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ABSTRACT 

Article History: 
Influenza is an infectious disease that has become a public health concern and affects 

millions of people every year. In Indonesia, 1,527 people were recorded as being infected 

with influenza from May 2013 to April 2016. In this article, a fractional-order 𝛼 ∈ (0, 1] 
mathematical model of influenza spread was formulated in the sense of Caputo derivative. 

Based on the model analysis, we obtained two equilibrium points: the disease-free and 

endemic equilibria. The disease-free equilibrium point is locally asymptotically stable if the 
basic reproduction number is less than one. Meanwhile, the endemic equilibrium point exists 

and tends to be asymptotically stable whenever the basic reproduction number is greater 

than one. Next, a sensitivity analysis was carried out to determine whether changes in 

parameter values affect the increase or decrease in the value of the basic reproduction 
number. Lastly, the numerical simulation of the fractional-order model is demonstrated to 

support the analytical results. 
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1. INTRODUCTION 

Influenza is an acute respiratory infection caused by the influenza virus and is common worldwide. 

Influenza disease is caused by negative-strand RNA viruses from the Orthomyxoviridae family [1]. In 

Indonesia, 1,527 people were recorded as being infected with influenza from May 2013 to April 2016. 

Overall, the estimated annual incidence of influenza ranges from 13 to 19 for every 100,000 population. The 

highest incidence rate occurs in children aged 0 – 4 years, namely 82 – 114 for every 100,000 population, 

followed by children aged 5 – 14 years, namely 22 – 36 for every 100,000 population [2]. Common symptoms 

of influenza include fever, cough, headache, etc. These symptoms usually start about two days after being 

infected by someone with the virus [3]. Vaccination programs, isolation, quarantine, etc can be used to 

prevent the spread of influenza [4]. 

Mathematical modeling is a field of mathematics used to formulate a real problem into a mathematical 

model [5]. Several researchers have studied the dynamics of the spread of influenza using mathematical 

modeling, namely Khanh [6], who described the transmission of influenza virus with disease resistance in 

humans. Erdem et al. [7] have studied the influenza model with the assumption that everyone has the same 

opportunity to contact other individuals. Next, Erdem et al. [7] developed the model by adding a quarantine 

class, assuming the latency period (inactive virus) is negligible and immunity is permanent. Kanyiri et al. [8] 

have constructed a model for the spread of influenza by dividing the infected subpopulation into two types, 

namely infected with the wild-type strain and the resistant strain. Rosyada et al. [9] discussed mathematical 

modeling that explains the model of influenza virus transmission with the SEIR Model in a case study in 

Pekalongan City. Baba et al. [10] have constructed a mathematical model to study resistance and non-

resistance strains of influenza. Barik et al. [11] analyzed the model by assuming a functional response of type 

I Holling for urban areas and type II Holling for rural areas on the rate of infection transmission. Guan et al. 

[12] have established an influenza epidemic model with vaccinated and asymptomatic patients. Chen [13] 

has developed a model for the spread of influenza stratified by age. 

Fractional order mathematical modeling is a mathematical technique used to formulate natural 

phenomena into models involving fractional order. Fractional order refers to a form of differential equation 

that contains derivatives of non-integer order, namely derivatives with fractional powers. This order adds 

information from classical theory with a more accurate description so that it can explain natural phenomena 

better [14]. One of the researchers who has studied the development of influenza spread using a fractional 

model approach is Ebenezer [15] who examined the fractional order of influenza using an epidemic model. 

Yaro et al. [16] have studied respiratory epidemic models, one of which is caused by the influenza virus, 

using Caputo’s fractional order derivative. Cui and Liu [17] have formulated a fractional model that governs 

the dynamical properties of bi-strains of influenza. Evirgen et al. [18] have constructed a fractional-order 

influenza spread model with distinct contact rates. Abdoon et al. [19] have provided a novel mathematical 

model for influenza using the Atangana-Baleanu Caputo fractional-order derivative operator in place of the 

standard operator. Khan et al. [20] have investigated the coexistence of two influenza strains. Alsubaje et al. 

[21] have modeled the transmission dynamic of influenza using a deterministic SEIHR-V model under 

Caputo fractional-order Calculus. 

Based on the description above, we proposed a fractional-order mathematical model of influenza 

spread using the Caputo fractional approach proposed by Ojo et al. [4]. We also modified the basic model in 

[4] by eliminating the influenza vaccination compartment, considering that in Indonesia, influenza 

vaccination is given from the age of 6 months through an immunization program. By using fractional ordinary 

differential equations, we hope that the fractional order mathematical model can accommodate the actual 

phenomenon of the spread of influenza. 

 

2. RESEARCH METHODS 

In this section, we will provide the mathematical theory used and the research methods carried out in 

this research. 

 

2.1 Caputo Derivative 

The Caputo fractional derivative is defined as follows [22]: 
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Definition 1. Let 𝑓(𝑡) is a function that is differentiable to the 𝑚th derivative. The Caputo derivative of 𝑓(𝑡) 

of order 𝛼 ∈ (0, 1] can be defined as follows: 

𝐷𝛼𝑓(𝑡) =
𝑑𝛼𝑓(𝑡)

𝑑𝑡𝛼 = {

1

Γ(𝑚−𝛼)
∫

𝑓
(𝑚)

(𝜏)

(𝑡−𝜏)𝛼−𝑚+1 𝑑𝜏
𝑡

0
, 𝑚 − 1 < 𝛼 < 𝑚

𝑓
(𝑚)

(𝑡), 𝛼 = 𝑚
, 

where 𝑡 > 0 and 𝑚 ∈ ℕ. 

Caputo fractional derivative of a constant 𝐶 is zero, namely 
𝑑𝛼𝐶

𝑑𝑡𝛼 = 0 and holds: 

𝑑𝛼𝑡𝑚

𝑑𝑡𝛼 = {
0, 𝑚 ≤ 𝛼 − 1

Γ(𝑚+1)

Γ(𝑚−𝛼+1)
𝑡𝑚−𝛼, 𝑚 > 𝛼 − 1

. 

If 𝜶 = 𝟏, then the Caputo fractional derivative is an ordinary derivative. Thus, the Caputo fractional 

derivative is a generalization of the ordinary derivative [23]. 

 

2.2 Systems of Nonlinear Fractional-order Differential Equation 

The following are the definition and theorem regarding systems of nonlinear fractional-order 

differential equations [23]: 

Definition 2. Consider a system of fractional-order nonlinear differential equations using the Caputo 

approach as follows: 

𝐷𝛼𝑥(𝑡) = 𝑓(𝑥) (1) 

where 𝑥 ∈ ℝ𝑛 and 𝛼 ∈ (0, 1]. 

Theorem 1. The equilibrium point of Equation (1) is the solution to 𝑓(𝑥) = 0. An equilibrium point is locally 

asymptotically stable if all eigenvalues (𝜆𝑖) of the Jacobian matrix 𝐽 = 𝜕𝑓/𝜕𝑥 evaluated at the equilibrium 

point satisfy |𝑎𝑟𝑔 (𝜆𝑖)| > 𝛼𝜋/2. 

 

2.2 Research Methods 

The steps used to analyze the fractional-order mathematical model of the spread of influenza are as 

follows: 

a. Modifying the mathematical model of the spread of influenza as referred to by Ojo et al. [4], 

namely by only taking the influenza spread model, adding fractional order to the model, and 

modifying the model by eliminating the vaccination compartment. 

b. Analyze the stability of the equilibrium points in the fractional-order mathematical model of the 

spread of influenza with the following steps: 

i. Determining the equilibrium point in a fractional-order mathematical model of the spread of 

influenza. 

ii. Calculating the basic reproduction number (𝓡𝟎) using the next-generation matrix method.  

iii. Linearize the fractional-order mathematical model of the spread of influenza using the 

Jacobian matrix.  

iv. Testing the local stability of the equilibrium point of the fractional-order mathematical model 

of the spread of influenza using the Routh-Hurwitz criterion. 

c. Carrying out numerical simulations on fractional-order mathematical models of the spread of 

influenza using MATLAB software. 
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3. RESULTS AND DISCUSSION 

In this section, we propose a fractional-order mathematical model of the spread of influenza, analysis 

of the model, and conduct numerical simulations of the model to support the analytical results. 

 

3.1 Model Formulation 

A fractional-order mathematical model of the spread of influenza is constructed under the following 

assumptions: 

a. The population is divided into four compartments: the susceptible subpopulations (𝑆), the exposed 

subpopulations (𝐸), the infected subpopulations (𝐼), and the recovered subpopulations (𝑅). 

Moreover, the total population is given by 𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝑅. 

b. All newborn individuals are considered susceptible to influenza. 

c. The rate of disease spread begins with a saturation incidence rate. 

d. Immunity in individuals who have recovered from influenza may decrease, so individuals who 

recover can become susceptible to the disease again. 

e. Individuals who are vaccinated against influenza are still considered individuals who are 

susceptible to the disease. 

f. All parameter values have positive values. 

A description of the parameters in the mathematical model of the spread of influenza can be seen in 

Table 1 as follows: 

Table 1. Description of the Parameters  

No Parameter Description 

1 𝜋 Rate of influx of susceptible individuals 

2 𝜇 Rate of natural death 

3 𝜅 Rate of decline in immunity of recovered individuals 

4 𝛽 Rate of transmission 

5 𝜌 Rate of saturation 

6 𝜎 Rate of influenza progression from exposure to infection 

7 𝛾 Recovery rate of individuals infected 

8 𝛿 Influenza death rate 

 

Based on these assumptions and parameters, the compartment diagram of the influenza spread model 

can be formed in Figure 1 as follows: 

 

 
Figure 1. Compartment Diagram for Mathematical Model of the Spread of Influenza 

Based on Figure 1, a mathematical model of the spread of influenza can be formed as follows: 

        
𝑑𝑆

𝑑𝑡
= 𝜋 + 𝜅𝑅 − (𝜇 + 𝑟)𝑆, 

𝑑𝐸

𝑑𝑡
= 𝑟𝑆 − (𝜎 + 𝜇)𝐸, (2) 
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𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − (𝛾 + 𝜇 + 𝛿)𝐼, 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − (𝜅 + 𝜇)𝑅, 

where 𝑟 =
𝛽𝐼

1+𝜌𝐼
. The solution of Equation (2) is defined for every 𝑡 ≥ 0 in the set of positive invariants, 

with: 

Ω = {(𝑆, 𝐸, 𝐼, 𝑅) ∈ ℝ+
4 |𝑆, 𝐸, 𝐼, 𝑅 ≥ 0, 0 ≤ 𝑁 ≤

𝜋

𝜇
} . (3) 

Next, we consider a fractional-order model of Equation (3). The fractional-order mathematical model 

of the spread of influenza is as follows: 

    
𝑑𝛼𝑆

𝑑𝑡𝛼 = 𝜋 + 𝜅𝑅 − (𝜇 + 𝑟)𝑆, 

𝑑𝛼𝐸

𝑑𝑡𝛼 = 𝑟𝑆 − (𝜎 + 𝜇)𝐸, (4) 

        
𝑑𝛼𝐼

𝑑𝑡𝛼 = 𝜎𝐸 − (𝛾 + 𝜇 + 𝛿)𝐼, 

𝑑𝛼𝑅

𝑑𝑡𝛼 = 𝛾𝐼 − (𝜅 + 𝜇)𝑅, 

where 𝛼 ∈ (0, 1] is the order of the fractional derivative. The fractional derivative used in Equation (4) is 

the Caputo approach. 

 

3.2 Model Analysis 

Based on Theorem 1, the equilibrium point is obtained by making the right side of Equation (4) zero. 

The disease-free equilibrium point in Equation (4) is: 

𝑥0 = (𝑆0;  𝐸0;  𝐼0;  𝑅0) = (
𝜋

𝜇
;  0;  0;  0) . (5) 

Then, the basic reproduction number (ℛ0) of model Equation (5) is computed using the next-

generation matrix method. The basic reproduction number is defined as the number of secondary cases of 

primary cases during the infectious period due to the type of infection [24]. Based on Equation (5), there are 

two compartments with infected compartments, namely 𝐸 and 𝐼. The Jacobian matrices 𝐹 and 𝑉 for the new 

infection acquired from susceptible individuals and the rate of individual movement from one subpopulation 

to another subpopulation evaluated at the free equilibrium point 𝑥0 are given by: 

𝐹 = [
0 𝜋𝛽𝐼

0 0
] , 

𝑉 = [
𝜎 + 𝜇 0
−𝜎𝐼 𝛾 + 𝜇 + 𝛿

] . (6) 

 

The basic reproduction number of Equation (6) is obtained by determining the spectral radius of the matrix 

𝐹𝑉−1, so that it is obtained: 

ℛ0 =
𝜋𝛽𝜎

𝜇(𝜎 + 𝜇)(𝛾 + 𝜇 + 𝛿)
. (7) 

 

The following theorem provides the local stability of the disease-free equilibrium point. 

Theorem 2. The disease-free equilibrium point 𝑥0 is locally asymptotically stable if ℛ0 < 1. 

Proof. The Jacobian matrix of Equation (4) around the disease-free equilibrium point 𝑥0 is given by: 
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𝐽(𝑥0) =

[
 
 
 
 
 
 
−𝜇
0
0
0

     

0
−(𝜎 + 𝜇)

𝜎𝐼

0

     

−
𝜋𝛽

𝜇
𝜋𝛽

𝜇

−(𝛾 + 𝜇 + 𝛿)
𝛾𝐼

     

𝜅𝐼

0
0

−(𝜅 + 𝜇)

]
 
 
 
 
 
 

. (8) 

Based on Equation (8), the eigenvalues of Jacobian matrix 𝐽 are 𝜆1 = −𝜇, 𝜆2 = −(𝜅 + 𝜇), and the 

roots of quadratic equation: 

𝜆2 + 𝑎1𝜆 + 𝑎2 = 0, (9) 

where 𝑎1 = (𝜎 + 𝜇) + (𝛾 + 𝜇 + 𝛿) and 𝑎2 = (𝜎 + 𝜇)(𝛾 + 𝜇 + 𝛿) − 𝜋𝛽𝜎𝐼/𝜇. Using the Routh-Hurwitz 

criterion, the roots of Equation (9) have a positive real part if and only if 𝑎1 > 0 and 𝑎2 > 0, which obtained 

when ℛ0 < 1. Ahmed et al. [25] showed that for every 𝑛 ∈ ℕ, 𝑎𝑛 > 0 is a necessary condition for 

|arg (𝜆𝑖)| >
𝛼𝜋

2
, where 𝑖 = 1, 2,… , 𝑛. Thus, it is proven that the disease-free equilibrium point 𝑥0 is locally 

asymptotically stable for 𝛼 ∈ (0, 1] if ℛ0 < 1. ∎ 

Next, the endemic equilibrium point 𝑥∗ of Equation (4) will be determined. The endemic equilibrium 

point 𝑥∗ of Equation (3) is: 

𝑥∗ = (𝑆∗;  𝐸∗;  𝐼∗;  𝑅∗), (10) 

where 

𝑆∗ =
𝜋(1 + 𝜌𝐼∗)

𝜇ℛ0
, 

𝐸∗ =
𝛾 + 𝜇 + 𝛿

𝜎
𝐼∗, 

𝐼∗ =
𝜇(𝜎 + 𝜇)(𝛾 + 𝜇 + 𝛿)(𝜅 + 𝜇)(ℛ0 − 1)

𝜇𝜌(𝜎 + 𝜇)(𝛾 + 𝜇 + 𝛿)(𝜅 + 𝜇) + 𝛽((𝜎 + 𝜇)(𝛾 + 𝜇 + 𝛿)(𝜅 + 𝜇) − 𝜎𝜅𝛾)
, 

𝑅∗ =
𝛾

𝜅 + 𝜇
𝐼∗. 

The endemic equilibrium point 𝑥∗ exists if ℛ0 > 1. 

The following theorem provides the local stability of the endemic equilibrium point. 

Theorem 3. The endemic equilibrium point 𝑥∗ is locally asymptotically stable if ℛ0 > 1. 

Proof. The Jacobian matrix of Equation (4) around the disease-free equilibrium point 𝑥0 is given by: 

𝐽(𝑥∗) = [

−(𝜇 + 𝑟∗)

𝑟∗

0
0

     

0
−(𝜎 + 𝜇)

𝜎𝐼

0

     

−𝑝1

𝑝1

−(𝛾 + 𝜇 + 𝛿)
𝛾𝐼

     

𝜅
0
0

−(𝜅 + 𝜇)

] , (11)

where 𝑝1 =
𝛽

(1+𝜌𝐼∗)2
. Based on Equation (11), the eigenvalues of Jacobian matrix 𝐽 are the roots of the 

characteristic equation: 

𝜆4 + 𝑏1𝜆
3 + 𝑏2𝜆

2 + 𝑏3𝜆 + 𝑏4 = 0, (12) 

where 𝑏1 = 𝑗1 + 𝑗4 + 𝑗6 + 𝑗7, 𝑏2 = 𝑗4𝑗6 − 𝑗5𝜎𝐼 + (𝑗1 + 𝑗7)(𝑗4 + 𝑗6) + 𝑗1𝑗7, 𝑏3 = (𝑗1 + 𝑗7)(𝑗4𝑗6 − 𝑗5𝜎𝐼) +
𝑗1𝑗7(𝑗4 + 𝑗6) + 𝑗2𝑗3𝜎𝐼 , dan 𝑏4 = 𝑗1𝑗7(𝑗4𝑗6 − 𝑗5𝜎𝐼) + 𝑗3𝜎𝐼(𝑗2𝑗7 − 𝜅𝐼𝛾𝐼). Due to the complexity of the 

coefficient expression in the characteristic equation, the analytical proof is difficult to carry out, so the proof 

will be shown numerically. Numerical simulations to determine the stability of the endemic equilibrium point 

𝑥∗ are carried out by taking two order 𝛼 values, namely 𝛼 = 0.75 and 𝛼 = 1. The initial values and parameter 

values used in this numerical simulation are given in Table 2 and Table 3 as follows: 
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Table 2. Initial Values in Phase Portrait Simulation  

Initial Values 𝑺 𝑬 𝑰 𝑹 

𝑧1 200,000 90,000 500 400 

𝑧2 225,000 60,000 450 350 

𝑧3 250,000 35,000 400 300 

Table 3. Parameter Values in Fractional-order Mathematical Model of the Spread of Influenza  

Parameter Value Reference 

𝜋 100 Assumed 

𝜇 3.516 × 10−4 [4] 

𝜅 0.088 [4] 

𝛽 5.03 × 10−6 Assumed 

𝜌 0.7 Assumed 

𝜎 0.4 [4] 

𝛾 0.1998 [4] 

𝛿 0.021 [4] 

 

The results of the numerical simulation can be seen in Figure 2 by taking three different initial values. 

 

       
                                          (a)                                                                            (b) 

Figure 2. Phase Portrait of (3) for 𝓡𝟎 > 𝟏 when (a) 𝜶 = 𝟏 and (b) 𝜶 = 𝟎. 𝟕𝟓 

 

Based on the numerical simulation results in Figure 2, the solution of (4) with three different initial 

values given converges to the endemic equilibrium point 𝑥∗, where ℛ0 = 6.4623 > 1. Thus, the endemic 

equilibrium point 𝑥∗ tend to be locally asymptotically stable for 𝛼 ∈ (0, 1] if ℛ0 > 1. ∎ 

 

3.3 Sensitivity Analysis 

In this sub-section, we present the sensitivity analysis of the reproduction number (ℛ0) to the 

parameters in Equation (4). The aim of this analysis was to measure the parameters that have the most effects 

on ℛ0. The index of each parameter involved in ℛ0 can be formulated as follows: 

𝑒𝑚
ℛ0 =

𝜕ℛ0

𝜕𝑚

𝑚

ℛ0
, (13)

where 𝑒𝑚 is the sensitivity index of the parameter 𝑚 and 𝑚 is the parameter to be analyzed. The sensitivity 

index of ℛ0 with respect to each parameter, such as 𝜋, 𝛽, 𝜎, 𝜇, 𝛾, and 𝛿 can be computed using (13). For 

example, the sensitivity index of ℛ0 with respect to 𝛽 and 𝛾 are: 

𝑒𝛽
ℛ0 =

𝜕ℛ0

𝜕𝛽

𝛽

ℛ0
= 1, 𝑒𝛾

ℛ0 =
𝜕ℛ0

𝜕𝛾

𝛾

ℛ0
= −0.9035. 
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The results of calculating the sensitivity index on the parameters of the fractional-order mathematical 

model of the spread of influenza can be seen in Table 4 as follows: 

Table 4. Parameter Sensitivity Index Calculation Results 

Parameter Sensitivity index 

𝜋 1 

𝛽 1 

𝜎 8.7823 × 10−4 

𝜇 −1.0025 

𝛾 −0.9035 

𝛿 −0.095 

 

Based on Table 4, a sensitivity index with a positive value indicates that an increase in the parameter 

value will cause an increase in the basic reproduction number, while a sensitivity index with a negative value 

indicates that an increase in the parameter value will cause a decrease in the basic reproduction number. For 

example, sensitivity index 𝑒𝛽
ℛ0 = 1, increasing the 𝛽 value by 10% will increase ℛ0 by 10% and for 

 𝑒𝛾
ℛ0 = −0.9035, increasing the 𝛾 value by 10% will decrease ℛ0 by 9.035%. 

Based on the parameter values in Table 3, we also perform sensitivity simulations to verify our 

sensitivity analysis of 𝛽 with respect to ℛ0 in Figure 3 as follows: 

           
(a) (b) 

Figure 3. Sensitivity of 𝓡𝟎 with respect to (a) 𝜷 and (b) 𝜸 for Different Values of 𝝅 

Based on the sensitivity simulation results in Figure 3, it can be seen that if the 𝛽 value increases, the 

resulting ℛ0 value will increase monotonically, and if the 𝛾 value increases, the resulting ℛ0 value will 

decrease monotonically. Next, we perform sensitivity simulations of 𝛽 and 𝛾 with respect to 𝐼 in Figure 4 as 

follows: 

 

           
      (a)                 (b) 

Figure 4. Sensitivity of 𝜷 with respect to 𝑰 when (a) 𝜶 = 𝟏 and (b) 𝜶 = 𝟎. 𝟕𝟓 
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      (a)                 (b) 

Figure 5. Sensitivity of 𝜸 with Respect to 𝑰 when (a) 𝜶 = 𝟏 and (b) 𝜶 = 𝟎. 𝟕𝟓 

Based on Figure 4, it can be seen that the number of infected individuals will be more significant if 

the rate of the spread of influenza is greater. Based on Figure 5, the number of infected individuals will 

decrease if the rate of the spread of influenza is greater. Apart from that, sensitivity analysis of 𝛽 and 𝛾 with 

high order 𝛼 have faster convergence speeds compared to smaller 𝛼. 

Based on the description above, it can be seen that the level of influenza transmission significantly 

impacts the spread of influenza. This indicates that preventive measures are needed to control the spread of 

influenza, such as maintaining cleanliness, wearing masks, maintaining distance, and so on. In addition, the 

recovery rate of influenza also has a major impact on reducing the spread of influenza. Therefore, effective 

influenza treatments can reduce the number of infected individuals. 

 

3.4 Numerical Simulation 

In this sub-section, we conduct several numerical simulations of Equation (4). Numerical simulations 

were carried out using MATLAB software. The initial values used in these simulations are 

(𝑆(0);  𝐸(0);  𝐼(0);  𝑅(0)) = (200,000;  90,000;  500;  400). Here, we take 500 days for the time horizon. 

Simulations were carried out with varying fractional derivative order values 𝛼 ∈ (0.5, 1]. 

Now, we will perform a numerical simulation for the disease-free equilibrium point 𝑥0. The parameter 

values used in this numerical simulation are 𝛽 = 2.03 × 10−7 and other parameter values are taken in Table 

2. In this case, the value of ℛ0 is ℛ0 = 0.0026 < 1, which means there is no disease spread in a population. 

The results of the numerical simulation of the disease-free equilibrium point in Equation (4) can be seen in 

Figure 6 and Figure 7 as follows: 

           
                                (a)                                                                                        (b) 

Figure 6. Numerical Solution of Equation (4) when 𝓡𝟎 < 𝟏 for (a) Susceptible Population and  

(b) Exposed Population 
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                                           (a)                                                                                (b) 

Figure 7. Numerical Solution of Equation (4) when 𝓡𝟎 < 𝟏 for (a) Infected Population and (b) Recovered 

Population 

 

Based on the numerical simulation results in Figure 6 and Figure 7, we observe that the solution of 

Equation (4) converges to disease-free equilibrium when ℛ0 < 1. Apart from that, numerical simulation 

with high-order 𝛼 have faster convergence speeds compared to smaller 𝛼. 

Next, we will perform a numerical simulation for the endemic equilibrium point 𝑥∗. The parameter 

values used in this numerical simulation are taken in Table 2. In this case, the value of ℛ0 is  

ℛ0 = 6.4632 > 1, which means that disease spreads in a population. The results of the numerical simulation 

of the endemic equilibrium point in Equation (4) can be seen in Figure 8 and Figure 9 as follows: 

           
                                  (a)                                                                                        (b) 

Figure 8. Numerical Solution of Equation (4) when 𝓡𝟎 > 𝟏 for (a) Susceptible Population and  

(b) Exposed Population 

           
                                           (a)                                                                                (b) 

Figure 9. Numerical Solution of Equation (4) when 𝓡𝟎 > 𝟏 for (a) Infected Population and  

(b) Recovered Population 
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Based on the numerical simulation results in Figure 8 and Figure 9, we observe that the solution of 

Equation (4) converges to endemic equilibrium when ℛ0 > 1. Apart from that, numerical simulation with 

high-order 𝛼 have faster convergence speeds compared to smaller 𝛼. 

 

4. CONCLUSIONS 

In this article, we have investigated a fractional-order mathematical model of the spread of influenza 

as a generalization of the integer-order model proposed by Ojo et al. [4]. The basic model in [4] is modified 

by simply taking the influenza spread model, removing the influenza vaccination compartment, and 

generalizing the model by adding a fractional order. We have calculated the basic reproduction number (ℛ0) 

and proven the equilibrium point stability of a fractional-order mathematical model of the spread of influenza. 

Based on mathematical analysis, a disease-free equilibrium point is locally asymptotically stable if ℛ0 < 1, 

which means there is no disease spread in a population. Numerically, the endemic equilibrium point tends to 

be locally asymptotically stable when ℛ0 > 1, which means that disease spreads in a population. We also 

studied sensitivity analysis analytically and numerically to measure parameters that have a high impact of 

ℛ0. Finally, we have performed numerical simulations for different order (𝛼) values of the fractional 

derivative. The numerical simulation results show that solutions with high-order 𝛼 have faster convergence 

than those with smaller 𝛼. 
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