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ABSTRACT 

Article History: 
Data from the 2021 West Java Provincial Health Profile Report, accessed from the official 

website of the West Java Provincial Health Office, reveals a significant surge in maternal 
mortality cases, rising from 165 in 2020 to 460 in 2021. In support of efforts to reduce 

maternal mortality rates, this study investigates the contributing factors to this phenomenon 

across various districts in West Java Province. The data used is from the year 2021. This study 

aims to evaluate the effectiveness of Poisson regression, negative binomial regression, and 
Geographically Weighted Poisson Regression (GWPR) models in capturing the variability of 

maternal deaths in the study area for that year. A comprehensive analysis revealed that the 

distribution of maternal mortality fits the Poisson model, displaying significant spatial 

heterogeneity. Acknowledging this variability, the GWPR approach using an Adaptive Kernel 
Bisquare weighting was selected due to its capability to produce localized parameter 

estimates, which more accurately reflect the specific conditions of each location. The analyzed 

independent variables include the number of community health centers, coverage of antenatal 

services at the first (K1) and fourth (K4) visits, management of obstetric complications, and 
coverage of iron supplementation for pregnant women. Of the five variables, only three 

showed statistically significant effects; therefore, the study proceeded using these three 

variables. The results indicate that GWPR provides the best explanation for the variability in 

maternal mortality rates, with an adjusted R² value of 63.17% and a MAPE of 37.70%. 
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1. INTRODUCTION 

Maternal mortality, reflected through the Maternal Mortality Rate (MMR), is a vital indicator that 

illustrates the level of health welfare in a region. MMR measures the risk of death faced by mothers during 

pregnancy, childbirth, and the postpartum period, calculated per 100,000 live births [1]. Reducing the MMR 

is one of the 17 Sustainable Development Goals (SDGs), which aim to reduce the MMR to below 70 per 

100,000 live births by 2030. In West Java, the MMR is recorded at 147.43 per 100,000 live births, 

significantly above the SDGs target [2]. This situation underscores the need for a more strategic and 

comprehensive approach to meet the global target, given the urgent need to improve maternal health and 

significantly reduce the risk of maternal mortality. 

West Java Province was recorded as having one of the highest maternal mortality rates in Indonesia in 

2021, according to collected data [3]. An analysis of trends from 2019 to 2021 indicates a consistent increase 

in maternal deaths across its 27 districts/cities, with a significant rise from 165 cases in 2020 to 460 cases in 

2021, as reported in the District Health Profile [1]. The factors contributing to this increase are multifaceted 

and complex. Key aspects include the availability of health infrastructure, such as the number of community 

health centers, which play a crucial role in providing essential services. Additionally, the coverage of 

antenatal services and effectiveness in managing obstetric complications are other critical factors. Further 

factors such as the provision of iron supplementation tablets to pregnant women also significantly influence 

the high maternal mortality rates in this region. Further research is needed to identify effective interventions 

to reduce risks and improve maternal health outcomes in West Java. 

Maternal mortality is a serious global health issue that requires thorough investigation to support 

government policies aimed at reducing its prevalence [4]. One effective method is through the modeling and 

mapping of maternal mortality rates, taking into account the causative factors. As maternal mortality is often 

a relatively rare event in a specific period or region, this approach is well-suited to be modeled using the 

Poisson distribution, which is ideal for counting data of rare events [5]. Poisson regression, frequently utilized 

in epidemiological studies, allows for the exploration of relationships between the dependent variable 

(number of maternal deaths) and influential independent variables. This method not only provides a deeper 

understanding of the dynamics affecting maternal mortality but also aids in formulating appropriate 

intervention strategies. Implementing Poisson regression analysis can significantly contribute to efforts to 

reduce maternal mortality rates by providing accurate and relevant data-driven insights. Indonesia remains 

one of the Southeast Asian countries with the highest maternal mortality rates, characterized by substantial 

disparities across regions [6], [7]. Contributing factors extend beyond medical issues to include economic 

challenges, environmental conditions, and disorganized healthcare service management systems, which 

collectively exacerbate maternal mortality [8]. 

In Poisson regression analysis, one crucial assumption is equidispersion, where the variance and mean 

of the data are expected to be equal. However, data often exhibit overdispersion, where the variance exceeds 

the mean, which can affect the efficiency of the estimators by causing high standard errors, though the 

estimators remain consistent [9]. This overdispersion reduces the efficiency of parameter estimation in the 

Poisson model, thus diminishing the reliability of research outcomes [10]. In response to this condition, the 

negative binomial regression model is often used as an alternative because it includes an additional dispersion 

parameter that allows for more effective handling of overdispersion. The negative binomial regression model 

not only addresses the limitations of Poisson regression in overdispersed conditions but also produces more 

accurate and efficient parameter estimates. The implementation of this negative binomial model is crucial, 

especially in epidemiological and public health research, where precision and reliability of parameter 

estimates are key to developing appropriate and evidence-based interventions. 

Conventional Poisson regression models often fall short in modeling data with a strong spatial 

component, such as the geographic variations in maternal mortality, which can be influenced by geographic, 

social, cultural, and local conditions in West Java Province. These conditions lead to spatial heterogeneity, 

meaning that regression parameters may not be uniform across the study area [11]. Geographically Weighted 

Poisson Regression (GWPR) is a method designed to address this issue by allowing regression parameters to 

adapt locally, acknowledging and integrating spatial variations in the data. GWPR effectively captures and 

models the dynamics of the relationship between dependent and independent variables that may vary across 

regions, thus providing a deeper and localized understanding of the factors influencing maternal mortality in 

West Java. Implementing GWPR can yield more accurate and relevant insights, which are crucial in the 

formulation of more effective policy and intervention strategies to reduce maternal mortality. 
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Several studies on the use of GWPR encompass a wide range of critical topics, such as the examination 

of the relationship between socioeconomic factors and hysterectomy in Belgium [12], the analysis of the 

spatial patterns of pulmonary tuberculosis and related key factors in Bandar Lampung, Indonesia [13], and 

the modeling of maternal mortality rates in Indonesia through the geographically weighted Poisson regression 

approach [14]. Additionally, comparisons have been made between Geographically Weighted Artificial 

Neural Networks and Geographically Weighted Generalized Poisson Regression in the context of crime cases 

in East Java, Indonesia [15], as well as the application of geographically weighted Poisson regression for 

modeling maternal mortality rates in Papua Province [16]. 

GWPR represents an evolution from traditional Poisson regression that incorporates spatial weights 

based on the latitude and longitude coordinates of each observation point. In the GWPR model, the dependent 

variable—for instance, maternal mortality—is influenced by independent variables with regression 

coefficients that explicitly depend on geographical location. The primary objective of GWPR is to explore 

and identify the local influence of independent variables on the dependent variable, adjusting for significant 

spatial variation in the Poisson-distributed data. As a result, this model produces varying parameter 

estimations at each location, known as local estimators, which allow for the identification of geographical 

clusters with similar characteristics related to significant independent variables. In the context of researching 

maternal mortality in West Java Province in 2021, choosing between Poisson regression, negative binomial 

regression, and GWPR is critical for developing a more accurate understanding of the regional dynamics 

influencing mortality rates. By implementing GWPR, it is expected to gain deep insights into local factors 

affecting maternal mortality, fully leveraging spatial information to inform more effective intervention 

strategies based on distinct geographical characteristics.  

 

2. RESEARCH METHODS 

2.1 Research Data and Variables 

In this study, we use secondary data sourced from the West Java Health Profile Book 2021, obtained 

through the official website of the West Java Provincial Health Office at https://diskes.jabarprov.go.id/, 

accessed in 2022. The data collected covers 27 districts/cities in West Java Province. The dependent variable 

in this analysis is the number of maternal deaths (𝑌), which is a primary indicator in assessing the 

effectiveness of maternal health services in the region. The chosen independent variables include: the number 

of community health centers (𝑋1) which represents access to health facilities, coverage of antenatal care at 

first (𝑋2) and fourth (𝑋3) visits of pregnant women which reflects the intensity and quality of prenatal care, 

coverage of obstetric complication management (𝑋4) which indicates the capacity to handle pregnancy risks, 

and coverage of Iron Supplementation Tablets (IST) provision to pregnant women (𝑋5) which is important 

for the prevention of anemia. These variables were selected based on their potential influence on maternal 

mortality and are expected to provide significant insights into the factors affecting the maternal death rate in 

the region. 

 

2.2 Poisson Regression Model 

Poisson regression is a nonlinear regression model that assumes the response variable (𝒚) follows a 

Poisson distribution, which is a common approach for modeling count data, such as the number of events 

occurring within a specific period or region, often denoted by 𝒚. The Poisson distribution is specifically 

utilized because of its ability to describe rare events where the mean value (𝜇) must always be positive [17]. 

Therefore, this model requires a link function, such as the logarithm, to connect the mean value to the 

independent variables, ensuring that the estimation of 𝜇 remains positive. As part of the Generalized Linear 

Models (GLM) category, Poisson regression facilitates analysis where the response variable is Poisson-

distributed, and the use of this link function allows the model to accommodate nonlinear relationships 

between the independent and dependent variables [18]. 

GLM consists of three components: the random component, the systematic component, and the link 

function [4]. The random component comprises the variable 𝒚, with independent observed values denoted as 

(𝑦1, … , 𝑦𝑛)𝑇. The systematic component of Generalized Linear Models (GLM) connects the vector 

https://diskes.jabarprov.go.id/


560 Yuliana, et al.    SPATIAL MODELING OF MATERNAL HEALTH: GEOGRAPHICALLY WEIGHTED POISSON…  

 

 𝜼 = [𝜼𝟏, 𝜼𝟐, … , 𝜼𝒏]𝑻 with a set of predictor (𝑝) variables through a linear model, 𝜼 also referred to as a linear 

estimator, 𝜼 can be written as Equation (1). 

𝜼 =  𝑿𝜷 (𝟏) 

where 𝑋 is the design matrix containing the values of the explanatory variables for 𝑛 observations, and 𝛽 is 

the vector of parameters within the model. Suppose 𝜇𝑖 is the mean of 𝑌𝑖 where 𝜇𝑖 = 𝐸(𝑌𝑖), for 𝑖 = 1,2,… , 𝑝. 

The model connects 𝜇𝑖 with 𝜂𝑖 through the relation 𝑔(𝜇𝑖) = 𝜂𝑖, where 𝑔 is a differentiable function. Thus, 𝑔 

links the expected value 𝐸(𝑌𝑖) with the explanatory variables using the formula referred to as Equation (2). 

𝑔(𝜇𝑖) = 𝛽0 + 𝛽1𝑥11 + ⋯ + 𝛽𝑘𝑥𝑖𝑘 = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=1

 , 𝑖 =  1,2, … , 𝑛 (2) 

In the Poisson regression model, the commonly used link function is the logarithm, hence 𝑙𝑜𝑔(𝜇𝑖) = 𝜂𝑖. 

Consequently, the Poisson regression model can be written as Equation (3). 

𝑙𝑛(𝜇𝑖) = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=1

, 𝑖 =  1,2, … , 𝑛 (3) 

𝜇𝑖 = 𝑒𝑥𝑝 (𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=1

) 

Parameter estimation for the Poisson regression model is conducted using the Maximum Likelihood 

Estimation (MLE) method and subsequently solved using the numerical iterative method of Newton-

Raphson. The testing of parameters in the Poisson regression model employs the Maximum Likelihood Ratio 

Test (MLRT) [10]. A characteristic of the Poisson distribution is equidispersion, where the mean and variance 

of the response variable are equal. However, in practice, conditions are sometimes found where the variance 

of the data is greater than the mean. Such conditions are referred to as overdispersion [9]. Suppose 

overdispersion occurs in discrete data but the Poisson regression model is still used. In that case, the parameter 

estimates of the regression coefficients remain consistent but are not efficient due to the impact on high 

standard error values. 

 

2.3 Negative Binomial Regression Model 

The Negative Binomial Regression Model provides an analytical framework similar to Poisson 

regression for analyzing relationships between count data dependent variables and one or more predictor 

variables [19]. However, the negative binomial regression offers greater flexibility than the Poisson model 

because it does not constrain the data's variance to be equal to its mean. This becomes crucial, particularly in 

situations where the data exhibit overdispersion (the variance of the data exceeds the model’s assumption). 

In negative binomial regression, the presence of an additional dispersion parameter allows the model to more 

accurately adjust to the real variability in the data, providing more reliable estimates for the regression 

coefficients. This dispersion parameter is essential in capturing and depicting variation in count data, which 

often occurs in biological phenomena or social processes [20]. 

The Negative Binomial Regression Model is designed to address overdispersion in data that are 

Poisson-distributed by combining the Poisson and Gamma distributions. The negative binomial distribution 

is an extension of both, incorporating a dispersion parameter, 𝜃, which is crucial for accommodating the extra 

variation unexplained by the standard Poisson model. The probability mass function of the negative binomial 

model, which integrates the Poisson-Gamma distribution, can be described using the negative binomial 

probability mass function. The dispersion parameter in this model, 𝜃, allows for greater flexibility in 

modeling data with overdispersion, effectively overcoming the limitations of the Poisson. The negative 

binomial probability mass function illustrates the probability of the number of occurrences in a sample, 

accounting for a higher frequency of variability than typically expected under a simple Poisson model [21]. 

𝑓(𝑦, 𝜇, 𝜃) =
Γ (y +

1
θ

)

Γ (
1
θ

)  y!
(

1

1 + 𝜃𝜇
)

1
𝜃

(
𝜃𝜇

1 + 𝜃𝜇
)

𝑦

, 𝑦 = 0,1,2, … 𝑛 (4) 
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The Negative Binomial Regression Model is presented in Equation (5). 

𝜇𝑖 = exp(𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑘𝑋𝑖𝑘) (5) 

2.4 Geographically Weighted Poisson Regression Model 

Spatial heterogeneity is caused by differences in characteristics among observation location points, and 

a necessary assumption for GWPR analysis is the presence of spatial heterogeneity [22]. Testing for spatial 

heterogeneity can be performed using the Breusch-Pagan Test statistics [23]. GWPR is a local form of Poisson 

regression that produces local parameter estimates for each location, considering the assumption that the data 

follows a Poisson distribution. In the GWPR model, the dependent variable 𝑦 is predicted by independent 

variables, each of whose regression coefficients depend on the location where the data is observed. The 

GWPR model, noting the latitude and longitude coordinate vectors (𝑢𝑖, 𝑣𝑖), is presented in Equation (6) [24]. 

𝐸(𝑌𝑖) = 𝜇(𝑥𝑖 , 𝛽(𝑢𝑖, 𝑣𝑖)) = exp (𝑥𝑖
𝑇𝛽(𝑢𝑖, 𝑣𝑖)) ;  𝑖 = 1,2, … , 𝑛 (6) 

where 𝑌𝑖 is the observed value of the response variable for the 𝑖-th observation (i = 1,2,3,…,n), 

𝜇(𝑥𝑖 , 𝛽(𝑢𝑖, 𝑣𝑖)) is a function of 𝑥𝑖 as the predictor variable, 𝛽 are the regression parameters to be estimated, 

with 𝑥𝑖
𝑇 = [𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑘𝑖], 𝛽 = [𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑘], and (𝑢𝑖, 𝑣𝑖) are the longitude and latitude coordinates of 

the 𝑖-th point at a geographic location (in Universal Transverse Mercator (UTM) units). 

 

2.5 Kernel Weighting Function 

The spatial weight matrix indicates proximity among observations. In the family of Geographically 

Weighted analyses, the weight matrix is derived using various types of kernel weighting functions. A kernel 

function, or 𝐾(𝑢), is a continuous, symmetric, bounded function, ∫ 𝐾(𝑢)𝑑𝑢 = 1
∞

∞
.  Continuity implies that 

the sample point values are infinite, symmetry means the values are balanced, and boundedness means that 

the weighting function has limits from negative infinity to positive infinity [25]. The form of spatial weighting 

is a diagonal matrix, where its elements are a weighting function of each observation  [9]. The basic concept 

of the kernel function weighting is based on a distance function presented in Equation (7). 

𝑤𝑖𝑗 = {
1       , if 𝑑𝑖𝑗 < ℎ

0      , if 𝑑𝑖𝑗 ≥ ℎ
 (7) 

 

𝑑𝑖𝑗 is the Euclidean distance between the 𝑖𝑡ℎ observation location and the 𝑗𝑡ℎ observation location, while ℎ 

is the bandwidth [26]. The calculation of 𝑑𝑖𝑗 can be performed using Equation (8). 

𝑑𝑖𝑗 =  √(𝑢𝑖 − 𝑢𝑗)
2

+ (𝑣𝑖 − 𝑣𝑗)
2

 (8) 

 

𝑢𝑖 represents easting in UTM units, and 𝑣𝑖 represents northing in UTM units. Each type of kernel function 

will provide a different optimum bandwidth, the value of the bandwidth is obtained from iteration results. 

The optimum bandwidth is determined by comparing Cross-Validation (CV) values, using the formula 

presented in Equation (9). 

𝐶𝑉 =  ∑[𝑦𝑖 − �̂�≠1(ℎ)]2

𝑛

𝑖=1

 (9) 

 

�̂�≠1(ℎ) is the estimated value of 𝑦𝑖  with observations at the location (𝑢𝑖, 𝑣𝑖) assigned a value of 0 in the 

estimation process, and 𝑛 is the number of research samples. The optimum bandwidth is obtained from the 

minimum CV value. There are two types of kernel functions: Fixed and Adaptive. The Fixed kernel function 

obtains a single bandwidth value for all observation locations. In contrast, the Adaptive kernel function 

obtains different bandwidth values at each observation location by adjusting to the location. Each type of 

kernel function is further divided into several types, and the following are types of kernel function weighting 

formulas that can be used, presented in Equations (10) to Equation (12) [26], [27]. 
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a. Gaussian Kernel 

𝒘𝒋(𝒖𝒊, 𝒗𝒊) = 𝒆𝒙𝒑 (−
𝟏

𝟐
(

𝒅𝒊𝒋

𝒉
)

𝟐

) (10) 

 

b. Bisquare Kernel 

𝒘𝒋(𝒖𝒊, 𝒗𝒊) = {
(𝟏 − (

𝒅𝒊𝒋

𝒉
)

𝟐

)

𝟐

, 𝒅𝒊𝒋 ≤ 𝒉

              𝟎             , 𝒅𝒊𝒋 > 𝒉

 (11) 

 

c. Tricube Kernel 

𝒘𝒋(𝒖𝒊, 𝒗𝒊) = {
(𝟏 − (

𝒅𝒊𝒋

𝒉
)

𝟑

)

𝟑

, 𝒅𝒊𝒋 ≤ 𝒉

              𝟎             , 𝒅𝒊𝒋 > 𝒉

 (𝟏𝟐) 

𝑑𝑖𝑗 the Euclidean distance between location 𝑖 and location 𝑗, ℎ𝑖 the bandwidth for location i. Subsequently, 

𝑤𝑖𝑗 will be used as weights to estimate parameters that exhibit spatial heterogeneity. 

 

3. RESULTS AND DISCUSSION 

3.1 Descriptive Statistical Analysis 

The results of the descriptive statistical analysis to illustrate the number of maternal mortality in the 

districts/cities of West Java Province can be presented in Figure 1 and Table 1 below. 

 
Figure 1. Map of Maternal Mortality in West Java, 2021. 

In Figure 1, the presence of a "(C)" mark next to each name denotes that the area is classified as a 

city, whereas the absence of "(C)" indicates that the area is classified as a district.  

Table 1. Descriptive Analysis of Each Variable 
 

Y 𝐗𝟏 𝐗𝟐 𝐗𝟑 𝐗𝟒 𝐗𝟓 

min 4.00 10.00 90.20 86.10 47.25 67.36 

1stQu 11.00 23.50 100.40 96.35 84.84 95.45 

median 16.00 38.00 103.70 98.60 100.00 97.55 
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Y 𝐗𝟏 𝐗𝟐 𝐗𝟑 𝐗𝟒 𝐗𝟓 

mean 17.04 40.22 109.74 100.61 104.25 98.51 

3stQu 20.00 49.50 109.45 101.00 129.67 100.65 

Std.dev 11.06 20.87 20.57 11.72 27.95 12.33 

max 57.00 101.00 189.90 144.20 150.04 144.19 

Based on the data presented in Figure 1 and Table 1, the average number of maternal deaths in the 

districts/cities of West Java Province is recorded at 17.04 cases. The distribution of data shows that the lowest 

number of maternal deaths is 4 cases, while the highest reaches 57 cases, with a median value of 16 cases. 

Further analysis indicates that the first quartile (Q1) of this data is 11 cases, while the third quartile (Q3) is 

20 cases. When associated with independent variables, findings suggest that maternal deaths (𝑌) tend to be 

higher in districts/cities that have characteristics such as a larger number of community health center facilities 

and higher levels of first-visit and fourth-visit antenatal care, obstetric complication management, and 

coverage of IST provision. This is evident in districts like Karawang, Bogor, and Garut. This phenomenon 

indicates that despite the provision of adequate health facilities and services, the rate of maternal deaths 

remains high, suggesting the potential for other factors affecting maternal health outcomes that are not 

covered in the analyzed variables. This conclusion triggers the need for further investigation into other factors 

that may contribute to the high rate of maternal deaths in areas with relatively more health facilities and better 

health services, to understand the complex dynamics affecting maternal health outcomes in West Java. 

 

3.2 Testing the Poisson Distribution on the Maternal Mortality Variable 

In the context of this analysis, the Kolmogorov-Smirnov test is used to determine whether the 

dependent variable, the number of maternal deaths (𝑌) - follows a Poisson distribution, which is suitable for 

data about rare occurrences. The hypotheses for the Kolmogorov-Smirnov test are formulated as follows: 

𝐻0: the data on maternal deaths follow a Poisson distribution, and 𝐻1: the data on maternal deaths do not 

follow a Poisson distribution. The Kolmogorov-Smirnov test is a non-parametric test that measures the fit 

between the empirical cumulative distribution of sample data and the expected cumulative distribution of the 

Poisson model. This test produces a 𝐷 statistic, which is the maximum absolute difference between the two 

cumulative distribution functions. If the 𝐷 value is statistically significant, it indicates that there is a 

significant difference between the observed distribution and the theoretical Poisson distribution, leading to 

the rejection of the null hypothesis. 

Based on the results of the Kolmogorov-Smirnov test, a 𝑝-value of 0.177 was obtained, which is larger 

than the significance level of 5%. The resulting test statistic D is 0.250, which is smaller than the critical 

value 𝐷0.05;27 for a sample size of 27 at a 5% significance level. According to these criteria, the null 

hypothesis stating that the data on maternal deaths follow a Poisson distribution cannot be rejected. This 

conclusion indicates that the Poisson distribution is a suitable model for describing the variability in the data 

of maternal deaths observed in West Java Province. Therefore, the Poisson regression model approach can 

be applied to analyze the relationship between the number of maternal deaths and the factors affecting it, 

allowing further analysis of the determinants of maternal mortality using an appropriate model according to 

the data distribution. 

 

3.3 Poisson Regression Modeling 

In the context of Poisson regression analysis, parameter testing can be conducted either simultaneously 

or partially. Simultaneous testing aims to assess the collective influence of all independent variables on the 

dependent variable. The hypotheses tested in the MLRT are as follows: 𝐻0: 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 =
0  (Independent variables do not affect the dependent variable) while 𝐻1: ∃𝛽𝑘  ≠  0, 𝑘 = 1, 2, 3, 4, 5  (There 

exists 𝛽𝑘 ≠ 0 which means the independent variables have a simultaneous effect on the dependent variable). 

If the results of the MLRT indicate that we can reject the null hypothesis, it shows that at least one of the 

independent variables contributes significantly to the model, and therefore, affects the dependent variable. 

This testing is crucial to validate the presence of a combined effect of independent variables in the model and 

to ensure that the applied Poisson regression model is appropriate for the observed data. 
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Testing in Poisson regression consists of simultaneous and partial. Based on the simultaneous 

parameter testing of the Poisson regression model with 𝛼 =  5% (0.05), a value of 𝐷(�̂�) = 69.22 was 

obtained, which is greater than 𝜒(0.05;3)
2 = 7.81. Therefore, the decision is made to reject the null hypothesis, 

concluding that all five independent variables 𝑋1, 𝑋2, 𝑋3, 𝑋4, and 𝑋5 significantly affect the number of 

maternal deaths in West Java in 2021. Next, partial parameter testing aims to determine whether individual 

(partial) independent variables have an effect on the dependent variable. The hypothesis for partial testing for 

a specific 𝑘, where 𝑘 = 1, 2, 3, 4, 5, is 𝐻0: 𝛽𝑘 = 0  (the 𝑘-th variable has no significant effect) and 

 𝐻1: 𝛽𝑘 ≠ 0 (the 𝑘-th variable has a significant effect) [28]. The results of partial testing after eliminating 

variables that were not significant are presented in Equation (13). 

�̂� = exp(1.12 +  0.026𝑋1 −  0.043𝑋3 +  0.05𝑋5) (13) 

 

In the considered Poisson regression model, the effect of percentage changes in the independent 

variables on the likelihood of maternal mortality is explained through the estimated coefficients and 

interpreted as follows: (1) Every 1 percent increase in the number of Community Health Centers (𝑋1) is 

associated with an increase in the risk of maternal mortality by approximately 𝑒0.026 ≈1.026, assuming other 

variables are constant. This indicates that more Puskesmas slightly increase the risk of maternal mortality, 

possibly due to hidden variables such as population density or the severity of health conditions not explicitly 

accounted for in the model. (2) A 1 percent increase in the coverage of 𝐾4 services for pregnant women is 

associated with a decrease in the risk of maternal mortality to approximately 𝑒−0.047 ≈ 0.954 times, 

assuming other variables are constant. This suggests that improving advanced antenatal care services can 

effectively reduce the risk of maternal mortality. (3) Every 1 percent increase in the coverage of iron tablet 

supplementation (ITS) is associated with an increase in the risk of maternal mortality by approximately 

𝑒0.054 ≈ 1.05 times, assuming other variables are constant. This might indicate that in areas with high anemia 

rates, increased ITS coverage reflects greater health needs that are not yet fully addressed. 

 

3.4 Examining Overdispersion in the Poisson Regression Model 

To properly use the Poisson regression model, it is crucial to ensure that the assumption of 

equidispersion is met, meaning the mean and variance of the response variable should be equal under the 

Poisson distribution. To test this assumption, the ratio of the Pearson Chi-Square statistic to its degrees of 

freedom is utilized [10]. The hypotheses tested are: Null Hypothesis: There is no overdispersion in the 

Poisson regression model, and Alternative Hypothesis: There is overdispersion in the Poisson regression 

model. In this analysis, the dispersion parameter value resulting from the ratio of the Pearson Chi-Square 

statistic to its degrees of freedom is 3.050. Because this value is greater than 1, the null hypothesis is rejected, 

indicating the presence of overdispersion. Overdispersion suggests that the variance of the data is greater than 

that expected by the Poisson model, potentially due to additional variability in the data not accounted for by 

the current model.  

In response to the findings of overdispersion, the step taken was to adopt the negative binomial 

regression model, which is more flexible in handling excessive variability by including a dispersion 

parameter. The initial step in negative binomial regression modeling involves determining initial values for 

the dispersion parameter 𝜃, which is done through a trial-and-error process. The goal of this approach is to 

achieve a deviance-to-degrees-of-freedom ratio close to 1, indicating that the model is well-calibrated to the 

variability in the data [29]. The trial-and-error process for determining the initial 𝜃 value has resulted in 

several iterations crucial for determining the optimal parameter, presented in Table 2. In this context, the 

next step is to fit the negative binomial model with the determined 𝜃 value and retest for model fit to the data. 

This will be done through further evaluation of model fit and residual analysis to ensure that the new model 

accurately reflects the data distribution. 

Table 2. Initial Value of 𝜽 

Initial 𝜽 Deviance DF Deviance/DF 

10.96 26.35 23 1.15 

9.96 24.89 23 1.08 

8.96 23.32 23 1.01 

8.77 23.00 23 1 
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Based on Table 2, the initial 𝜃 that has a deviance-to-degrees-of-freedom ratio of 1 is 8.77. Therefore, 

the negative binomial regression modeling is conducted with an initial 𝜃 of 8.77. 

 

3.5 Negative Binomial Regression Modeling 

Testing in the negative binomial regression consists of testing the fit of the negative binomial 

regression model and partial parameter testing. The deviance test is used to test the fit of the negative binomial 

regression model. The hypotheses used are as follows: 𝐻0: 𝛽1 = 𝛽2 = 𝛽3 = 0 (The negative binomial 

regression model cannot be used as a model) and 𝐻1: ∃𝛽𝑘 ≠ 0, 𝑘 = 1, 2, 3 (There exists 𝛽𝑘 ≠ 0 which means 

the negative binomial regression model can be used as a model). Using = 5% and the test statistic obtained 

(�̂�) =  23 is greater than 𝜒(0.05;3)
2 = 7.82, the decision is to reject 𝐻0, which means that the negative binomial 

regression model can be used as a model. The next step is partial testing to investigate which independent 

variable parameters significantly influence the dependent variable. The partial testing hypothesis for certain 

𝑘, 𝑘 =1, 2, 3 is 𝐻0: 𝛽𝑘 = 0 (the 𝑘-th variable has no significant effect) and 𝐻1: 𝛽𝑘 ≠ 0 (the 𝑘-th variable has 

a significant effect). Based on the analysis results, the variables that have a significant effect on the dependent 

variable are 𝑋1, 𝑋3, 𝑋5. The negative binomial regression model formed is in Equation (14). 

�̂� = exp(1.08 +  0.03𝑋1 −  0.04𝑋3 +  0.05𝑋5) (14) 

The model above means that if 𝑋1 increases by 1 percent, then the risk of maternal mortality will 

increase 𝑒𝑥𝑝(0.03) =1.027 times, assuming other variables are constant if Coverage of Fourth-visit Antenatal 

Care for Pregnant Women (𝑋3) increases by 1 percent, then the risk of maternal mortality will decrease to 

𝑒𝑥𝑝(-0.04) = 0.96 times compared, assuming other variables are constant. If the coverage of iron tablet 

supplementation (ITS) for pregnant women (𝑋5) increases by 1 percent, then the probability of death of 

pregnant women will increase to 𝑒𝑥𝑝(0.05) = 1.05 times, assuming other variables are constant. 

 

3.6 Geographically Weighted Poisson Regression (GWPR) Modeling 

Before conducting GWPR modeling analysis, spatial testing is performed, specifically testing for 

spatial heterogeneity. The spatial heterogeneity test is used to determine whether spatial heterogeneity is 

present in the case study data. The method used in this test is the Breusch Pagan test [13]. This is because the 

Geographically Weighted Poisson Regression method is used to analyze spatial heterogeneity. The 

hypotheses used are 𝐻0:  𝜎1
2 = 𝜎2

2 = 𝜎3
2 = 0 (no spatial heterogeneity) and 𝐻1: ∃𝑖 , 𝜎𝑖

2 ≠ 𝜎2  (spatial 

heterogeneity). Based on the test results, it was found that 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  0.04 and 𝐵𝑃𝑠𝑐𝑜𝑟𝑒  =  8.2456 so it 

was decided to reject 𝐻0 because the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  0.04 < 𝛼 =  5% and the 𝐵𝑃𝑠𝑐𝑜𝑟𝑒 =  8.24 >
 𝜒

((0.05;3))
2  =   7.82 which means spatial heterogeneity is present in the data. 

The first step in performing the GWPR modeling is to form a weighting matrix (𝑊𝑖𝑗) by substituting 

the optimal bandwidth value and the Euclidean distance (𝑑𝑖𝑗) between locations (𝑢𝑖, 𝑣𝑖). Calculating the 

Euclidean distance requires the easting (𝑢𝑖) and northing (𝑣𝑖) values of each Regency/City in West Java 

Province using the formula found in Equation (8). After obtaining the Euclidean distance, the next step is to 

select the optimal bandwidth by looking at the minimum CV value. In this study, the researcher uses 

weighting functions from fixed and adaptive functions. Then, these six kernel functions will be compared 

based on the best Akaike information criterion (AIC), 𝑅2, and Mean Absolute Percentage Error (MAPE) 

values [30]. 

Table 3. Kernel Functions Comparison 

Criteria  AIC 𝐑𝟐 MAPE 

Fixed Kernel Gaussian 77.96 57.22% 41.31 

Bisquare 73.94 61.42% 40.15 

Tricube 77.13 59.01% 41.14 

Adaptive Kernel Gaussian 76.07 58.70% 40.79 

Bisquare 66.15 68.15% 37.70 

Tricube 69.41 65.64% 38.69 
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Based on the optimum AIC, 𝑅2 and MAPE values, i.e. the minimum AIC value and the maximum 𝑅2 

value found in Table 3, the most suitable weighting for modeling is the adaptive kernel bisquare weighting, 

with a minimum CV value of 6866.201. The optimum weighting will obtain different bandwidth values as in 

Table 4. 

 

Table 4. Optimum Bandwidth Value for Each Location 

Location Bandwidth (h) Location Bandwidth (h) Location Bandwidth (h) 

Bandung 116,888.6 Karawang 183,069.5 Tasikmalaya (C) 183,183.9 

West Bandung 138,342.8 Bandung (C) 114,730.3 Kuningan 204,224.3 

Bekasi 204,910.7 Banjar (C) 218,488.2 Majalengka 167,103.2 

Bogor 218,488.2 Bekasi (C) 213,856.9 Pangandaran 227,197.8 

Ciamis 200,617.5 Bogor (C) 213,880.4 Purwakarta 152,622.0 

Cianjur 160,092.9 Cimahi (C) 125,642.2 Subang 135,296.9 

Cirebon 198,348.8 Cirebon (C) 198,526.4 Sukabumi 207,980.0 

Garut 149,386.8 Depok (C) 221,968.4 Sumedang 137,318.9 

Indramayu 155,487.4 Sukabumi (C) 187,968.3 Tasikmalaya 186,368.3 

After deriving the Euclidean distance value and optimum bandwidth value, the next step is to calculate 

the weighting function. The calculated weighting function forms a diagonal matrix showing different 

weightings at each location. The calculation of the weighting function uses the Euclidean distance and 

bandwidth values obtained previously, which are substituted into the adaptive bisquare kernel function 

formula in Equation (15). The weight values differ for each location of observation, forming 27 different 

weighting matrices. Based on the calculations, the weighting matrix formed with the bisquare kernel function 

at the location (𝑢1, 𝑣1) is as follows. 

𝑊(𝑢1, 𝑣1) = 𝑑𝑖𝑎𝑔[𝑊1(𝑢1, 𝑣1),   𝑊2(𝑢2, 𝑣2), … , 𝑊27(𝑢27, 𝑣27)] = 𝑑𝑖𝑎𝑔 [(1 − (
0

116888.6
)

2

)

2

(1 − (
31374.17

138342.8
)

2

)

2

… (1 − (
73601.71

186368.3
)

2

)

2

 ] (15) 

The weighting matrix above is only used to estimate the parameters at the location (𝑢1, 𝑣1), while to 

estimate the parameters at the location (𝑢2, 𝑣2) it is necessary to first find the weighting matrix 𝑊(𝑢2, 𝑣2) 

following the same steps, until the last observation weighting matrix 𝑊(𝑢27, 𝑣27). Next, we derived the 

summary of the GWPR model parameter estimates with the adaptive bisquare weighting function carried out 

using the Maximum Likelihood Estimation (MLE) method as follows. 

Table 5. GWPR Model Estimates Summary 

Variable Min 1st Qu Median 3st Qu Max 

Intercept  0.81 0.89 1.46 1.70 1.73 

X1 0.02 0.02 0.02 0.02 0.03 

X3 -0.06 -0.06 -0.04 -0.02 -0.01 

X5 0.02 0.03 0.05 0.06 0.07 

Of the five variables, only three showed statistically significant effects; therefore, the study proceeded 

using these three variables. In the GWPR model, parameter estimation is done locally, implying that each 

location has unique parameter values. This allows the model to accurately reflect geographic and 

demographic inequalities in the analysis. Table 5 presents summary statistics of the parameter estimates for 

each measured variable, providing insight into variations in their effects across locations. For example, for 

the variable (𝑋1), the estimated parameter values range from a minimum of 0.017 to a maximum of 0.025. 

This range shows variations in the influence of the number of community health centers on the maternal 

mortality rate in various districts/cities in West Java Province, with this value representing the expected 

change in the maternal mortality rate per unit change in the number of community health centers. 

Furthermore, the parameter distribution for variable 𝑋1 is also explained through quartile statistics, where the 

value of the first quartile (Q1) is 0.021, the median is 0.0235, and the third quartile (Q3) is 0.024. This shows 

that most parameter estimates concentrate around the median of 0.023484, but still show significant variation 

between the lowest and highest locations. Similar interpretations are given for the other variables in the 

model, where each variable shows a different distribution pattern and range of values, according to the data 

presented in Table 5. This emphasizes the importance of local approaches in understanding the dynamics of 

maternal mortality, due to factors such as access to health services and the level of medical services that can 

vary significantly across provinces. Thus, the GWPR model provides a powerful framework for 
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understanding and explaining regional differences in factors influencing maternal mortality, accommodating 

local heterogeneity in statistical models for more accurate and meaningful results in the context of health 

policies and interventions. 

There are three steps in carrying out GWPR testing, consisting of testing the similarity of the negative 

binomial regression model and GWPR, testing the fit of the GWPR model, and partial testing of the GWPR 

model [5]. Firstly, the GWPR model similarity test was carried out to investigate whether there is a significant 

difference between the negative binomial regression model and GWPR with 𝐻0: (𝛽𝑘(𝑢𝑖, 𝑣𝑖)) = 𝛽𝑘  ;  𝑖 =
1, 2, … , 27;  𝑘 =  0,1,2,3 (There is no significant difference between the negative binomial regression model 

and the GWPR model) and 𝐻1: ∃(𝛽𝑘(𝑢𝑖, 𝑣𝑖)) ≠ 𝛽𝑘  ;  𝑖 = 1, 2, … , 27;  𝑘 =  0,1,2,3 (There is a significant 

difference between the negative binomial regression model and the GWPR model) which is presented in 

Table 6. 

Table 6. Similarity Test of the Negative Binomial Regression and GWPR models 

Variable Deviance df Deviance/df 𝑭𝒔𝒄𝒐𝒓𝒆 

Negative Binomial Regression Model 23 23 1 
0.38 

GWPR model 51.60 19.66 2.62 

Using 𝛼 = 5%, the test statistic obtained, 𝐹𝑠𝑐𝑜𝑟𝑒 = 0.38 <  𝐹(0.05;23;20) = 2.09, thus the decision is 

made to fail to reject 𝐻0, inferring that there is no significant difference between the negative binomial 

regression model and the GWPR model. Next, a fit test for the GWPR model is conducted to determine if the 

parameters have significant effects, with the hypothesis presented in Equation (16). 

𝐻0: (𝛽1(𝑢𝑖, 𝑣𝑖)) = 𝛽2(𝑢𝑖, 𝑣𝑖) = ⋯ = 𝛽27 (𝑢𝑖, 𝑣𝑖) = 0 𝑎𝑛𝑑 𝐻1: ∃ (𝛽𝑗(𝑢𝑖, 𝑣𝑖)) ≠ 0 (16) 

The null hypothesis (𝐻0) explains that all parameters of the model have no effect, while the alternative 

hypothesis (𝐻1) states that there exists 𝑗 such that 𝛽𝑗(𝑢𝑖, 𝑣𝑖) ≠ 0 (at least one model parameter has a 

significant effect) with 𝑖 = 1, 2, … , 27 and 𝑗 = 0,1,2,3. Using 𝛼 = 5% (0.05) and the test statistic obtained, 

𝐷(�̂�) = 51. 60 > 𝜒(0.05;20)
2 =  31.41, the decision is made to reject 𝐻0, inferring that at least one parameter 

significantly affects the model.  

Further, the parameters of the GWPR model will be tested partially to determine which independent 

variables significantly affect the dependent variable at each observation location i.e. district/city in the West 

Java Province. This testing is done using the hypothesis 𝐻0: 𝛽𝑘(𝑢𝑖, 𝑣𝑖) = 0;  𝑖 = 1,2, … ,27;  𝑗 = 1,2,3 

(independent variables have no effect on the dependent variable) and 𝐻1: (𝛽𝑘(𝑢𝑖, 𝑣𝑖) ≠ 0;  𝑖 =
1,2, … ,27;  𝑗 = 1,2,3 (Independent variables have an effect on the dependent variable). Partial testing of the 

GWPR model parameters using the adaptive bisquare weighting function with α = 5% (0.05) involves 

examining the 𝑡-value at each observation location and comparing them with 𝑡(0.025;23) = 2.07. If the 

calculated 𝑡𝑣𝑎𝑙𝑢𝑒 > 𝑡(0.025;23) then the decision is made to reject 𝐻0, indicating an effect of independent 

variables on the dependent variable. Based on the parameters of significant partial effect of independent 

variables in each district/city, the GWPR modeling results using the adaptive bisquare weighting function 

form 3 groups presented in Table 7. 

Table 7. Location Groups Based on Variable Significance from the GWPR Model  

Groups Significant 

Variables 

Regency/City 

1 𝑋1 Bandung, Ciamis, Garut, Banjar City, Tasikmalaya City, Pengandaran, 

Tasikmalaya 

2 𝑋1, 𝑋3, and, 𝑋5 West Bandung, Bekasi, Bogor, Cianjur, Cirebon, Indramayu, Karawang, Bandung 

City, Bekasi City, Bogor City, Cimahi City, Cirebon City, Depok City, Sukabumi 

City, Majalengka, Purwakarta, Subang, Sukabumi, Sumedang 

3 𝑋1 dan 𝑋5 Kuningan 

The thematic map of location groups based on variables significant to maternal mortality using GWPR 

adaptive kernel bisquare is displayed in Figure 2. 
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Figure 2. Map of Regency/City Groups Based on Variables Affecting Maternal Mortality 

 

The GWPR model with the formed bisquare adaptive kernel weighting function can be seen as follows. 

For example, the GWPR model was obtained for the Bandung Regency. 

 
�̂�(𝐵𝑎𝑛𝑑𝑢𝑛𝑔 𝑅𝑒𝑔𝑒𝑛𝑐𝑦) = exp(1.02 +  0.02𝑋1 −  0.01𝑋3 +  0.02𝑋5) (17) 

 

The model above means that if the number of Community Health Centers (𝑋1) increases by 1 percent, 

then the probability of death of pregnant women will increase by 𝑒𝑥𝑝(0.02)  = 1.02 times. This means there 

is an increase of around 1.8% in the risk of maternal mortality, assuming other variables are constant. If 

Coverage of the Fourth visit Antenatal Care for Pregnant Women (𝑋3) increases by 1 percent, the probability 

of death of pregnant women will decrease to 𝑒𝑥𝑝(−0.01)  =  0.10 times. This means there is a decrease of 

around 0.8% in the probability of maternal death compared to before assuming other variables are constant. 

Finally, if the coverage of giving ITS pregnant women increases by 1 percent, then the risk of maternal 

mortality will increase to 𝑒𝑥𝑝(0.02)  =  1.02 times. This means there is an increase of around 1.9% in the 

probability of maternal death, assuming other variables are constant. Next, the best model is determined.  

Determining the best model aims to find the right model for the data on the number of maternal deaths 

in West Java Province in 2021 by comparing the Poisson regression model, negative binomial regression, 

and GWPR. The best model is determined by the criteria of optimum MAPE, AIC, and adjusted-R2 values. 

The results obtained are as Table 8. 

Table 8. Values of the MAPE, AIC, and 𝑹𝟐 Criteria. 

Model MAPE MSE RMSE AIC Adjusted-R2 

Poisson Regression 41.65 59.60 7.72 200.98 42.78% 

Negative Binomial Regression 40.18 62.89 7.93 180.04 39.62% 

GWPR 37.70 38.36 6.19 66.15 63.17% 

After considering all metrics based on Table 8, the GWPR model was identified as the most 

appropriate model for modeling maternal mortality data in West Java Province in 2021. This model shows 

the optimal combination of prediction accuracy, efficiency, and ability to explain variations in the data, 

therefore, it can be used for further analysis and policy-making purposes. 
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4. CONCLUSIONS 

This study investigates the factors influencing maternal mortality rates in West Java Province in 2022 

using the Geographically Weighted Poisson Regression (GWPR). Three variables were found to significantly 

impact maternal mortality: 1) the number of community health centers, 2) coverage of antenatal care at fourth 

visits of pregnant women, and 3) the coverage of Iron Supplementation Tablets (IST) provision to pregnant 

women. The GWPR model with an adaptive bisquare kernel weighting function was shown to be the most 

effective model, based on the evaluation metrics, with a Mean Absolute Percentage Error (MAPE) of 37.7%, 

Mean Square Error of 38.36, and the lowest AIC value compared to other regression models. The GWPR 

model generates localized parameter estimates for each observation point or location. By examining the 

significant partial effects of independent variables across districts/cities, the results reveal three distinct 

groups based on influential variables when using an adaptive bi-square weighting function. Specifically, 

Group 1 is influenced solely by 𝑋1; Group 2 by by 𝑋1, 𝑋3, and 𝑋5; and Group 3 by Group 3 by 𝑋1 and 𝑋5.  
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