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ABSTRACT 

Article History: 
A General Circulation Model (GCM) is a global climate model commonly used to predict 

local-scale climate patterns. However, the spatial resolution of GCMs is typically on a 

global scale, which is inadequate for predicting local climate. Statistical downscaling 

(SD) is used to transform climate information from a global scale to a smaller scale for 

local-scale climate predictions. GCM data have large dimensions and high correlations 

between grids, so principal component regression (PCR) is used in SD. The minimum 

covariance determinant (MCD) and minimum vector variance (MVV) methods are used in 

principal component analysis to obtain robust principal components (PCs). The data used 

in this study were the monthly rainfall data in Pangkep Regency for the period from 

January 1999 to December 2022 as the response variable, which were obtained from the 

Meteorology, Climatology, and Geophysics Agency (BMKG) Region IV Makassar. The 

predictor variable data were GCM precipitation data (64 variables) for the same period 

and three dummy variables. This study aimed to obtain rainfall forecasts in Pangkep 

Regency for the year 2023 based on a robust PCR model using results from MCD and 

MVV. The modeling results indicated that both the MCD and MVV methods provided 

similar model accuracy, with a coefficient of determination of approximately 91%. The 

PCR model with two PCs from the MVV method and dummy variables was identified as 

the best model for explaining the variability in rainfall data in Pangkep Regency. 

Additionally, the 2023 rainfall forecast results showed that both methods yielded relatively 

similar accuracy. The addition of dummy variables in the PCR model improved both the 

model accuracy and rainfall forecasts. The PCR model with three PCs from MVV and 

dummy principal component variables produced accurate rainfall forecasts based on a 

high correlation value (0.974) and the smallest mean absolute percentage error (7.290). 
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1. INTRODUCTION 

Astronomically, Indonesia is located between 6° N - 11° S latitude and 95° E - 141° E longitude, 

crossing the equator. This places Indonesia within the tropical climate zone with significant rainfall 

variability. Changes in rainfall in Indonesia can have significant impacts on various sectors, including salt 

production. Sulawesi Selatan is one of the national centers for salt production in Indonesia, with one of its 

regions being Pangkep Regency. In 2019, salt production in South Sulawesi reached its highest level in the 

last five years, amounting to 140,338 tons. However, salt production experienced a decline in 2020, reaching 

only 45.31 tons. In 2021, salt production further decreased drastically to only 1.83 tons. Subsequently, 

production increased again in 2022 to 3,282 tons. There are several factors influencing salt production 

processes in South Sulawesi, one of which is weather conditions, particularly rainfall. 

The research on rainfall is conducted to reduce risks and enhance resilience against weather variations. 

Therefore, high-resolution climate models continue to be developed, considering global-scale climate 

circulation, including Global Circulation Models (GCMs). GCM climate models use mathematical models of 

planetary atmospheric or oceanic circulation based on physical processes to simulate the transfer of energy 

and matter through the climate system. However, the horizontal resolution of GCMs ranges from 250 to 600 

km, thus resulting in low accuracy for predicting local-scale climate [1]. To address this issue, the statistical 

downscaling model was commonly applied because it was cheaper and more efficient in linking global-scale 

climate variables to local scales [2]. 

Statistical Downscaling (SD) is a method for converting outputs from global-scale climate models into 

locally scaled information. SD is a technique that uses local-scale data such as rainfall data from BMKG 

stations as response variables, and global-scale data such as GCM outputs as predictor variables  [3]. This 

model could provide deeper insights into the impacts of climate change at the local level, given the complexity 

of predictions, especially regarding rainfall and regional topography [4]. However, GCM data provided 

climate data in spatial form available in grid format covering the entire regional domain. This led to 

multicollinearity issues in SD models, necessitating a statistical technique to handle multicollinearity effects 

in GCM data [5]. Methods that can overcome multicollinearity include principal component regression. 

Principal Component Regression (PCR) was a statistical approach that combined linear regression with 

principal component analysis [6]. Principal Component Analysis (PCA) was a statistical method that reduced 

research variables into smaller dimensions without losing information from the variables. This method was 

commonly used to reduce the dimensions of GCM output data and address multicollinearity issues [7]. The 

reduced variables, known as principal components (PCs), were linear combinations of the original variables 

[8]. However, the presence of outliers can significantly affect the results of PCA, leading to misleading 

interpretations  [9]. Therefore, robust methods could be used to minimize the impact of outliers by replacing 

classical estimators with robust estimators [10]. 

There are several robust methods for the sample covariance matrix in PCA to handle outliers, namely 

the Minimum Covariance Determinant (MCD) and the Minimum Vector Variance (MVV) methods. The 

MCD method works by identifying a subset of observations whose covariance matrix has the smallest 

determinant among all possible data combinations. This process aimed to produce a covariance matrix robust 

to outliers [11]. Furthermore, the Fast Minimum Covariance Determinant (FMCD) method was an algorithm 

more efficient in generating robust covariance matrices [12]. Meanwhile, the MVV method involved 

selecting a small subset of vectors from the main sample with the smallest variance. These vectors were then 

used to form a robust outlier-resistant matrix [13]. 

Rainfall modeling had been widely conducted through the application of Statistical Downscaling 

techniques, such as by  [14], who used the least absolute shrinkage and selection operator (LASSO) method 

and PCR. [15] augmented dummy variables based on hierarchical and non-hierarchical clustering techniques 

in SD modeling for rainfall estimation. [16] utilized the PCR method in SD models with missing values to 

forecast daily rainfall data. [17] used projection pursuit regression in SD modeling for daily rainfall 

forecasting in Kupang City, East Nusa Tenggara. In addition, monthly rainfall estimation from the Bandung, 

Bogor, Citeko, and Jatiwangi stations was conducted using cluster-wise regression in SD model [18]. 

Furthermore, [19] compared classical PCR results with robust PCR from MVV for rainfall forecasting in 

Pangkep Regency. Additionally, [20] compared PCR and Latent Root Regression methods in SD models. 

Rainfall forecasting using the SD model was generally focused on methods to address multicollinearity 

in GCM data. On the other hand, in addition to multicollinearity, the presence of outliers could also affect the 
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accuracy of rainfall forecasting. Therefore, this study used robust PCR, which could address both 

multicollinearity and outliers in the rainfall data, thus improving forecasting accuracy. The objective of this 

study was to estimate rainfall in Pangkep Regency using the SD model and robust PCR method, which was 

based on the covariance matrix formed from the MCD and MVV methods. 

2. RESEARCH METHODS 

2.1 Data Sources 

The observational data in this study were the monthly rainfall data in Pangkep Regency (𝑌) for the 

period 1999-2023 as the response variable. The predictor variables were GCM precipitation data. The GCM 

rainfall output (𝑋) was climate simulation data for the Pangkep Regency area produced by the Climate Model 

Intercomparison Project (CMIP5) through KNMI Netherlands (https://climexp.knmi.nl/start.cgi). The GCM 

domain used consisted of several square grids measuring 8 × 8 grids (2.5° × 2.5° for each grid) from 119.57°E 

to 129.37°E and -14.83°S to 5.17°N. Three dummy variables (𝐷1, 𝐷2, 𝐷3) based on the non-hierarchical K-

Means clustering technique were used in this study to improve model accuracy [15]. Thus, there were 67 

predictor variables and 1 response variable, as presented in Table 1 below:  

Table 1. Data Structure 

Time 𝒀 𝑿𝟏 𝑿𝟐 … 𝑿𝒊(𝒋) … 𝑿𝟔𝟒 𝑫𝟏 𝑫𝟐 𝑫𝟑 

Jan-1999 𝑦1 𝑥1(1) 𝑥1(2) … 𝑋1(𝑗) … 𝑥1(64) 𝐷1(1) 𝐷1(2) 𝐷1(3) 

Feb-1999 𝑦2 𝑥2(1) 𝑥2(2) … 𝑋2(𝑗) … 𝑥2(64) 𝐷2(1) 𝐷2(2) 𝐷2(3) 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ 
Dec-2023 𝑦300 𝑥300(1) 𝑥300(2) … 𝑋300(𝑗) … 𝑥300(64) 𝐷300(1) 𝐷300(2) 𝐷300(3) 

 

where 𝑋𝑖(𝑗) represents the GCM precipitation at time 𝑖 and grid 𝑗. The results of the K-means analysis grouped 

the rainfall data of Pangkep Regency into four clusters. Group 1 (𝐷1 = 1, 𝐷2 = 𝐷3 = 0) had 157 

observations, Group 2 (𝐷2 = 1, 𝐷1 = 𝐷3 = 0) had 100, Group 3 (𝐷3 = 1, 𝐷1 = 𝐷2 = 0) had 4, and Group 4 
(𝐷1 = 𝐷2 = 𝐷3 = 0) had 39 observations. The data was split into training data (Jan 1999-Dec 2022) for 

modeling and testing data (2023) for validation. 

2.2 Analysis Methods 

This study used GCM output precipitation data as the response variable, where correlations between 

grids were high. Multicollinearity can make Ordinary Least Squares (OLS) estimators unreliable. Variance 

Inflation Factor (VIF) is one method used to detect multicollinearity in data. A VIF value above 10 is often 

considered an indication of significant multicollinearity among predictor variables [21]. A VIF was calculated 

using the following Equation (1) where 𝑅𝑗
2 is the determination coefficient of predictor variable 𝑗 regressed 

against other predictors [22]: 

𝑉𝐼𝐹𝑗 =
1

1 − 𝑅𝑗
2 , 𝑗 = 1,2, … , 𝑝 (1) 

 

SD models are used to link global-scale climate variables with local-scale variables. SD models can be 

defined as follows [23]:  

𝒚 = 𝑓(𝑿) (2) 
 

where 𝒚(𝑛×1) represents local climate variables, 𝑿(𝑛×𝑝) denotes GCM output variables, 𝑛 stands for the 

number of periods (daily or monthly), and 𝑝 signifies the number of GCM grid domains. In SD techniques, 

the PCR method is used to address multicollinearity issues. PCR begins with Principal Component Analysis 

(PCA) to reduce data dimensionality or address multicollinearity by generating new variables called PCs that 

retain as much variability from the original data as possible [24]. PCs are obtained from the eigenvalue-

eigenvector pairs of the covariance or correlation matrix. 

https://climexp.knmi.nl/start.cgi
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If 𝑿′ = [𝒙1, 𝒙2, … , 𝒙𝑝] has a covariance matrix (𝚺) with eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑝 ≥ 0 and 

eigenvector 𝒆𝑗 , the PC variables (𝒘𝑗) is obtained, which are linear combination of the original variables, as 

in Equation (3) [24]: 

𝒘𝑗 = 𝒆𝑗
′𝑿 = 𝑒𝑗1𝒙1 + 𝑒𝑗2𝒙2 + ⋯ + 𝑒𝑗𝑝𝒙𝑝 (3) 

 

The 𝒘1, 𝒘2, … , 𝒘𝑝 variables are linear combinations of the original variables (𝑋) that are uncorrelated 

and have maximum variance. Each PC variable has a variance equal to the eigenvalue of the matrix 𝚺, so for 

the 𝑗-th PC equation, the variance and covariance are as follows [24],  

𝑉𝑎𝑟(𝒘𝑗) = 𝒆𝑗
′𝚺 𝒆𝑗 = 𝜆𝑗     

𝐶𝑜𝑣(𝒘𝑗 , 𝒘𝑗′) = 𝒆𝑗
′𝚺 𝒆𝑗′ = 0     , 𝑗 ≠ 𝑗′ = 1,2, … , 𝑝 (4) 

 

The covariance matrix of PC (𝑾) can be written in Equation (5) as follows [24]: 

𝚺 = diag(𝜆1, 𝜆2, … , 𝜆𝑝) (5) 

 

Therefore, the total variance of the original variables equals the total variance explained by the PCs and can 

be expressed as in Equation (6), 

𝜎1
2 + 𝜎2

2 + ⋯ + 𝜎𝑝
2 = 𝜆1 + 𝜆2 + ⋯ + 𝜆𝑝 (6) 

 

PCs can also be derived using the correlation matrix by first transforming the original variables (𝑋) 

into standardized form (𝑍), as shown in Equation (7): 

𝒁 = (𝑽
1
2)

−1

(𝑿 − 𝝁) (7) 

 

where 𝑽1/2 = diag (√𝜎1
2, … , √𝜎𝑗

2, … , √𝜎𝑝
2) , 𝜎𝑗

2  and 𝝁 are the variance and the vector containing the 

mean values of the variables in 𝑋, respectively. Meanwhile, 𝒁 is the standardized matrix of the original 

variables X, where mean and variance expressed in Equation (8): 

 𝐸(𝒁) = 𝟎   ;    𝐶𝑜𝑣(𝒁) = (𝑽
1
2)

−1

𝚺 (𝑽
1
2)

−1

= 𝑹 (8) 

 

where 𝑹 is the correlation matrix of the original variables 𝑋. The 𝑗-th PC, formed based on the standardized 

variables 𝒁′ = [𝒛1, 𝒛2, … , 𝒛𝑝], can be determined from the eigenvector obtained through the correlation 

matrix of the original variables 𝑋 using the PC formula in Equation (9): 

𝒘𝑗 = 𝒆𝑗
′𝒁 = 𝑒𝑗1𝒛1 + 𝑒𝑗2𝒛2 + ⋯ + 𝑒𝑗𝑝𝒛𝑝 (9) 

 

The next step is to regress the selected PCs obtained from PCA against the response variable using PCR. Let 

𝑷 be an orthogonal matrix containing the eigenvectors of the covariance matrix 𝚺 of the original variables 𝑋, 

satisfying the equation 𝑷′𝑷 = 𝑷𝑷′ = 𝑰. The formation process of PCR from multiple linear regression, with 

𝑾 = 𝑿𝑷 and 𝜶 = 𝑷′𝜷, is Equation (10) [25]: 

𝒚=𝑿𝜷+𝜺=𝑿𝑷𝑷′𝜷+𝜺=𝑾𝜶+𝜺#10

 𝒚 = 𝑿𝜷 + 𝜺 = 𝑿𝑷𝑷′𝜷 + 𝜺 = 𝑾𝜶 + 𝜺 (10) 
 

The PCR model resulting from reducing to 𝑟 components is written in Equation (11): 

𝒚 = 𝛼0𝟏 + 𝑾𝑟𝜶𝑟 + 𝜺 (11) 
 

where 𝜺~𝑁(0, 𝜎2𝑰) is a vector of errors of size 𝑛 × 1, 𝑿 is the predictor variable matrix of size 𝑛 × (𝑝 + 1), 

𝒚 is the response variable vector of size 𝑛 × 1, 𝛼0 is the intercept, 𝟏 is a vector of ones of size 𝑛 × 1, 𝑾𝑟 is 

an 𝑛 × 𝑟 of PCs, 𝜷 and 𝜶𝑟 are the parameter vectors of 𝑿 and 𝑾, respectively. 

Using the maximum likelihood method, the parameter estimators are obtained as follows [26]: 

�̂�𝑟 = (𝑾𝑟
′𝑾𝑟)−1𝑾𝑟

′𝒚 (12) 
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where 𝑾𝑟 = 𝑿𝑷𝑟 if using the covariance matrix of the variables 𝑋, and 𝑾𝑟 = 𝒁𝑷𝑟 if using the correlation 

matrix of the variables 𝑋. Here, 𝑷𝑟 is an 𝑟 × 𝑟 matrix whose elements are eigenvectors. 

To produce a robust covariance matrix (𝚺), the MCD method is used. The objective of MCD is to 

obtain a subsample of size ℎ from the total 𝑛 observations, which has the covariance matrix with the smallest 

determinant among all possible data combinations [27]: 

ℎ =
𝑛 + 𝑝 + 1

2
(13) 

 

The MCD method uses Equation (14) as follows, 

�̅�𝑀𝐶𝐷 =
1

ℎ
∑ 𝑥𝑖

𝑖𝜖𝐻
; 𝑺𝑀𝐶𝐷 =

1

ℎ − 1
∑ (𝑥𝑖 − �̅�𝑀𝐶𝐷) (𝑥𝑖 − �̅�𝑀𝐶𝐷)′

𝑖𝜖𝐻
(14) 

 

where �̅� and 𝑺 are the mean vector and the sample covariance matrix, respectively. 

In addition to the MCD method, the MVV method is also used in this study to construct a robust 

covariance matrix. The MVV method produces a covariance matrix 𝑆𝑀𝑉𝑉 with the minimum value of the 

trace, 𝑇𝑟(𝑆𝑀𝑉𝑉
2 ), among all possible subsets containing ℎ data observations. Consequently, the MVV estimate 

for the location parameter of the matrix is determined as follows [28]:  

�̅�𝑀𝑉𝑉 =
1

ℎ
∑ 𝑥𝑖

𝑖∈𝐻
; 𝑺𝑀𝑉𝑉 =

1

ℎ − 1
∑ (𝑥𝑖 − �̅�𝑀𝑉𝑉)(𝑥𝑖 − �̅�𝑀𝑉𝑉)′

𝑖∈𝐻
(15) 

 

The MVV method algorithm is as follows [29]: 

1. Select a data set consisting of ℎ =
(𝑛+𝑝+1)

2
 data observations, referred to as 𝐻𝑜𝑙𝑑 . 𝐻 refers to the 

set of a selected subset of data with size ℎ × 𝑝. 

2. Calculate the mean vector �̅�𝐻𝑜𝑙𝑑 and the covariance matrix 𝑆𝐻𝑜𝑙𝑑 for all data in 𝐻𝑜𝑙𝑑. For 𝑖 =
1,2, … , 𝑛, calculate squared Mahalanobis distance, 𝑑𝐻𝑜𝑙𝑑

2 = 𝑑𝐻𝑜𝑙𝑑

2 (𝑥𝑖 , �̅�𝐻𝑜𝑙𝑑) = (𝑥𝑖 −

�̅�𝐻𝑜𝑙𝑑)′𝑆𝐻𝑜𝑙𝑑

−1 (𝑥𝑖 − �̅�𝐻𝑜𝑙𝑑) 

3. Sort the results from smallest to largest. This ordering will provide a permutation of observation 

indices π. For example: 𝑑𝐻𝑜𝑙𝑑

2 (𝜋1) ≤ 𝑑𝐻𝑜𝑙𝑑

2 (𝜋2) … ≤ 𝑑𝐻𝑜𝑙𝑑

2 (𝜋𝑛) 

4. Form a new set consisting of ℎ observations with indices 𝜋(1), 𝜋(2), … , 𝜋(ℎ) and name it 𝐻𝑛𝑒𝑤 

5. Calculate �̅�𝐻𝑛𝑒𝑤
 , 𝑺𝐻𝑛𝑒𝑤

, and (𝒙𝑖 − �̅�𝐻𝑛𝑒𝑤
) as in step 2 

6. If 𝑇𝑟(𝑺𝐻𝑛𝑒𝑤

2 ) =  𝑇𝑟(𝑺𝐻𝑜𝑙𝑑

2 ), the process is complete. If 𝑇𝑟(𝑺𝐻𝑛𝑒𝑤

2 ) < 𝑇𝑟(𝑺𝐻𝑜𝑙𝑑

2 ), continue the 

process until the 𝑘-th iteration reaches 𝑇𝑟(𝑺𝐻𝑛𝑒𝑤

2 ) =  𝑇𝑟(𝑺𝐻𝑜𝑙𝑑

2 ). 

Let 𝑆𝐻𝑘
 be the covariance matrix from the 𝑘th iteration. At the end of the 𝑘-th iteration, the following 

inequality will hold: 𝑇𝑟(𝑺𝐻1

2 ) ≥ 𝑇𝑟(𝑺𝐻2

2 ) ≥ ⋯ ≥ 𝑇𝑟(𝑺𝐻𝑘−1

2 ) = 𝑇𝑟(𝑺𝐻𝑘

2 ). 

3. RESULTS AND DISCUSSION 

3.1 Data Exploration 

Data exploration was an important step before statistical downscaling modeling as it provided a deep 

understanding of the characteristics of the data used. Data exploration helped us determine how well the 

GCM precipitation pattern matched the rainfall pattern in Kabupaten Pangkep, which was key in choosing 

the best approach for statistical downscaling (SD) modeling. 
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(a)  (b) 

Figure 1. Plot of (a) Rainfall in Pangkep Regency and (b) GCM Precipitation 

 

Figure 1 presented the plot of rainfall in Kabupaten Pangkep (𝑦) and GCM precipitation, which in this 

case referred to the precipitation in the first grid (X1). The rainfall pattern in Kabupaten Pangkep showed a 

monsoon pattern, with high rainfall at the beginning and end of the year. The same pattern was also observed 

in precipitation X1. This indicated that the rainfall pattern in Kabupaten Pangkep and precipitation X1 were 

similar. A similar pattern was also seen in other GCM precipitation, such as X2 to X64. This finding suggested 

a similarity in the monsoon pattern between local rainfall data and global-scale GCM precipitation, which is 

crucial for further analysis in SD modeling. 

3.2 Detection of Multicollinearity 

Multicollinearity occurs when several predictor variables in a linear regression model are highly 

correlated with each other. This makes it challenging to accurately determine the individual impact of each 

predictor variable on the response variable, potentially leading to erroneous conclusions. The Variance 

Inflation Factor (VIF) is a statistical value used to detect the presence of multicollinearity in a regression 

model. Based on the calculation results, the VIF values for 64 precipitation variables showed that there were 

60 predictor variables (93.75%) with VIF values greater than 10. The VIF values ranged from 4.22 to 3099.68. 

The high VIF values indicated that these predictor variables were almost a perfect linear combination of other 

predictor variables. Therefore, principal component analysis (PCA) was used as a pre-processing step in the 

SD model to address multicollinearity. 

3.3 Outlier Detection 

Besides multicollinearity, detecting and handling outliers in regression analysis is also crucial because 

it can significantly impact the interpretation of the model and prediction accuracy. Outliers are data points 

that significantly differ from the majority of the data in a dataset. Outliers can affect parameter estimation, 

reduce prediction accuracy, and disrupt the validity of statistical inferences. The presence of outliers can 

cause residuals of the model to deviate from a normal distribution. Boxplots are one of the effective statistical 

tools for detecting outliers in a dataset. 

 
Figure 2. Boxplot of GCM Precipitation, 𝐗𝟏-𝐗𝟔𝟒 

 

Figure 2 showed that out of 64 GCM precipitation data points, there were 6 predictor variables 

containing outliers, namely variables X32, X39, X40, X47, X48, and X63. Variable X32 had 7 observations 
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identified as outliers at observations 1, 13, 37, 85, 169, 265, and 277. Variables X39 and  X40 each had 2 

outlier observations at observations 169 and 265. Variable X47 had 1 observation as an outlier at observation 

265, while variable X48 had 8 observations identified as outliers at observations 25, 37, 85, 121, 157, 169, 

265, and 277. Meanwhile, variable X63 had 1 observation as an outlier at observation 120. 

Meanwhile, outlier detection using MVV method utilizes the Minimum Volume Ellipsoid (MVE) 

value. The resulting ellipsoid is the minimum ellipsoid while retaining most of the normal data within the 

distribution, thus facilitating outlier identification and visualization. The analysis results indicated that there 

were 8 observations on the predictor variables detected as outliers with a threshold value of 97.5%. These 

observations included numbers 37, 109, 145, 168, 192, 205, 228, and 240.  

 

 
Figure 3. Outlier Detection of GCM using MVE 

 

Figure 3 presented an example plot of GCM precipitation data, namely X1 and X2. The points on the 

graph represented the data, with red dots indicating outliers and black dots indicating non-outliers. In this 

figure, most of the data clustered in the center, while the outliers were scattered in the upper and right parts 

of the graph based on MVE. The same approach was applied to other GCM precipitation data. Therefore, 

MCD and MVV methods were used in PCA to form robust covariance matrices against outliers. 

3.4 Principal Component Analysis Using Minimum Covariance Determinant and Minimum Vector 

Variance 

Principal Component Analysis (PCA) is a statistical analysis technique used to reduce the 

dimensionality of data by extracting new variables, called principal components, that explain most of the 

variability in the original data. However, typically, the principal components (PCs) are formed based on the 

covariance matrix of the original data, which is sensitive to outliers. Therefore, the Minimum Covariance 

Determinant (MCD) and Minimum Vector Variance (MVV) methods are used to form a robust covariance 

matrix that is resistant to outliers. In this study, the number of observation subsets used in both the MCD and 

MVV methods was, 

ℎ =
𝑛 + 𝑝 + 1

2
=

288 + 64 + 1

2
≈ 176 

  

The selected observation subsets in both the MCD and MVV methods were then used to calculate the 

covariance matrix of those subsets. The covariance matrix from the MCD method is presented in Table 2, 
 

Table 2. The Covariance Matrix of the MCD Method 

Variable 𝐗𝟏 𝐗𝟐 𝐗𝟑 𝐗𝟒 ⋯ 𝐗𝟔𝟑 𝐗𝟔𝟒 

X1 1.918 1.791 2.192 2.919 ⋯ 0.874 0.502 

X2 1.791 2.648 2.818 3.435 ⋯ 1.201 0.948 

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

X63 0.874 1.201 1.286 1.747 ⋯ 1.503 0.752 

X64 0.502 0.948 0.933 1.029 ⋯ 0.752 0.986 
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Meanwhile, the covariance matrix from the MVV method is presented in Table 3 

Table 3. The Covariance Matrix of the MVV Method 

Variable 𝐗𝟏 𝐗𝟐 𝐗𝟑 𝐗𝟒 ⋯ 𝐗𝟔𝟑 𝐗𝟔𝟒 

X1 2.167 2.164 2.522 3.020 ⋯ 0.989 0.920 

X2 2.164 2.974 3.152 3.566 ⋯ 1.325 1.383 

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

X63 0.989 1.325 1.399 1.697 ⋯ 1.358 0.854 

X64 0.920 1.383 1.400 1.405 ⋯ 0.854 1.299 

 

Principal components (PCs) were formed based on the correlation matrix. By using the covariance matrix, 

the correlation matrix obtained is as follows: 

𝑅𝑀𝐶𝐷 = [

1 0.795 ⋯ 0.365
0.795 1 ⋯ 0.587

⋮
0.365

⋮
0.587

⋱
⋯

⋮
1

]   ;   𝑅𝑀𝑉𝑉 = [

1 0.852 ⋯ 0.548
0.852 1 ⋯ 0.703

⋮
0.548

⋮
0.703

⋱
⋯

⋮
1

] 

 

Table 4 presented the eigenvalues and the proportion of variability in the original variables explained 

by the PCs formed based on the correlation matrix. The table indicated that the first PC (𝑊1) of the MVV 

method explained 73% of the data variability, which was better than the result from the MCD method, which 

was only 67%. Additionally, the second PC (𝑊2) contributed approximately 10% to 11% in explaining the 

total data variability for both methods. Collectively, the first four PCs explained about 90% of the variability 

in the original data. This suggests that by using only four PCs, most of the information present in the original 

data can be effectively preserved and represented. 

Table 4. Eigen analysis of the Correlation Matrix 

Component   𝑾𝟏 𝑾𝟐 𝑾𝟑 𝑾𝟒 ⋯ 𝑾𝟔𝟒 

Eigenvalue MCD 43.100 7.607 4.847 2.235 ⋯ 0.000076 

 MVV 46.765 6.325 3.748 1.907 ⋯ 0.000066 

Proportion 
MCD 0.673 0.119 0.076 0.035 ⋯ 0.00000119 

MVV 0.731 0.099 0.058 0.029 ⋯ 0.00000103 

Cumulative 

  

MCD 0.673 0.792 0.868 0.903 ⋯ 1 

MVV 0.731 0.829 0.888 0.918 ⋯ 1 

 

The equation of the PCs formed from the MCD method can be written as follows: 

𝒘1 = −0.141𝒛1 − 0.137𝒛2 − 0.144𝒛3 − 0.143𝒛4 + 0.089𝒛5 + ⋯ − 0.104𝒛63 − 0.097𝒛64  

𝒘2 =    0.035𝒛1 − 0.129𝒛2 − 0.084𝒛3 − 0.082𝒛4 − 0.259𝒛5 + ⋯ − 0.093𝒛63 + 0.004𝒛64 

𝒘3 = −0.131𝒛1 − 0.034𝒛2 − 0.076𝒛3 − 0.091𝒛4 − 0.022𝒛5 + ⋯ + 0.214𝒛63 + 0.289𝒛64 

𝒘4 = −0.079𝒛1 + 0.109𝒛2 + 0.050𝒛3 − 0.035𝒛4 + 0.159𝒛5 + ⋯ − 0.236𝒛63 + 0.175𝒛64  

 

Meanwhile, for the MVV method, the equation of the PCs can be written as follows: 

𝒘1 = −0.138𝒛1 − 0.136𝒛2 − 0.139𝒛3 − 0.136𝒛4 + 0.102𝒛5 + ⋯ − 0.104𝒛63 − 0.112𝒛64  

𝒘2 =    0.019𝒛1 − 0.115𝒛2 − 0.079𝒛3 − 0.100𝒛4 − 0.242𝒛5 + ⋯ − 0.129𝒛63 + 0.035𝒛64 

𝒘3 = −0.136𝒛1 − 0.036𝒛2 − 0.083𝒛3 − 0.114𝒛4 − 0.018𝒛5 + ⋯ + 0.217𝒛63 + 0.264𝒛64 

𝒘4 = −0.074𝒛1 + 0.120𝒛2 + 0.057𝒛3 − 0.028𝒛4 + 0.186𝒛5 + ⋯ − 0.238𝒛63 + 0.168𝒛64  

 

The MCD and MVV methods were used to select PCs in the SD model with PCR. Therefore, this study 

utilized one to four PCs (𝑤1, 𝑤2, 𝑤3, 𝑤4) as predictor variables in SD modeling. Additionally, dummy 

variables 𝐷1, 𝐷2, and 𝐷3 were also employed as predictor variables. 
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3.5 Statistical Downscaling Model Using Robust Principal Component Regression 

Principal component regression (PCR) was used as the SD model, regressing selected PCs as predictor 

variables based on the results of the MCD and MVV methods on rainfall in Pangkep District as the response 

variable. The analysis results with the MCD and MVV methods showed that using the first four PCs could 

explain the variability of the original variables well, namely more than 90%. Thus, the SD model developed 

in this study depended on the number of PC variables and dummy variables used in the analysis. The model's 

accuracy was evaluated based on the coefficient of determination (R2) and the root mean squared error 

(RMSE) values.  

Table 5. R2 and RMSE Values of the Robust PCR Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* Significant at α = 5%;  ** significant at α = 10% 

 

The analysis results of the robust PCR model using components from the MVV and MCD methods 

showed a similar level of accuracy (Table 5). The recorded R2 values ranged from 63.08% to 63.39%. This 

meant that the robust PCR model with PC variables from MVV or MCD could only explain 63% of the data 

variability. Additionally, both methods resulted in relatively high RMSE values, ranging from 181.681 to 

182.451. Furthermore, the use of dummy variables in the model increased the R2 value to between 91.53% 

and 91.62%. Moreover, adding dummy variables as predictor variables also reduced the RMSE value by 

about 52%. Thus, the addition of dummy variables in the robust PCR model significantly improved model 

accuracy. Overall, the robust PCR model using the first two PCs from the MVV method and three dummy 

variables (PCRD2-MVV) was the best model in explaining the rainfall data variability in Pangkep District. 

This conclusion was based on the high R2 value, low RMSE value, and the significance of all parameters in 

the model.  

Diagnostic checks were conducted on the robust PCR model involving the first two PCs from MVV 

and dummy variables. Figure 4 depicted the plot of residuals against fitted values for the PCR2-MVV model, 

both with and without dummy variables. The spread of residual values in both models indicated 

heteroscedasticity. The residual variance of the PCR2-MVV model changed with increasing fitted values. 

Particularly at higher fitted values, there was a larger variation in residuals observed. However, overall, the 

PCR2-MVV model with dummy variables (PCRD2-MVV) exhibited a relatively more homogeneous spread 

of residual values. The residuals from this model were distributed relatively evenly, indicating consistent 

residual variance both at low and high fitted values. 

Model Component R2 RMSE 

without dummy variables 

PCR1-MVV W1
∗ 63.39% 181.681 

PCR2-MVV W1
∗, W2 63.27% 181.994 

PCR3-MVV W1
∗, W2, W3 63.20% 182.155 

PCR4-MVV W1
∗, W2, W3, W4 63.08% 182.451 

PCR1-MCD W1
∗ 63.32% 181.858 

PCR2-MCD W1
∗, W2 63.21% 182.141 

PCR3-MCD W1
∗, W2, W3 63.20% 182.157 

PCR4-MCD W1
∗, W2, W3, W4 63.08% 182.450 

with dummy variables 

PCRD1-MVV W1
∗, D1

∗, D2
∗, D3

∗  91.53% 87.394 

PCRD2-MVV W1
∗, W2

∗∗, D1
∗, D2

∗, D3
∗  91.59% 87.103 

PCRD3-MVV W1
∗, W2

∗∗, W3, D1
∗, D2

∗, D3
∗  91.62% 86.920 

PCRD4-MVV W1
∗, W2

∗∗, W3, W4, D1
∗, D2

∗, D3
∗  91.59% 87.073 

PCRD1-MCD W1
∗, D1

∗, D2
∗, D3

∗  91.53% 87.382 

PCRD2-MCD W1
∗, W2, D1

∗, D2
∗, D3

∗  91.58% 87.137 

PCRD3-MCD W1
∗, W2

∗∗, W3, D1
∗, D2

∗, D3
∗  91.62% 86.913 

PCRD4-MCD W1
∗, W2

∗∗, W3, W4, D1
∗, D2

∗, D3
∗  91.59% 87.067 
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.   

(a)                                (b)                                                

Figure 4. Residual Plot of Model (a) PCR2-MVV dan (b) PCRD2-MVV 

 

The parameter estimation of the PCRD2-MVV model was presented in Table 6. This regression model 

indicated that component 𝑊1 and dummy variables 𝐷1, 𝐷2, 𝐷3 were significant in influencing the response 

variable (𝑌) at the 5% significance level. Meanwhile, component 𝑊2 was significant at the 10% significance 

level. The VIF values for all variables were below 10, indicating no serious multicollinearity. The highest 

VIF was 5.37 for 𝐷3, which was still within acceptable limits. This model could be considered sufficiently 

effective in predicting the response variable (rainfall) using the existing predictor variables. 

Table 6. Parameter Estimation of the PCRD2-MVV Model 

Variable Coefficient 
S.E 

Coefficient 
𝒕-value 𝒑-value VIF 

Constant 734.90* 18.60 39.61 0.000   

𝑊1 -8.02*     1.15 -6.96 0.000 2.67 

𝑊2 -5.04** 2.96 -1.70 0.090 1.04 

𝐷1 552.30* 45.90 12.04 0.000 1.09 

𝐷2 -355.80* 18.60 -19.12 0.000 2.94 

𝐷3 -623.70* 23.80 -26.19 0.000 5.37 

* Significant at α = 5%;  ** significant at α = 10% 
 

Based on the parameter estimation results in Table 5.4, the PCRD2-MVV regression model could be written 

as follows: 

�̂� = 734.90 − 8.02𝑊1 − 5.04𝑊2 + 552.30𝐷1 − 355.80𝐷2 − 623.70𝐷3 

 

Next, parameter estimates from components 𝑊1 and 𝑊2 were transformed into parameter estimates for 

variables X (Table 7), 

Table 7. Parameter Estimation of the PCRD2-MVV Model 

Predictor Coefficient Predictor Coefficient Predictor Coefficient Predictor Coefficient 

Constant 645.518 X17 0.674 X34 0.402 X51 0.478 

X1 0.537 X18 0.537 X35 0.459 X52 -0.136 

X𝟐 0.709 X19 0.469 X36 0.657 X53 -0.179 

X𝟑 0.594 X20 0.607 X37 -0.354 X54 0.074 

X𝟒 0.551 X21 0.095 X38 -0.366 X55 1.207 

X𝟓 0.183 X22 0.094 X39 0.486 X56 0.041 

X𝟔 -0.718 X23 1.653 X40 -0.496 X57 0.113 

X𝟕 -0.225 X24 1.467 X41 0.238 X58 0.226 

X𝟖 0.294 X25 0.524 X42 0.356 X59 0.441 

X𝟗 0.839 X26 0.454 X43 0.445 X60 -0.232 

X10 0.637 X27 0.428 X44 -0.075 X61 -0.388 

X11 0.545 X28 0.565 X45 -0.356 X62 1.207 
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Predictor Coefficient Predictor Coefficient Predictor Coefficient Predictor Coefficient 

X12 0.574 X29 0.729 X46 -0.707 X63 0.918 

X13 -0.014 X30 0.737 X47 0.585 X64 0.390 

X14 -0.917 X31 -0.777 X48 -0.545 D1 552.300 

X15 -0.351 X32 -0.780 X49 0.154 D2 -355.800 

X16 0.012 X33 0.369 X50 0.304 D3 -623.700 

 

The PCRD2-MVV regression model could be rewritten as, 

�̂� = 645.518 + 0.537𝑋1 + 0.709𝑋2 + 0.594𝑋3 … + 0.389𝑋64 + 552.30𝐷1 − 355.80𝐷2 − 623.70𝐷3  

 

3.6 Forecasting Rainfall Data Using Statistical Downscaling Models 

The statistical downscaling (SD) model based on principal component regression (PCR) that was 

developed was further used to forecast rainfall in Pangkep District for the period from January to December 

2023. The forecasted rainfall data were validated using several evaluation metrics, namely correlation 

coefficient, root mean square error of prediction (RMSEP), and mean absolute percentage error (MAPE). The 

correlation coefficient indicated how well the prediction model captured patterns and trends in the new data. 

Conversely, RMSEP and MAPE described the accuracy and reliability of the predictions generated by the 

model. Overall, the correlation coefficient, RMSEP, and MAPE provided a comprehensive overview of the 

model's performance. 

Table 8 presented the performance of the rainfall forecast for Pangkep District in 2023 using the PCR 

model with components formed based on MCD and MVV results. The table indicated that both MCD and 

MVV methods yielded similar accuracy in rainfall forecasts. The correlation values between actual and 

forecasted data ranged from 0.857 to 0.866, with relatively large RMSEP values ranging from 147.421 to 

151.878 for the PCR model without dummy variables. This suggested that despite relatively high correlations, 

the model without dummy variables had a relatively high prediction error rate. It was observed that the models 

significantly improved prediction performance with the addition of dummy variables. This improvement was 

evidenced by higher correlation values and lower RMSEP and MAPE values compared to models without 

dummy variables. The inclusion of dummy variables reduced RMSEP by approximately 47%, highlighting 

their crucial role in enhancing prediction accuracy. Moreover, increasing the number of components generally 

enhanced model performance. Overall, the PCRD3-MVV model provided more accurate forecast results with 

a correlation value of 0.974 and the lowest MAPE value of 7.290. 

Table 8. Performance of Rainfall Forecast for Pangkep District in 2023 from Robust PCR Model 

Model Component Correlation RMSEP MAPE 

without dummy variables 

PCR1-MVV 𝑊1
∗  0.859 150.785 10.385 

PCR2-MVV 𝑊1
∗, 𝑊2  0.860 150.678 10.598 

PCR3-MVV 𝑊1
∗, 𝑊2, 𝑊3  0.864 148.323 9.469 

PCR4-MVV 𝑊1
∗, 𝑊2, 𝑊3, 𝑊4  0.866 147.421 9.747 

PCR1-MCD 𝑊1
∗  0.857 151.878 10.245 

PCR2-MCD 𝑊1
∗, 𝑊2  0.858 151.646 10.810 

PCR3-MCD 𝑊1
∗, 𝑊2, 𝑊3  0.864 148.502 9.279 

PCR4-MCD 𝑊1
∗, 𝑊2, 𝑊3, 𝑊4  0.866 147.508 9.599 

with dummy variables 

PCRD1-MVV W1
∗, D1

∗, D2
∗, D3

∗  0.971 80.986 9.939 

PCRD2-MVV W1
∗, W2

∗∗, D1
∗, D2

∗, D3
∗  0.972 79.899 8.585 

PCRD3-MVV W1
∗, W2

∗∗, W3, D1
∗, D2

∗, D3
∗  0.974 77.658 7.290 

PCRD4-MVV W1
∗, W2

∗∗, W3, W4, D1
∗, D2

∗, D3
∗  0.974 77.569 7.339 

PCRD1-MCD W1
∗, D1

∗, D2
∗, D3

∗  0.971 81.062 9.925 

PCRD2-MCD W1
∗, W2, D1

∗, D2
∗, D3

∗  0.972 79.887 8.671 

PCRD3-MCD W1
∗, W2

∗∗, W3, D1
∗, D2

∗, D3
∗  0.974 77.654 7.320 

* Significant at α = 5%;  ** significant at α = 10% 
 

Figure 5 presented a comparison between actual rainfall data and prediction results using the PCR 

model with components formed based on MVV and MCD results for Pangkep district in 2023. The first graph 
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displayed the PCR model equipped with dummy variables (PCRD), while the second graph depicted the PCR 

model without dummy variables. The PCDR model accurately forecasted rainfall, particularly in January, 

February, April, May, and June. This indicated that adding dummy variables aided the model in capturing 

seasonal patterns and fluctuations in rainfall data. Moreover, the PCDR model also demonstrated better 

performance in predicting high-intensity rainfall, as observed in January and February, which closely 

matched the actual rainfall amounts. 

 
(a) (b)                                                

Figure 5. Comparison of Rainfall Forecast in Pangkep District 2023 between Model (a) PCRD and (b) PCR  

 

Figure 5 also illustrates that the PCR model without dummy variables could only predict rainfall with 

lower accuracy. This model made accurate predictions only at a few points, such as in June and September. 

However, it failed to predict high-intensity rainfall, especially in January and February. The use of dummy 

variables in the PCR model significantly improved the accuracy of rainfall predictions, especially during 

periods of high rainfall. Adding dummy variables allowed the model to better understand and replicate 

complex rainfall patterns, thereby providing more reliable prediction results. Meanwhile, the use of MVV 

and MCD methods in both PCR and PCRD models yielded relatively similar performance in forecasting 

rainfall in Pangkep district. 

Similar to previous research findings, the inclusion of dummy variables in the model demonstrated 

better forecasting accuracy compared to models without dummy variables, as it allowed the model to handle 

data variation more effectively. Additionally, in this research, the MVV and MCD methods helped manage 

outliers that could significantly impact the model's accuracy. In PCR models, outliers could have a substantial 

effect on the principal components used in regression, so handling outliers with robust methods such as MVV 

or MCD contributed to producing more accurate predictions.   

4. CONCLUSIONS 

The statistical downscaling model with principal component regression (PCR) effectively predicted 

rainfall in Pangkep District, addressing multicollinearity and using robust methods like MCD and MVV to 

handle outliers in principal components. The analysis results indicated that both MVV and MCD methods 

performed equally well. Both methods effectively explained the variability in rainfall data with coefficient of 

determination values ranging from 91.53% to 91.62%, and relatively low root mean square error values 

compared to the model without dummy variables. The addition of dummy variables significantly enhanced 

the model accuracy. Rainfall predictions for Pangkep District in 2023 showed that both methods also provided 

similar prediction accuracy. With the inclusion of dummy variables, both methods could predict rainfall 

patterns closely resembling actual rainfall events, especially during high-intensity rainfall occurrences. 

Furthermore, the low root mean square error of prediction (between 77.569 and 81.062) indicated minimal 

deviation between predicted and actual rainfall values, confirming the model's ability to provide predictions 

close to actual conditions. 
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