (𝑆ℎ) or contact between infected animals (𝐼𝑟) and susceptible 

humans (𝑆ℎ).  

h. Individuals with no underlying health conditions (low risk) who are exposed to mpox (𝐸1) will 

experience mpox disease with a low risk of death and complications (𝐼1), but at any time also have 

the potential to become a high-risk infection group (𝐼2) that is also influenced by the incubation 

period. 

i. It is important to note that individuals who have recovered from an infection will move to the 

group of recovered individuals (𝑅) at a different rate based on their risk factors. Furthermore, it is 

possible for individuals who have been cured to become susceptible again, as it is not guaranteed 

that they will remain permanently immune to infection. 
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The initial phase of animal-to-animal transmission of the disease begins with interactions between 

susceptible (𝑆𝑟) and infected animals (𝐼𝑟). This interaction results in the animal's exposure to mpox, which 

will become infected at a rate influenced by the incubation period of the virus, hygienic factors, and others. 

Conversely, humans may also become infected with mpox if they come into contact with both infected 

animals (𝐼𝑟) and infected humans. In this case, individuals exposed to mpox are classified according to risk 

group, resulting in the formation of two exposed subpopulations, designated as (𝐸1) and (𝐸2). The infection 

rate varies between subpopulations. In this case, high-risk exposed humans (𝐸2)  are assumed to have a shorter 

incubation period, allowing them to become infected (𝐼2) with the virus rapidly. Low-risk humans who are 

exposed (𝐸1) can also become infected with high risk (𝐼2) due to the potential emergence of clinical factors 

that manifest during the virus incubation period occurs, allowing 𝐸1 to transition to either 𝐼1 or 𝐼2. Once the 

infection period has concluded, infected humans can be designated as cured (𝑅). This recovery is contingent 

upon the natural human recovery rate, which varies depending on the specific risk factors involved. The mpox 

deployment model is illustrated in Figure 2.  

 
Figure 2. Mpox Spread Diagram 

 

Based on Figure 2, the following system of differential equations is obtained 

𝑑𝑆𝑟

𝑑𝑡
= 𝜃𝑟𝑁𝑟 −

𝛽𝐼𝑟𝑆𝑟

𝑁𝑟
− µ𝑟𝑆𝑟 

𝑑𝐸𝑟

𝑑𝑡
=

𝛽𝐼𝑟𝑆𝑟

𝑁𝑟
− (𝜂 + µ𝑟)𝐸𝑟 

𝑑𝐼𝑟

𝑑𝑡
= 𝜂𝐸𝑟 − (µ𝑟 + 𝛿𝑟)𝐼𝑟 

𝑑𝑆ℎ

𝑑𝑡
= 𝜃ℎ𝑁ℎ − (

𝛼1𝐼1 + 𝛼2𝐼2

𝑁ℎ
+

𝛼3𝐼𝑟

𝑁𝑟
) 𝑝𝑆ℎ − (

𝛼1𝐼1 + 𝛼2𝐼2

𝑁ℎ
) (1 − 𝑝)𝑆ℎ − µℎ 𝑆ℎ + 𝑘𝑅 (1) 

𝑑𝐸1

𝑑𝑡
= (

𝛼1𝐼1 + 𝛼2𝐼2

𝑁ℎ
+

𝛼3𝐼𝑟

𝑁𝑟
) 𝑝𝑆ℎ − (𝛾1 + 𝛾2+µℎ )𝐸1  

𝑑𝐸2

𝑑𝑡
= (

𝛼1𝐼1 + 𝛼2𝐼2

𝑁ℎ
) (1 − 𝑝)𝑆ℎ − (𝑑 + µℎ )𝐸2 

𝑑𝐼1

𝑑𝑡
= 𝛾1𝐸1 − (µℎ + 𝛿1 + 𝜎1)𝐼1 

𝑑𝐼2

𝑑𝑡
= 𝛾2𝐸1 + 𝑑𝐸2 − (µℎ + 𝛿2 + 𝜎2)𝐼2 

𝑑𝑅

𝑑𝑡
= 𝜎1𝐼1 + 𝜎2𝐼2 − (𝑘 + µℎ )𝑅 

 

𝜃𝑟𝑁𝑟 
𝛽𝐼𝑟𝑆𝑟

𝑁𝑟

 𝜂𝐸𝑟 

µ𝑟 𝐸𝑟 µ𝑟 𝑆𝑟 (µ𝑟 + 𝛿𝑟)𝐼𝑟 

         

𝑘𝑅 

  

µℎ 𝑅 

(µℎ + 𝛿1)𝐼1 

(µℎ + 𝛿2)𝐼2 

   

   

𝛾1𝐸1 

𝑑𝐸2 

µℎ 𝐸2 

 

   

µℎ 𝐸1 

𝜃ℎ𝑁ℎ 

µℎ 𝑆ℎ 
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The parameters used in this study are shown in the following Table 1, 

Table 1. Parameter Value  

Parameter  Description Unit Value References 

𝜃𝑟  Growth rate of animal population Year 0.2 

 

[11] 

𝜃ℎ  Growth rate of human population Year 0.012 
 

[14] 

µ𝑟  Natural death rate in animals  Year 0.2 

 

[11] 

µℎ  Natural death rate in humans  Year 0.0091 
 

[15] 

𝛿𝑟  Death rate in animals due to 

infection 

Year 0.5 

 

[16] 

𝛿1  Death rate in low-risk humans due 

to infection 

Day 0.13 𝑥 10−6 [11] 

𝛿2  Death rate in high-risk humans is 

due to infection 

Day 0.0009 Assume 

𝑝  Proportion of low-risk humans 

susceptible  

Year 0.55 

 

Assume 

𝛽  Contact rate between infected 

animal and susceptible animal  

Day 0.0007 

 

Assume 

𝛼1  Contact rate between infected low-

risk humans and susceptible 

humans 

Day 0.0032 

 

[8] 

𝛼2  Contact rate between infected high-

risk humans and susceptible 

humans 

Year 0.1 

 

Assume 

𝛼3  Contact rate between infected 

animals and susceptible humans 

Year 0.00025 [16] 

𝜂  Progression rate from exposed to 

infected in animals 

Day 0.0773 

 

[17] 

𝛾1  Progression rate from exposed to 

infected in low-risk humans 

Day 0.004 [11] 

𝛾2  Progression rate from exposed low-

risk humans to infected at high-risk  

Day 0.009 Assume 

𝑑  Progression rate from exposed to 

infected in high-risk groups 

Day 0.014 Assume 

𝜎1  Natural recovery rate in infected 

healthy humans 

Week 0.3432 [17] 

𝜎2  Natural recovery rate in high-risk 

infected humans 

Week 0.15 

 

Assume 

𝑘  The rate of reinfection cases in 

human 

Day 1.75 𝑥 10−7 

 

[18] 

As can be observed in Table 1, certain parameter values are based on assumptions. The occurrence of 

assumed parameter values is a consequence of the limited data available regarding the dissemination of mpox 

in individuals at high risk. Consequently, the estimated value of the parameter is based on the value observed 

in low-risk humans. The assumed values assigned to parameters, such as the natural recovery rate for high-

risk infected individuals (𝜎2), are estimated to be lower than those for low-risk individuals (𝜎1). This 

adjustment reflects the impact of risk factors that slow the healing process in high-risk cases [4]. 

The solution obtained from this model is the number of individuals in all subpopulations, so the 

solution obtained must be non-negative. The initial value given to the subpopulation is non-negative [19], 

𝑆𝑟(0) > 0,  𝐸𝑟(0) ≥ 0,  𝐼𝑟(0) ≥ 0,  
𝑆ℎ(0) > 0,  𝐸1(0) ≥ 0,  𝐸2(0) ≥ 0,  𝐼1(0) ≥ 0,  𝐼2(0) ≥ 0, 𝑅(0) ≥ 0. 

Theorem 1. If a non-negative initial condition is given in Equation (1), then the solution obtained for the 

system is positive in ℝ9
+  ∪ 09 for all 𝑡 > 0. 

Proof. Based on Equation (1) where the initial value is non-negative for all subpopulations, then each 

variable has the following bounds, 
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𝑑𝑆𝑟

𝑑𝑡
|(𝑆𝑟=0,𝐸𝑟≥0,𝐼𝑟≥0,𝑆ℎ>0,𝐸1≥0,𝐸2≥0,𝐼1≥0,𝐼2≥0,𝑅≥0) = 𝜃𝑟𝑁𝑟 > 0 

𝑑𝐸𝑟

𝑑𝑡
|(𝑆𝑟>0,𝐸𝑟=0,𝐼𝑟≥0,𝑆ℎ>0,𝐸1≥0,𝐸2≥0,𝐼1≥0,𝐼2≥0,𝑅≥0) =

𝛽𝐼𝑟𝑆𝑟

𝑁𝑟
≥ 0 

𝑑𝐼𝑟

𝑑𝑡
|(𝑆𝑟>0,𝐸𝑟≥0,𝐼𝑟=0,𝑆ℎ>0,𝐸1≥0,𝐸2≥0,𝐼1≥0,𝐼2≥0,𝑅≥0) = 𝜂𝐸𝑟 ≥ 0 

𝑑𝑆ℎ

𝑑𝑡
|(𝑆𝑟>0,𝐸𝑟≥0,𝐼𝑟≥0,𝑆ℎ>0,𝐸1=0,𝐸2≥0,𝐼1≥0,𝐼2≥0,𝑅≥0) = 𝜃ℎ𝑁ℎ + 𝑘𝑅 ≥ 0  

𝑑𝐸1

𝑑𝑡
|(𝑆𝑟>0,𝐸𝑟≥0,𝐼𝑟≥0,𝑆ℎ>0,𝐸1=0,𝐸2≥0,𝐼1≥0,𝐼2≥0,𝑅≥0) = (

𝛼1𝐼1 + 𝛼2𝐼2

𝑁ℎ
+

𝛼3𝐼𝑟

𝑁𝑟
) 𝑝𝑆ℎ ≥ 0 (2) 

𝑑𝐸2

𝑑𝑡
|(𝑆𝑟>0,𝐸𝑟≥0,𝐼𝑟≥0,𝑆ℎ>0,𝐸1≥0,𝐸2=0,𝐼1≥0,𝐼2≥0,𝑅≥0) = (

𝛼1𝐼1 + 𝛼2𝐼2

𝑁ℎ
) (1 − 𝑝)𝑆ℎ ≥ 0 

𝑑𝐼1

𝑑𝑡
|(𝑆𝑟>0,𝐸𝑟≥0,𝐼𝑟≥0,𝑆ℎ>0,𝐸1≥0,𝐸2≥0,𝐼1=0,𝐼2≥0,𝑅≥0) = 𝛾1𝐸1 ≥ 0 

𝑑𝐼2

𝑑𝑡
|(𝑆𝑟>0,𝐸𝑟≥0,𝐼𝑟≥0,𝑆ℎ>0,𝐸1≥0,𝐸2≥0,𝐼1≥0,𝐼2=0,𝑅≥0) = 𝛾2𝐸1 + 𝑑𝐸2 ≥ 0 

𝑑𝑅

𝑑𝑡
|(𝑆𝑟>0,𝐸𝑟≥0,𝐼𝑟≥0,𝑆ℎ>0,𝐸1≥0,𝐸2≥0,𝐼1≥0,𝐼2≥0,𝑅=0) = 𝜎1𝐼1 + 𝜎2𝐼2 ≥ 0 

By substituting the parameter values in Table 1, it can be shown that the rate of change of each variable 

in Equation (2) is non-negative at ℝ9
+  ∪ 09. Therefore, the solution of Equation (1) will always be non-

negative if the initial conditions are satisfied. ∎ 

 

3.2 Model Analysis 

The mpox spread model will be analyzed by simplifying the model in Equation (1) into a non-

dimensional form. This will be achieved by transforming all subpopulation compartments in the form of the 

proportion of the number of individuals in the subpopulation to the total population. The following model is 

obtained: 

𝑑𝑠𝑟

𝑑𝑡
= 𝜃𝑟 − (𝛽𝑖𝑟 + µ𝑟)𝑠𝑟 

𝑑𝑒𝑟

𝑑𝑡
= 𝛽𝑖𝑟𝑠𝑟 − (𝜂 + µ𝑟)𝑒𝑟 

𝑑𝑖𝑟

𝑑𝑡
= 𝜂𝑒𝑟 − (µ𝑟 + 𝛿𝑟)𝑖𝑟 

𝑑𝑠ℎ

𝑑𝑡
= 𝜃ℎ − (𝛼1𝑖1 + 𝛼2𝑖2 + 𝛼3𝑖𝑟)𝑝𝑠ℎ − (𝛼1𝑖1 + 𝛼2𝑖2)(1 − 𝑝)𝑠ℎ − µℎ 𝑠ℎ + 𝑘𝑟 (3) 

𝑑𝑒1

𝑑𝑡
= (𝛼1𝑖1 + 𝛼2𝑖2 + 𝛼3𝑖𝑟)𝑝𝑠ℎ − (𝛾1 + 𝛾2+µℎ )𝑒1 

𝑑𝑒2

𝑑𝑡
= (𝛼1𝑖1 + 𝛼2𝑖2)(1 − 𝑝)𝑠ℎ − (𝑑 + µℎ )𝑒2 

𝑑𝑖1

𝑑𝑡
= 𝛾1𝑒1 − (µℎ + 𝛿1 + 𝜎1)𝑖1 

𝑑𝑖2

𝑑𝑡
= 𝛾2𝑒1 + 𝑑𝑒2 − (µℎ + 𝛿2 +  𝜎2)𝑖2 

𝑑𝑟

𝑑𝑡
= 𝜎1𝑖1 + 𝜎2𝑖2 − (𝑘 + µℎ )𝑟  

 
3.2.1 Equilibrium Points 

An equilibrium point is a condition where a system is not affected by time [20]. The following 

equilibrium point values are obtained,  

a. A disease-free equilibrium point is a condition where there are no cases of infection, so there are 

only susceptible humans in the subpopulation. The disease-free equilibrium point is expressed by 

𝐸0 = (𝑠𝑟, 𝑒𝑟 , 𝑖𝑟 , 𝑠ℎ, 𝑒1, 𝑒2, 𝑖1, 𝑖2, 𝑟), 
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𝐸0 = (
𝜃𝑟

µ𝑟
, 0, 0,

𝜃ℎ

µℎ
, 0, 0, 0, 0,0) . (4) 

b. Endemic equilibrium point is a condition where there is mpox infection in the population. The 

endemic equilibrium point is expressed by 𝐸∗ = (𝑠𝑟
∗, 𝑒𝑟

∗, 𝑖𝑟
∗, 𝑠ℎ

∗ , 𝑒1
∗, 𝑒2

∗, 𝑖1
∗, 𝑖2

∗ , 𝑟∗), 

𝑠𝑟
∗ =

𝜃𝑟

𝛽𝑖𝑟
∗ + µ𝑟

 ,                             𝑒𝑟
∗ =

𝛽𝑖𝑟
∗𝑠𝑟

∗ 

𝜂 + µ𝑟
, 

𝑖𝑟
∗ =

𝜂𝑒𝑟
∗ 

𝛿𝑟 + µ𝑟
,                                         𝑠ℎ

∗ =
𝜃ℎ + 𝑘𝑟∗

𝛼1𝑖1
∗ + 𝛼2𝑖2

∗ + 𝛼3𝑖𝑟
∗𝑝 + µℎ 

 

𝑒1
∗ =

(𝛼1𝑖1
∗ + 𝛼2𝑖2

∗ + 𝛼3𝑖𝑟
∗)𝑝𝑠ℎ

∗

(𝛾1 + 𝛾2+µℎ )
, 𝑒2

∗ =
(𝛼1𝑖1

∗ + 𝛼2𝑖2
∗)(1 − 𝑝)𝑠ℎ

∗

(𝑑 + µℎ )
,     

 𝑖1
∗ =

𝛾1𝑒1
∗

(µℎ + 𝛿1 +  𝜎1)
,                         𝑖2

∗ =
𝛾2𝑒1

∗ + 𝑑𝑒2
∗

(µℎ + 𝛿2 + 𝜎2)
,  𝑟∗ =

𝜎1𝑖1
∗ + 𝜎2𝑖2

∗

(𝑘 + µℎ )
 (5) 

 

3.2.2 Stability Analysis 

Stability analysis is done by forming the Jacobian matrix of the system in Equation (3). There are two 

equilibrium points that will be examined for stability criteria: disease-free and endemic stability. By 

substituting the disease-free equilibrium point in Equation (4) into the Jacobian matrix, the following 

eigenvalues are obtained: 

𝜆1 = −µ𝑟 

𝜆2 = −𝜂 − µℎ 

𝜆3 = −µℎ 

𝜆4 = −(𝛾1 + 𝛾2 + µℎ) 

𝜆5 = −𝑑 − µℎ 

𝜆6 = −𝑘 − µℎ 

𝜆7 =
−(𝛿𝑟 + 𝜂 + 2µ𝑟) + √𝛿𝑟

2 − 2𝛿𝑟𝜂 + 𝜂2 + 8𝛿𝑟µ𝑟 + 8µ𝑟
2 + 4𝜂𝛽 (

𝜃𝑟
µ𝑟

)

2
 

𝜆8 =
−(𝛾1 + 𝛾2 + 𝛿1 + 𝜎1 + 2µℎ) − √(𝛾1 + 𝛾2 − 𝛿1 − 𝜎1)2 + 4𝛾1𝛼2𝑝 (

𝜃𝑟
µ𝑟

)

2
 

Furthermore, the value of 𝜆9 is obtained by finding the root of the following polynomial 

𝜆4 + 𝐴𝜆3 + 𝐵𝜆2 + 𝐶𝜆 + 𝐷 = 0 

where, 

𝐴 = 𝛾1 + 𝛾2 + 𝛿1 + 𝛿2 + 𝜎1+𝜎2 + 𝑑 + 4µℎ 

𝐵 = (𝛾1 + 𝛾2 + µℎ)(𝑑 + µℎ) + (𝛿1 + 𝛿2 + 𝜎1+𝜎2 + 2µℎ)(𝛾1 + 𝛾2 + 𝑑 + 2µℎ)

+ (𝛿2 + 𝜎2 + µℎ)(𝛿1 + 𝜎1 + µℎ) −
𝜃ℎ

µℎ

(𝛼1𝛾1𝑝 + 𝛼2𝑑(1 − 𝑝) + 𝛼2𝛾2𝑝) 

𝐶 = (𝛿1 + 𝛿2 + 𝜎1+𝜎2 + 2µℎ)(𝛾1 + 𝛾2 + µℎ)(𝑑 + µℎ)
+ (𝛿2 + 𝜎2 + µℎ)(𝛿1 + 𝜎1 + µℎ)(𝛾1 + 𝛾2 + 𝑑 + 2µℎ)

− [
𝑝𝜃ℎ

µℎ
(𝛼1𝛾1(𝑑 + 𝛿2 + 𝜎2 + 2µℎ) + 𝛼2𝛾2(𝑑 + 𝛿1 + 𝜎1 + 2µℎ))

+
(1 − 𝑝)𝜃ℎ𝛼2𝑑

µℎ
(𝛾1 + 𝛾2 + 𝛿1 + 𝜎1 + 2µℎ)] 

By substituting the parameter values in Table 1, all eigenvalues obtained are negative. Based on this, 

the system is asymptotically stable at the disease-free equilibrium point. Furthermore, the stability criteria at 

the endemic equilibrium point can be obtained by substituting Equation (5) into the Jacobian matrix. At this 

stage, eigenvalues are obtained using MatlabR2017a. The results obtained show that all eigenvalues obtained 

are negative. Consequently, the system is also stable in the endemic state. However, we also obtained this 

result by determining the value of the reproduction number [19]. In this case, the results obtained with the 

reproduction number show that the obtained system is stable. The number of compartments is certainly a 

consideration when choosing a stability analysis method, given the complexity of the model. 
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3.3 Optimal Control 

The main objective of optimal control is the control to reduce the cases of mpox infecting healthy 

living behavior (𝑢1) and antiviral administration (𝑢2). This control strategy is implemented as a curative 

measure directed at individuals infected with mpox. In alignment with this objective, the formulation of the 

objective function is presented as follows:  

𝑍(𝑢1, 𝑢2, ) = ∫ (𝐸𝑟 + 𝐼𝑟 + 𝐸1 + 𝐸2 + 𝐼1 + 𝐼2 +
𝐴1

2
𝑢1

2 +
𝐴2

2
𝑢2

2)  𝑑𝑡
𝑡𝑓

𝑡0

 (6) 

Meanwhile, the formulation of the constraint function can be done by intervening in the mathematical 

model in Equation (1) with the given control. In an effort to minimize future cases of infection, infected 

humans are given control in the form of healthy living behavior and antiviral administration to accelerate 

healing in such a way as to minimize the chance of infected humans interacting with susceptible humans. In 

this case, low-risk infected humans (𝐼1) and high-risk infected humans (𝐼2) will apply healthy living behavior 

as one of the supportive therapies that can accelerate healing. With the presence of risk factors and deaths in 

the high-risk group, high-risk infected humans (𝐼2) will receive additional antiviral tecovirimat treatment to 

accelerate healing and avoid complications that arise after infection. Therefore, the following constraint 

function is obtained. 
𝑑𝑆𝑟

𝑑𝑡
= 𝜃𝑟𝑁𝑟 −

𝛽𝐼𝑟𝑆𝑟

𝑁𝑟
− µ𝑟𝑆𝑟 

𝑑𝐸𝑟

𝑑𝑡
=

𝛽𝐼𝑟𝑆𝑟

𝑁𝑟
− (𝜂 + µ𝑟)𝐸𝑟 

𝑑𝐼𝑟

𝑑𝑡
= 𝜂𝐸𝑟 − (µ𝑟 + 𝛿𝑟)𝐼𝑟 

𝑑𝑆ℎ

𝑑𝑡
= 𝜃ℎ𝑁ℎ − (

𝛼1𝐼1 + 𝛼2𝐼2

𝑁ℎ
+

𝛼3𝐼𝑟

𝑁𝑟
) 𝑝𝑆ℎ − (

𝛼1𝐼1 + 𝛼2𝐼2

𝑁ℎ
) (1 − 𝑝)𝑆ℎ − µℎ 𝑆ℎ + 𝑘𝑅 

𝑑𝐸1

𝑑𝑡
= (

𝛼1𝐼1 + 𝛼2𝐼2

𝑁ℎ
+

𝛼3𝐼𝑟

𝑁𝑟
) 𝑝𝑆ℎ − (𝛾1 + 𝛾2+µℎ )𝐸1 

𝑑𝐸2

𝑑𝑡
= (

𝛼1𝐼1 + 𝛼2𝐼2

𝑁ℎ
) (1 − 𝑝)𝑆ℎ − (𝑑 + µℎ )𝐸2 

𝑑𝐼1

𝑑𝑡
= 𝛾1𝐸1 − (µℎ + 𝛿1 + (1 + 𝑢1) 𝜎1)𝐼1 

𝑑𝐼2

𝑑𝑡
= 𝛾2𝐸1 + 𝑑𝐸2 − (µℎ + 𝛿2 + (1 + 𝑢1 + 𝑢2) 𝜎2)𝐼2 

𝑑𝑅

𝑑𝑡
= (1 + 𝑢1) 𝜎1𝐼1 + (1 + 𝑢1 + 𝑢2) 𝜎2𝐼2 − (𝑘 + µℎ )𝑅 

 

 

 

 

 

 

 

 

 

 

(7) 

with the description as shown in Table 2 

Table 2. Control Parameter 

Parameter Description 

𝑢1 Healthy living behavior rate  

𝑢2 Antiviral administration rate 

𝐴1 Weight on healthy living behavior control  

𝐴2 Weight on antivirus administration control 

The objective function in Equation (6) shows that the objective of optimal control is to minimize the 

spread of mpox. This can be done by minimizing populations that can accelerate the spread of disease such 

as animals and humans exposed to and infected with mpox. In addition, healthy living behavior is also 

minimized with weight 𝐴1 due to the costs incurred for several supportive measures such as fulfilling 

balanced nutrition, providing supplements, using pain relievers, and other measures that require costs [21]. 

In addition, antiviral administration is also minimized with weight 𝐴2 due to the cost and risks posed after 

antiviral administration [6], [22]. The results of providing control on the system can be obtained using 

Pontryagin minimum principle condition [23] with the following steps: 
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Step 1: The Hamilton function is formed by summing the integrand of the objective function in Equation 

(6) and the right-hand side of the constraint function in Equation (7) which has been multiplied by the costate 

variable (𝜆). 

𝐻 = 𝐸𝑟 + 𝐼𝑟 + 𝐸1 + 𝐸2 + 𝐼1 + 𝐼2 +
𝐴1

2
𝑢1

2 +
𝐴2

2
𝑢2

2 

+𝜆1 [𝜃𝑟𝑁𝑟 −
𝛽𝐼𝑟𝑆𝑟

𝑁𝑟
− µ𝑟𝑆𝑟] + 𝜆2 [

𝛽𝐼𝑟𝑆𝑟

𝑁𝑟
− (𝜂 + µ𝑟)𝐸𝑟] 

+𝜆3[𝜂𝐸𝑟 − (µ𝑟 + 𝛿𝑟)𝐼𝑟]  

+𝜆4 [𝜃ℎ𝑁ℎ − (
𝛼1𝐼1 + 𝛼2𝐼2

𝑁ℎ
+

𝛼3𝐼𝑟

𝑁𝑟
) 𝑝𝑆ℎ − (

𝛼1𝐼1 + 𝛼2𝐼2

𝑁ℎ
) (1 − 𝑝)𝑆ℎ − µℎ 𝑆ℎ + 𝑘𝑅] 

+𝜆5 [(
𝛼1𝐼1 + 𝛼2𝐼2

𝑁ℎ
+

𝛼3𝐼𝑟

𝑁𝑟
) 𝑝𝑆ℎ − (𝛾1 + 𝛾2+µℎ )𝐸1] + 𝜆6 [(

𝛼1𝐼1 + 𝛼2𝐼2

𝑁ℎ
) (1 − 𝑝)𝑆ℎ − (𝑑 + µℎ )𝐸2] 

+𝜆7[𝛾1𝐸1 − (µℎ + 𝛿1 + (1 + 𝑢1)𝜎1)𝐼1] + 𝜆8[𝛾2𝐸1 + 𝑑𝐸2 − (µℎ + 𝛿2 + (1 + 𝑢1 + 𝑢2)𝜎2)𝐼2] 
+𝜆9[(1 + 𝑢1)𝜎1𝐼1 + (1 + 𝑢1 + 𝑢2)𝜎2𝐼2 − (𝑘 + µℎ )𝑅]                                                                                          (8) 

 

Step 2: Determine the stationary condition of the Hamiltonian function with respect to all control variables, 

i.e., the first partial derivative of Equation (8) with respect to the control variables 𝑢1 and 𝑢2.  

𝜕𝐻

𝜕𝑢1
= 0,           

𝜕𝐻

𝜕𝑢2
= 0 

the following optimal conditions for 𝑢1 and 𝑢2 are obtained 

𝑢1 =
(𝜆7 − 𝜆9)𝜎1𝐼1 + (𝜆8 − 𝜆9)𝜎2𝐼2

𝐴1
,           𝑢2 =

(𝜆8 − 𝜆9)𝜎2𝐼2

𝐴2
. 

Then, by ensuring that the value of u obtained is always in the interval [0,1], the optimal value for each control 

is formulated, 

𝑢1
∗ = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

(𝜆7 − 𝜆9)𝜎1𝐼1 + (𝜆8 − 𝜆9)𝜎2𝐼2

𝐴1
} , 1}, 

𝑢2
∗ = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

(𝜆8 − 𝜆9) 𝜎2𝐼2

𝐴2
} , 1}, 

Step 3: Substitute 𝑢1
∗ and 𝑢2

∗  into Equation (8) to obtain the optimal condition of the Hamilton (𝐻∗).  

Step 4: Determine the state equation in the optimal state, 

 

𝑑𝑥∗(𝑡)

𝑑𝑡
=

𝜕𝐻∗

𝜕𝜆
 

Thus, the following state equation is obtained: 

𝑆𝑟
∗̇ =

𝜕𝐻∗

𝜕𝜆1
= 𝜃𝑟𝑁𝑟 −

𝛽𝐼𝑟𝑆𝑟

𝑁𝑟
− µ𝑟𝑆𝑟 

𝐸𝑟
∗̇ =

𝜕𝐻∗

𝜕𝜆2
=

𝛽𝐼𝑟𝑆𝑟

𝑁𝑟
− (𝜂 + µ𝑟)𝐸𝑟 

𝐼𝑟
∗̇ =

𝜕𝐻∗

𝜕𝜆3
= 𝜂𝐸𝑟 − (µ𝑟 + 𝛿𝑟)𝐼𝑟 

𝑆ℎ̇
∗

=
𝜕𝐻∗

𝜕𝜆4
= 𝜃ℎ𝑁ℎ − (

𝛼1𝐼1 + 𝛼2𝐼2

𝑁ℎ
+

𝛼3𝐼𝑟

𝑁𝑟
) 𝑝𝑆ℎ − (

𝛼1𝐼1 + 𝛼2𝐼2

𝑁ℎ
) (1 − 𝑝)𝑆ℎ − µℎ 𝑆ℎ + 𝑘𝑅 

𝐸1
∗̇ =

𝜕𝐻∗

𝜕𝜆5
= (

𝛼1𝐼1 + 𝛼2𝐼2

𝑁ℎ
+

𝛼3𝐼𝑟

𝑁𝑟
) 𝑝𝑆ℎ − (𝛾1 + 𝛾2+µℎ )𝐸1 

𝐸2̇
∗

=
𝜕𝐻∗

𝜕𝜆6
= (

𝛼1𝐼1 + 𝛼2𝐼2

𝑁ℎ
) (1 − 𝑝)𝑆ℎ − (𝑑 + µℎ )𝐸2 

𝐼1
∗̇ =

𝜕𝐻∗

𝜕𝜆7
= 𝛾1𝐸1 − (µℎ + 𝛿1 + (1 + 𝑢1

∗)𝜎1)𝐼1 
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𝐼2
∗̇ =

𝜕𝐻∗

𝜕𝜆8
= 𝛾2𝐸1 + 𝑑𝐸2 − (µℎ + 𝛿2 + (1 + 𝑢1

∗ + 𝑢2
∗)𝜎2)𝐼2 

�̇�∗ =
𝜕𝐻∗

𝜕𝜆9
= (1 + 𝑢1

∗)𝜎1𝐼1 + (1 + 𝑢1
∗ + 𝑢2

∗)𝜎2𝐼2 − (𝑘 + µℎ )𝑅. 

Step 5: Determine the costate equation in the optimal state, 

𝑑𝜆∗(𝑡)

𝑑𝑡
= −

𝜕𝐻∗

𝜕𝑥
 

Thus, the following costate equation is obtained: 

𝜆1
∗̇ = −

𝜕𝐻∗

𝜕𝑆𝑟
= (𝜆1 − 𝜆2)

𝛽𝐼𝑟

𝑁𝑟
+ µ𝑟𝜆1 

𝜆2
∗̇ = −

𝜕𝐻∗

𝜕𝐸𝑟
= (𝜆2 − 𝜆3)𝜂 + µ𝑟𝜆2 

𝜆3
∗̇ = −

𝜕𝐻∗

𝜕𝐼𝑟
= (𝜆1 − 𝜆2)

𝛽𝑆𝑟

𝑁𝑟
+ (𝜆4 − 𝜆5)

𝛼3𝑝𝑆ℎ

𝑁𝑟
+ (µ𝑟 + 𝛿𝑟)𝜆3 

𝜆4
∗̇ = −

𝜕𝐻∗

𝜕𝑆ℎ
= (𝜆4 − 𝜆5𝑝 − 𝜆6(1 − 𝑝))

(𝛼1𝐼1 + 𝛼2𝐼2)

𝑁ℎ
+ (𝜆4 − 𝜆5)

𝛼3𝑝𝐼𝑟

𝑁𝑟
+ µℎ𝜆4 

𝜆5
∗  ̇ = −

𝜕𝐻∗

𝜕𝐸1
= −1 + (𝜆5 − 𝜆7)𝛾1 + (𝜆5 − 𝜆8)𝛾2 + µℎ𝜆5 

𝜆6
∗̇ = −

𝜕𝐻∗

𝜕𝐸2
= −1 + (𝑑 + µℎ)𝜆6 − 𝑑𝜆8 

𝜆7
∗̇ = −

𝜕𝐻∗

𝜕𝐼1
= −1 + (𝜆4 − 𝜆5𝑝 − (1 − 𝑝)𝜆6)

𝛼1𝑆ℎ

𝑁ℎ
+ (µℎ + 𝛿1)𝜆7 + (𝜆7 − 𝜆9)(1 + 𝑢1

∗) 𝜎1 

𝜆8
∗̇ = −

𝜕𝐻∗

𝜕𝐼2
= −1 + (𝜆4 − 𝜆5𝑝 − (1 − 𝑝)𝜆6)

𝛼2𝑆ℎ

𝑁ℎ
+ (µℎ + 𝛿2)𝜆8 + (𝜆8 − 𝜆9)(1 + 𝑢1

∗ + 𝑢2
∗) 𝜎2 

𝜆9̇ = −
𝜕𝐻

𝜕𝑅
= (𝜆9 − 𝜆4)𝑘 + µℎ𝜆9 . 

With the transversal condition that 𝜆𝑖(𝑡𝑓) = 0 for 𝑖 = 1,2, … ,9 

 

3.4 Numerical Simulation 

To produce a visualization that can represent the behavior of mpox spread, simulations are carried out 

using MATLAB software. In addition to parameter values, this simulation requires the weight value of the 

control variable and the initial value of each subpopulation. The cost weight of implementing control 

measures 𝑢1 and 𝑢2 is represented by the parameters 𝐴1and 𝐴2. The weight values given for each control are 

𝐴1 = 0.25 and 𝐴2 = 0.5. The value of 𝐴2 > 𝐴1 indicates that the priority of minimizing the costs and side 

effects of antiviral administration is more prioritized than the costs incurred for healthy living behavior. In 

addition, the following initial values are also given;  

Table 3. Initial Conditions of Subpopulation 

Variables Description Initial Values References 

𝑆𝑟 Susceptible animal 50,000 Data Fitted 

𝐸𝑟 Exposed animal 20,000 Assume 

𝐼𝑟 Infected animal  30,000 Assume 

𝑆ℎ Susceptible human 333,202,915 Data Fitted 

𝐸1 Exposed low-risk human 1,200 Assume 

𝐸2 Exposed high-risk human 1,000 Assume 

𝐼1 Infected low-risk human 20 [24] 

𝐼2 Infected high-risk human 12 [24] 

𝑅 Recovered human 358 [7] 

𝑁𝑟 Total population of animals 100,000 Assume 

𝑁ℎ Total population of humans 333,205,505 [25] 
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The initial value provided for the total number of animals that serve as virus-carrying agents is based 

on an analysis of research findings and information reported by the CDC. In the study [11], the ratio of the 

total population of animals and humans was 11:100. However, based on information from [3], it can be 

inferred that the number of animals, both natural agents and animals that have the potential to spread the 

virus, is very low in the United States. Consequently, the ratio of total disease-carrying animals and total 

humans is presumed to be smaller, given the potential interactions between humans and endemic disease-

carrying animals in the United States are quite difficult to occur. Some initial values for the human 

subpopulation were also assumed by estimating infection cases reported by the CDC and population density 

in the region [24], [25]. 

 
(a)       (b) 

Figure 3. Comparison of Changes in Population Size without and with Control 

(a) Infected Human, (b) Recovered Human 

The simulation results in Figure 3 show that there are changes in the number of infected and recovered 

individuals when control is given. In the figure, the number of infected individuals is simulated as a whole 

by summing low-risk infected individuals (𝐼1) and high-risk infected individuals (𝐼2). The results obtained 

show that the number of infected people decreased by 64.62% after implementing healthy living behaviors 

and receiving antiviral treatment, as shown in Figure 3(a). Meanwhile, the change in the total number of 

recovered individuals in Figure 3(b) shows that the application of healthy living behaviors and antiviral 

drugs can increase the number of individuals by 5.59%. Simulation results suggest that control measures 

effectively reduce infection cases over time, but infections may increase again if controls are lifted while 

rates remain elevated. To reduce the number of infected individuals and increase the cure rate, the rate at 

which the control should be administered at each time is shown in the following figure, 

 
(a)        (b) 

Figure 4. Control Providing Rate 

(a) Healthy Living Behavior, (b) Antiviral Administration 

The simulation shown in Figure 4 is the control rate given each time. The average rate of healthy 

behaviors (𝑢1) that must be applied to the infected human group is 93.15%. Meanwhile, the average antiviral 
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rate (𝑢2) that should be distributed to high-risk infected humans is 75.11%. In Figure 4, it can be seen that 

the controls given initially are constant before changing every day. The rate of change in the level of control 

is able to show the conditions of spread that occur. In this case, giving a high percentage of control at the 

beginning of the simulation gives a drastic decrease in the number of infected humans, so that the provision 

of control over time decreases as fewer cases of infection occur. The healthy living behavior provided is in 

supportive therapy, which includes the encouragement of habits that can facilitate the healing process. This 

differs from the natural habits of humans. One example of supportive therapy that can be intervened in cases 

of mpox infection is the administration of supplements and pain relievers to alleviate the symptoms of the 

infection [21]. The administration of antivirals represents a medical intervention whose distribution is 

regulated based on the patient's condition [7]. 

In regulatory practice, changes in the control rate that occur within a short period of time (days) make 

it difficult for the government to use the results in designing a regulation. A constant control rate over time 

would give different results in terms of infection case reduction but could show the rate of control provision 

in general. However, a constant control rate is also not effective and efficient for some types of interventions, 

such as antiviral administration, in which case the rate of antiviral administration should decrease along with 

the decrease in infection cases. Based on the results obtained, any given control rate should take into account 

the risks of both costs and side effects of the interventions performed. Thus, any given control rate also has 

limits and is not excessive. 

 

4. CONCLUSIONS 

In this study, we have demonstrated that healthy living behavior and antiviral administration 

significantly minimize the spread of mpox in the United States. Numerical simulation results show that to 

reduce infection cases by 64.62% and increase the number of cured individuals by 5.59%, the average rate of 

healthy living behavior that must be implemented is 93.15%, and the rate of antivirus that must be distributed 

is 75.11%. Based on the simulation results, the number of infected individuals is constantly decreasing, 

indicating a lower risk of infection cases in 2024 This conclusion is also supported by data reported by the 

Centers for Disease Control and Prevention (CDC). However, it should be noted that the dynamics of 

infectious disease spread can also increase at any time. This study used the average rate of control to indicate 

the percentage of intervention in general. Providing constant control may have a different impact on reducing 

infection cases.  Therefore, further research needs to be conducted so that the application of control can be 

done effectively in every situation without short-term changes. 
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