

March 2025 Volume 19 Issue 1 Page 0571-0580 BAREKENG: Journal of Mathematics and Its Applications P-ISSN: 1978-7227 E-ISSN: 2615-3017

https://doi.org/10.30598/barekengvol19iss1pp0571-0580

CRAMER'S RULE IN INTERVAL MIN-PLUS ALGEBRA

Siswanto¹ , Ade Safira Septiany 2*

1,2Pure Mathematics and Application Research Group, Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret Jln. Ir. Sutami No. 36 Kentingan, Surakarta, 57126, Indonesia.

*Corresponding author's e-mail: * iraseptiany@student.uns.ac.id*

ABSTRACT

Received: 5 th August 2024 Revised: 3 rd December 2024 Accepted: 3 rd December 2024 Published: 13 th January 2025

Keywords:

Matrix; System of Linear Equations; Cramer's Rule; Interval Min-Plus Algebra.

A min-plus algebra is a set ℝ_ε = ℝ ∪ {−∞}*, where* ℝ *is the set of all real numbers, equipped* \overline{AB} and \over *with the minimum* (⊕′) *and addition* (⊗) *operations. The system of linear equations* ⊗ $x = b$ in min-plus algebra can be solved using Cramer's rule. Interval min-plus algebra is an *extension of min-plus algebra, with the elements in it being closed intervals. The set is denoted* $by I(\mathbb{R})_{st}$ equipped with two binary operations, namely minimum $(\overline{\bigoplus'})$ and addition $(\overline{\bigotimes})$. The *matrix with notation* $I(\mathbb{R})_{\varepsilon}^{m \times n}$ *is a matrix over interval min-plus algebra with size* $m \times n$ *. Since the structure of min-plus algebra and interval min-plus algebra are analogous, the system of linear equations* $A \overline{\otimes} x = b$ *in interval min-plus algebra can be solved using Cramer's rule. Based on the research results, the sufficient conditions of Cramer's rule in interval min-plus algebra are sign*(\underline{A}_i) = $sign(\underline{A})$, $sign(\overline{A}_i)$ = $sign(\overline{A})$ for $1 \leq i \leq n$, and $dom(A) = [dom(\underline{A}), dom(\overline{A})] < [\varepsilon', \varepsilon']$. The Cramer rule is $x_i \overline{\otimes} dom(A) = dom(A_i)$.

This article is an open access article distributed under the terms and conditions of th[e Creative Commons Attribution-ShareAlike 4.0 International License.](http://creativecommons.org/licenses/by-sa/4.0/)

How to cite this article:

Siswanto and A. S. Septiany., "CRAMER'S RULE IN INTERVAL MIN-PLUS ALGEBRA," *BAREKENG: J. Math. & App.,* vol. 19, iss. 1, pp. 0571-0580, March, 2025.

Copyright © 2025 Author(s) Journal homepage: *<https://ojs3.unpatti.ac.id/index.php/barekeng/>* Journal e-mail: *[barekeng.math@yahoo.com;](mailto:barekeng.math@yahoo.com) barekeng.journal@mail.unpatti.ac.id*

Research Article ∙ **Open Access**

1. INTRODUCTION

In algebra, there are various structures, and one of them is conventional algebra. Conventional algebra is the set of all real numbers equipped with addition (+) and multiplication (×) operations **[1]**. In conventional algebra, a system of linear equations is expressed as $Ax = b$. As long as $det(A) \neq 0$, Cramer's rule can be used to solve the system of linear equations $Ax = b$ [2][3].

There is another structure, namely max-plus algebra **[4]**. In max-plus algebra, the maximum operation does not have an inverse so the determinant in max-plus algebra is not defined similarly to conventional algebra. There are two methods for representing determinants in max-plus algebra, permanent and dominant. **[5][6]**. The system of linear equations $A \otimes x = b$ in max-plus algebra can be solved using Cramer's rule with dominant values **[7][8][9]**. Then, interval max-plus algebra is created by extending max-plus algebra **[10][11][12]**. The system of linear equations $\overline{A} \otimes x = b$ in interval max-plus algebra can also be solved using Cramer's rule with dominant value **[13][14]**.

A min-plus algebra is the set $\mathbb{R}_{5} = \mathbb{R} \cup \{-\infty\}$, where $\mathbb R$ is the set of all real numbers, equipped with the minimum (\bigoplus') and addition (\otimes) operations. Therefore, the operation $a \bigoplus' b = \min(a, b)$ and $a \otimes b =$ $a + b$ applies. Min-plus algebra is a semiring denoted by $\mathbb{R}_{min} = (\mathbb{R}_{\varepsilon}, \oplus', \otimes)$ and has a neutral element $\varepsilon' = +\infty$ for the minimum operation and a neutral element $e = 0$ for the addition operation [15][16]. Minplus algebra can be formed into a set of matrices of size $m \times n$, m and n are positive integers, with the entries being elements of \mathbb{R}_{ε} , and denoted as $\mathbb{R}_{\varepsilon}^{n \times n}$ [17][18][19]. The determinant in min-plus algebra is represented the same as in max-plus algebra, which is permanent and dominant **[17]**. The system of linear equations $\hat{A} \otimes \hat{X} = b$ in min-plus algebra always has the smallest sub-solution. Cramer's rule in min-plus algebra is $x_i \otimes dom(A) = dom(a_1, ..., a_{i-1}, b, a_{i+1}, ..., a_n), i = 1, 2, ..., n$ with a_j is the entry in the *j*-th column of the matrix A. The solution of the system of linear equations $A \otimes x = b$ does not necessarily exist in min-plus algebra, and if it does, it is not always singular, much as in conventional algebra. As a result, an additional condition is needed so that the system of linear equations can be solved using Cramer's rule, namely $sign(a_1, ..., a_{i-1}, b, a_{i+1}, ..., a_n) = sign(A)$ for $i = 1, 2, ..., n$ with a_j is the entry in the *j*-th column of the matrix **[20]**.

Interval min-plus algebra is an extension of min-plus algebra, with elements in it being closed intervals. The set is denoted by $I(\mathbb{R})_{\mathfrak{S}'}$ equipped with two binary operations, namely minimum $(\overline{\bigoplus'})$ and addition $(\overline{\bigotimes})$. The structure of interval min-plus algebra can be written as $I(\mathbb{R})_{min} = (I(\mathbb{R})_{\varepsilon}, \overline{\Theta}, \overline{\Theta})$ [21]. The matrix with the notation $I(\mathbb{R})_{\varepsilon'}^{m \times n}$ is a matrix over interval min-plus algebra with size $m \times n$. If $m = n$, a set of square matrices is obtained, namely $I(\mathbb{R})_{\varepsilon'}^{n \times n}$ [22][23]. Similar to min-plus algebra, the determinant in an interval min-plus algebra is defined with two approaches, $perm(A) = [perm(A), perm(\overline{A})]$ with $perm(\underline{A}) = \bigoplus_{\sigma \in P_n}^{\prime} \bigotimes_{i=1}^{n} (\underline{a}_{i\sigma(i)})$ and $perm(\overline{A}) = \bigoplus_{\sigma \in P_n}^{\prime} \bigotimes_{i=1}^{n} (\overline{a}_{i\sigma(i)})$ and dominant i.e. $dom(A) =$ $\left[\min\left(dom(\underline{A}), dom(\overline{A})\right), dom(\overline{A})\right]$ with $dom(\underline{A}) = \begin{cases} lowest\ exponent\ in\ det(\underline{z}^{\underline{A}}), & \text{if\ det}(\underline{z}^{\underline{A}}) \neq 0 \end{cases}$ ε' , if det($z^{\underline{A}}$) = 0 and $dom(A) = \{$ lowest exponent in det (z^A) , if det $(z^A) \neq 0$ ε' , if det $(z^A)=0$ **[24]**. In this article, we will discuss the

sufficient conditions for a system of linear equations $\overline{A} \otimes x = b$ in interval min-plus algebra to be solved using Cramer's rule and its solution.

2. RESEARCH METHODS

The research method used in writing this article is a literature study by using references to books, articles from **[20][24]** or writings on interval min-plus algebra, matrices over interval min-plus algebra, and systems of linear equations over interval min-plus algebra. In addition, it also uses references that discuss min-plus algebra and Cramer's rule in min-plus algebra.

In this study, three steps were taken which are described as follows.

- 1. Determine Cramer's rule in interval min-plus algebra using matrix dominants based on analogies corresponding to min-plus algebra.
- 2. Determine the definition of $sign$ matrix over interval min-plus algebra.
- 3. Determine the sufficient condition that the system of linear equations $\overline{A} \otimes \overline{X} = b$ in interval minplus algebra can be solved using Cramer's rule.

3. RESULTS AND DISCUSSION

Suppose $A \approx [\underline{A}, \overline{A}] \in I(\mathbb{R})_{\varepsilon'}^{n \times n}, x \approx [\underline{x}, \overline{x}] \in I(\mathbb{R})_{\varepsilon'}^{n \times 1}$, and $b \approx [\underline{b}, \overline{b}] \in I(\mathbb{R})_{\varepsilon'}^{n \times 1}$, the system of linear equations $A \otimes x = b$ in interval min-plus algebra always has a smallest sub-solution. The smallest subsolution is not always the solution of a system of linear equations.

Determinants in interval min-plus algebra are represented with two approaches, namely permanent and dominant. By the same analogy with min-plus algebra, the system of linear equations $\overline{A} \otimes x = b$ with $A \approx$ $[\underline{A},\overline{A}] \in I(\mathbb{R})_{\varepsilon}^{n \times n}, x \approx [\underline{x},\overline{x}] \in I(\mathbb{R})_{\varepsilon'}^{n \times 1}$, and $b \approx [\underline{b},\overline{b}] \in I(\mathbb{R})_{\varepsilon'}^{n \times 1}$ in interval min-plus algebra always has the smallest subsolution. The smallest sub-solution is not always the solution of a system of linear equations. The solution of a system of linear equations in interval min-plus algebra is presented in **Lemma 1**.

Lemma 1. Suppose $A \approx [\underline{A}, \overline{A}], x \approx [\underline{x}, \overline{x}],$ and $b \approx [\underline{b}, \overline{b}].$ If the linear equations $\underline{A} \otimes \underline{x} = \underline{b}$ and $\overline{A} \otimes \overline{x} = \underline{b}$ \overline{b} each has a single solution $\underline{\check{x}} = -(\underline{A}^T \otimes (-\underline{b}))$ and $\overline{\check{x}} = -(\overline{A}^T \otimes (-\overline{b}))$ with $\underline{\check{x}} \leq \overline{\check{x}}$ then the system of *linear equations A* $\overline{\otimes}$ $x = b$ *has a single solution* $x \approx [\check{x}, \overline{\check{x}}]$ *.*

Proof. Suppose $A \approx [A, \overline{A}], x \approx [x, \overline{x}]$, and $b \approx [b, \overline{b}]$. According to the matrix operations in the min-plus algebra of intervals $A \overline{\otimes} x \approx [A, \overline{A}] \overline{\otimes} [x, \overline{x}] = [A \otimes x, \overline{A} \otimes \overline{x}]$. This means that $\underline{A} \otimes x = \underline{b}$ and $\overline{A} \otimes \overline{x} =$ \overline{b} . Since the linear equation systems $\underline{A} \otimes \underline{x} = \underline{b}$ and $\overline{A} \otimes \overline{x} = \overline{b}$ each has a single solution $\underline{\tilde{x}} = -\left(\underline{A}^T \otimes (-\underline{b})\right)$ and $\overline{\tilde{x}} = -\left(\overline{A}^T \otimes (-\overline{b})\right)$ with $\underline{\tilde{x}} \leq \overline{\tilde{x}}$ then the system of linear equations $A \overline{\otimes} x = b$ has a single solution $x \approx [\check{x}, \overline{\check{x}}]$.

Cramer's rule in interval min-plus algebra is written as,

$$
x_i \otimes dom(A) = dom(A_i), i = 1, 2, ..., n,
$$
\n(1)

with $A_i = a_1, ..., a_{i-1}, b, a_{i+1}, ..., a_n$ and $A_i \approx [\underline{A}_i, A_i]$ then $\underline{A}_i = \underline{a}_1, ..., \underline{a}_{i-1}, \underline{b}, \underline{a}_{i+1}, ..., \underline{a}_n$ and $\overline{A}_i = \overline{a}_1, \ldots, \overline{a}_{i-1}, \overline{b}, \overline{a}_{i+1}, \ldots, \overline{a}_n.$

Furthermore, if $dom(A) \approx [dom(\underline{A}), dom(\overline{A})]$ and $dom(A_i) \approx [dom(\underline{A}_i), dom(\overline{A}_i)]$ then it means $x_i \leq \overline{x}_i$. Hence it holds

$$
x_i \overline{\otimes} dom(A) = dom(A_i) \Longleftrightarrow \underline{x_i} \otimes dom(\underline{A}) = dom(\underline{A_i}) \text{ and } \overline{x_i} \otimes dom(\overline{A}) = dom(\overline{A_i}) \tag{2}
$$

Analogous to Cramer's rule in min-plus algebra, $dom(A) \approx [dom(\underline{A}), dom(\overline{A})] < [\varepsilon', \varepsilon']$ is not enough to show that the system of linear equations has a solution. There is an additional condition for the system of linear equations $\overline{A} \otimes x = b$ to have a solution, namely

$$
sign(\underline{A_i}) = sign(\underline{A}) \text{ and } sign(\overline{A_i}) = sign(\overline{A}), \tag{3}
$$

for $1 \le i \le n$. The following is a description of the notations used to define the *sign* of a matrix.

Definition 1. Let P_n be the set of all permutations of $\{1,2,\ldots,n\}$ and t_1, t_2, \ldots, t_l are all possible values such that $\underline{t}_j = \bigotimes_{j=1}^n (\underline{a}_{j\sigma(j)})$ and $\overline{t}_j = \bigotimes_{j=1}^n (\overline{a}_{j\sigma(j)})$ with dengan $A = [a_{ij}] \in I(\mathbb{R})_{\varepsilon}^{n \times n}, A \approx [\underline{A}, \overline{A}]$ for all permutations $\sigma \in P_n$. Given S_j and S_j suppose that

$$
\underline{S}_j = \{ \sigma \in P_n | \underline{t}_j = \otimes_{j=1}^n (\underline{a}_{j\sigma(j)}) \},
$$

$$
\underline{S}_{je} = \{ \sigma \in \underline{S}_j | \sigma \in P_n^e \},
$$

\n
$$
\underline{S}_{jo} = \{ \sigma \in \underline{S}_j | \sigma \in P_n^o \},
$$

\n
$$
\underline{k}_{je} = |\underline{S}_{je}|, and \underline{k}_{jo} = |\underline{S}_{jo}|,
$$

and

$$
\overline{S}_j = \{ \sigma \in P_n | \overline{t}_j = \bigotimes_{j=1}^n (\overline{a}_{j\sigma(j)}) \},
$$

\n
$$
\overline{S}_{je} = \{ \sigma \in \overline{S}_j | \sigma \in P_n^e \},
$$

\n
$$
\overline{S}_{jo} = \{ \sigma \in \overline{S}_j | \sigma \in P_n^o \},
$$

\n
$$
\overline{k}_{je} = |\overline{S}_{je}|, and \overline{k}_{jo} = |\overline{S}_{jo}|.
$$

With P_n^e and P_n^o being the set of all even and odd permutations of P_n , respectively.

Using **Definition 1**, the following definition of the sign is obtained.

Definition 2. Given
$$
A = [a_{ij}] \in I(\mathbb{R})_{\varepsilon'}^{n \times n}
$$
 with $A \approx [\underline{A}, \overline{A}].$ For $\underline{t}_j = dom(\underline{A}), \overline{t}_j = dom(\overline{A})$, and $1 \le j \le L$,
\n
$$
sign(\underline{A}) = \begin{cases} 1, if \underline{k}_{je} - \underline{k}_{jo} > 0 \\ -1, if \underline{k}_{je} - \underline{k}_{jo} < 0 \end{cases}
$$
 and $sign(\overline{A}) = \begin{cases} 1, if \overline{k}_{je} - \overline{k}_{jo} > 0 \\ -1, if \overline{k}_{je} - \overline{k}_{jo} < 0 \end{cases}$. If $dom(\underline{A}) = \varepsilon'$ and $dom(\overline{A}) = \varepsilon'$ then $sign(\underline{A}) = \varepsilon'$ and $sign(\overline{A}) = \varepsilon'$.

Example 1. Given matrix $A \in I(\mathbb{R})_{\varepsilon'}^{3 \times 3}$

$$
A = \begin{pmatrix} [2,3] & [2,5] & [0,2] \\ [3,5] & [-2,-1] & [-1,0] \\ [-1,2] & [2,3] & [1,3] \end{pmatrix}
$$

Interval matrix *A* can be written as matrix interval $[\underline{A}, \overline{A}]$ i.e.

$$
A \approx \left[\underline{A}, \overline{A}\right] = \left[\begin{pmatrix} 2 & 2 & 0 \\ 3 & -2 & -1 \\ 5 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 3 & 5 & 2 \\ 5 & -1 & 0 \\ 2 & 3 & 3 \end{pmatrix}\right]
$$

Matrix *A* is a matrix with $n = 3$ so we get $3! = 3 \times 2 \times 1 = 6$. This means there are six permutations of {1, 2, 3} with each result of the permutation of \underline{t}_j and \overline{t}_j shown in **Table 1**.

Then calculate the dominant value of the matrix A using reference $[24]$,

$$
z^{\underline{A}} = \begin{pmatrix} z^2 & z^2 & z^0 \\ z^3 & z^{-2} & z^{-1} \\ z^{-1} & z^2 & z^1 \end{pmatrix},
$$

because $det(z^{\underline{A}}) = z^1 - z^3 - z^6 + z^0 + z^5 - z^{-3} \neq 0$ results in $dom(\underline{A}) = -3$. Based on **Table 1.** $dom(\underline{A}) = -3 = \underline{t}_6$. Subsequently obtained \underline{S}_6 , \underline{S}_{6e} , \underline{S}_{6o} , \underline{k}_{6e} and \underline{k}_{6o} which are written as

$$
\underline{S}_6 = \{ \sigma \in P_3 | \underline{t}_3 = \bigotimes_{j=1}^n (\underline{a}_{j\sigma(j)}) \} = \{ \sigma_6 \},
$$

\n
$$
\underline{S}_{6e} = \{ \sigma \in \underline{S}_6 | \sigma \in P_3^e \} = \{ \},
$$

\n
$$
\underline{S}_{6o} = \{ \sigma \in \underline{S}_6 | \sigma \in P_3^o \} = \{ \sigma_6 \},
$$

\n
$$
\underline{k}_{6e} = |\underline{S}_{6e}| = 0, \text{ and } \underline{k}_{6o} = |\underline{S}_{6o}| = 1,
$$

with **Definition 2**, get $\underline{k}_{6e} - \underline{k}_{60} = 0 - 1 = -1 < 0$ so the value of $sign(\underline{A}) = -1$. Next, calculate the dominant matrix \overline{A} using reference [24] that is written as

$$
z^{\overline{A}} = \begin{pmatrix} z^3 & z^5 & z^2 \\ z^5 & z^{-1} & z^0 \\ z^2 & z^3 & z^3 \end{pmatrix}
$$

because $det(z^A) = z^5 - z^6 - z^{13} + z^7 + z^{10} - z^3 \neq 0$ results in $dom(\overline{A}) = 3$. Based on **Table 1**. $dom(A) = 3 = \overline{t}_6$. Subsequently obtained S_6 , S_{6e} , S_{60} , k_{6e} and k_{60} which are written as

$$
\overline{S}_6 = \{ \sigma \in P_3 | \overline{t}_3 = \bigotimes_{j=1}^n (\overline{a}_{j\sigma(j)}) \} = \{ \sigma_6 \},
$$

\n
$$
\overline{S}_{6e} = \{ \sigma \in \overline{S}_6 | \sigma \in P_3^e \} = \{ \},
$$

\n
$$
\overline{S}_{6o} = \{ \sigma \in \overline{S}_6 | \sigma \in P_3^o \} = \{ \sigma_6 \},
$$

\n
$$
\overline{k}_{6e} = |\overline{S}_{6e}| = 0, \text{ and } \overline{k}_{6o} = |\overline{S}_{6o}| = 1,
$$

with **Definition 2**, get $\overline{k}_{6e} - \overline{k}_{60} = 0 - 1 = -1 < 0$ so the value of $sign(\overline{A}) = -1$.

The following **Theorem 1** describes the sufficient condition of the system of linear equations $\overline{A} \overline{\otimes} x = b$ with Cramer's rule in interval min-plus algebra.

Theorem 1. *If* $sign(\underline{A_i}) = sign(\underline{A})$, $sign(\overline{A_i}) = sign(\overline{A})$ *for* $1 \le i \le n$, and $dom(A) \approx$ $[\text{dom}(\underline{A}),\text{dom}(\overline{A})] < [\varepsilon',\varepsilon']$ then $x \approx [\underline{x},\overline{x}]$ is a solution to the system of linear equations $A \otimes x = b$ with $x_i \overline{\otimes} dom(A) = dom(A_i).$

Proof. Let $A \overline{\otimes} x = b$ with $A \approx [A, \overline{A}], x \approx [x, \overline{x}]$, and $b \approx [b, \overline{b}]$ be a system of linear equations. Assume $sign(\underline{A_i}) = sign(\underline{A}), sign(\overline{A_i}) = sign(\overline{A})$ for $1 \leq i \leq n$, and $dom(A) \approx [dom(\underline{A}), dom(\overline{A})] < [\varepsilon', \varepsilon']$. Then, express the system in the form of $z^A \approx |z^A(z^A), \xi \approx |\xi, \overline{\xi}|$, and $z^b \approx |z^b, z^b|$, we get the following equation.

$$
z^{A}\xi = z^{b} \Longleftrightarrow z^{\underline{A}}\underline{\xi} = z^{\underline{b}} \text{ and } z^{\overline{A}}\overline{\xi} = z^{\overline{b}}
$$
(4)

Since $dom(A) \approx [dom(\underline{A}), dom(\overline{A})] < [\varepsilon', \varepsilon']$ and $det(z^A) \neq [0.0]$, **Equation (4)** can be solved using Cramer's rule. The solution of the interval matrix A with Cramer's rule is described as follows.

i. For

$$
\underline{\xi}_i = \frac{\det(z^{\underline{A}_i})}{\det(z^{\underline{A}})}\tag{5}
$$

If $z \to \infty$ then the value of ξ_i is determined by the dominant of the right-hand segment in **Equation (5)**. The value of $\det(z^{A_i})$ will lead to the value of $dom(\underline{A_i})$ within the shape of $z^{dom(\underline{A_i})}$, moreover for $\det(z^{A})$. Suppose

$$
\underline{d_i} = dom(\underline{A_i}), 1 \le i \le n \tag{6}
$$

Based on the *sign* assumption, $\xi_i > 0$ is obtained so that ξ_i can be written as

$$
\underline{\xi}_i \approx z \underline{d}_i - dom(\underline{A}) \tag{7}
$$

Furthermore, by substituting **Equation** (7) into $z \frac{A}{\xi} = z \frac{b}{\xi}$, we obtain

$$
\sum_{j=1}^{n} z^{\underline{a}_{ij} + \underline{d}_j - dom(\underline{A})} \approx z^{\underline{b}_i} \tag{8}
$$

Equation (8) in min-plus algebra has the meaning as

$$
\bigotimes_{j=1}^{n} \left(\underline{a}_{ij} + \underline{d}_{j} - \text{dom}(\underline{A}) \right) = \underline{b}_{i}, 1 \le i \le n \tag{9}
$$

Thus, if $\underline{x}_i = \underline{d}_i - dom(\underline{A})$, $1 \le i \le n$ then \underline{x}_i is a solution to the system of linear equations $\underline{A} \otimes \underline{x} = \underline{b}$. ii. For \overline{A}

$$
\overline{\xi}_i = \frac{\det(z^{\overline{A}_i})}{\det(z^{\overline{A}})}
$$
(10)

If $z \to \infty$ then the value of ξ_i is determined by the dominant of the right-hand segment in equation (10). The value of det (z^{A_i}) will lead to the value of $dom(\overline{A}_i)$ within the shape of $z^{dom(\overline{A}_i)}$, moreover for det (z^A) . Suppose

$$
\overline{d}_i = dom(\overline{A}_i), 1 \le i \le n
$$
\n(11)

Based on the *sign* assumption, $\xi_i > 0$ is obtained so that ξ_i can be written as

$$
\overline{\xi}_i \approx z^{\overline{d}_i - dom(\overline{A})} \tag{12}
$$

Furthermore, by substituting **Equation** (12) into $z^A \overline{\xi} = z^b$, we obtain

$$
\sum_{j=1}^{n} z^{\overline{a}_{ij} + \overline{d}_j - dom(\overline{A})} \approx z^{\overline{b}_i}
$$
 (13)

Equation (13) in min-plus algebra has the meaning as

$$
\bigotimes_{j=1}^{n} \left(\overline{a}_{ij} + \overline{d}_{j} - dom(\overline{A}) \right) = \overline{b}_{i}, 1 \le i \le n
$$
\n(14)

Thus, if $\overline{x}_i = d_i - dom(A)$, $1 \le i \le n$ then \overline{x}_i is a solution to the system of linear equations $A \otimes \overline{x} = b$.

Thus, the obtained $x \approx [x, \overline{x}]$ is the solution of the system of linear equations $A \overline{\otimes} x = b$ with $x_i \overline{\otimes} dom(A) = dom(A_i).$

Here is the application of **Theorem 1** to solve the system of linear equations $A \overline{\otimes} x = b$ in interval min-plus algebra

Example 2. Given Given a Linear Equation System
$$
A \overline{\otimes} x = b
$$
 with $A = \begin{pmatrix} [-3,1] & [-2.3] \\ [-1,5] & [-4,2] \end{pmatrix}$, $x = \begin{pmatrix} \lfloor x_1, \overline{x}_1 \rfloor \\ \lfloor x_2, \overline{x}_2 \rfloor \end{pmatrix}$,
dan $b = \begin{pmatrix} [-2.4] \\ [-2,4] \end{pmatrix}$.

From the system of linear equations of interval min-plus algebra, a system of linear equations in minplus algebra is obtained, namely

$$
\begin{pmatrix} -3 & -2 \\ -1 & -4 \end{pmatrix} \otimes \underline{x} = \begin{pmatrix} -2 \\ -2 \end{pmatrix} \tag{15}
$$

And

 ob

$$
\begin{pmatrix} 1 & 3 \\ 5 & 2 \end{pmatrix} \otimes \overline{x} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \tag{16}
$$

a. For the system of linear **Equation (15)**

$$
\underline{A} = \begin{pmatrix} -3 & -2 \\ -1 & -4 \end{pmatrix} \text{ and } \underline{b} = \begin{pmatrix} -2 \\ -2 \end{pmatrix}
$$

Checked whether the $sign(\underline{A}) = sign(\underline{A}_i)$ value for $i = 1, 2$ with a_j is the entries of the j-column of the matrix A and $j = 1, 2$.

$$
z^{\underline{A}} = \begin{pmatrix} z^{-3} & z^{-2} \\ z^{-1} & z^{-4} \end{pmatrix},
$$

tained $det(z^{\underline{A}}) = z^{-7} - z^{-3}$, $dom(\underline{A}) = -7$, $sign(\underline{A}) = +1$.

$$
\underline{A}_1 = \begin{pmatrix} -2 & -2 \\ -2 & -4 \end{pmatrix}, z \underline{A}_1 = \begin{pmatrix} z^{-2} & z^{-2} \\ z^{-2} & z^{-4} \end{pmatrix},
$$

obtained $det(z^{A_1}) = z^{-6} - z^{-4}$, $dom(\underline{A_1}) = -6$, $sign(\underline{A_1}) = +1$. $\underline{A}_2 = \begin{pmatrix} -3 & -2 \\ 1 & -2 \end{pmatrix}$ $\begin{pmatrix} -3 & -2 \\ -1 & -2 \end{pmatrix}$, $z \frac{A_2}{z} = \begin{pmatrix} z^{-3} & z^{-2} \\ z^{-1} & z^{-2} \end{pmatrix}$ $\frac{z}{z^{-1}}$ $\frac{z}{z^{-2}}$),

obtained $det(z^{A_2}) = z^{-5} - z^{-3}$, $dom(\underline{A_2}) = -5$, $sign(\underline{A_2}) = +1$. Based on this calculation, the value of $sign(\underline{A}) = sign(\underline{A_1}) = sign(\underline{A_2})$ is shown. Referring to **Theorem 1**, the system of linear **Equation (15)** can be solved using Cramer's rule.

$$
\underline{x}_1 \otimes dom(\underline{A}) = dom(\underline{A}_1)
$$

$$
\underline{x}_1 \otimes -7 = -6
$$

$$
\underline{x}_1 = 1
$$

$$
\underline{x}_2 \otimes dom(\underline{A}) = dom(\underline{A}_2)
$$

$$
\underline{x}_2 \otimes -7 = -5
$$

$$
\underline{x}_2 = 2
$$

then obtained

$$
\underline{x} = \left(\frac{x_1}{x_2}\right) = \left(\frac{1}{2}\right),\tag{17}
$$

with

$$
\begin{pmatrix} -3 & -2 \\ -1 & -4 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \min(-2,0) \\ \min(0,-2) \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \end{pmatrix}.
$$

Thus, the solution of the system of linear **Equation (15)** is **Equation (17)**.

b. for the system of linear **Equation (16)**

$$
\overline{A} = \begin{pmatrix} 1 & 3 \\ 5 & 2 \end{pmatrix} \text{ and } \overline{b} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}
$$

Checked whether the $sign(A) = sign(A_i)$ value for $i = 1, 2$ with a_j is the entries of the j-column of the matrix A and $j = 1, 2$.

$$
z^{\overline{A}} = \begin{pmatrix} z^1 & z^3 \\ z^5 & z^2 \end{pmatrix},
$$

obtained $det(z^A) = z^3 - z^8$, $dom(\overline{A}) = 3$, $sign(\underline{A}) = +1$. $\overline{A}_1 = \begin{pmatrix} 4 & 3 \\ 4 & 2 \end{pmatrix}$ $\left(\begin{matrix}4 & 3\\4 & 2\end{matrix}\right), z^{\overline{A}_1} = \left(\begin{matrix}z^4 & z^3\\z^4 & z^2\end{matrix}\right)$ $\begin{pmatrix} 2 & 2 \\ Z^4 & Z^2 \end{pmatrix}$

obtained $det(z^{A_1}) = z^6 - z^7$, $dom(\underline{A_1}) = 6$, $sign(\underline{A_1}) = +1$. $\overline{A}_2 = \begin{pmatrix} 1 & 4 \\ 5 & 4 \end{pmatrix}$ $\begin{pmatrix} 1 & 4 \\ 5 & 4 \end{pmatrix}$, $z^{\overline{A}_2} = \begin{pmatrix} z^1 & z^4 \\ z^5 & z^4 \end{pmatrix}$ $\begin{pmatrix} 2 & 2 \\ Z^5 & Z^4 \end{pmatrix}$

obtained
$$
det(z^{\overline{A}_2}) = z^5 - z^9
$$
, $dom(\overline{A}_2) = 5$, $sign(\underline{A}_2) = +1$. Based on this calculation, the value of $sign(\overline{A}) = sign(\overline{A}_1) = sign(\overline{A}_2)$ is shown. Referring to **Theorem 1**, the system of linear **Equation (16)** can be solved using Cramer's rule.

$$
\overline{x}_1 \otimes dom(A) = dom(A_1)
$$

$$
\overline{x}_1 \otimes 3 = 6
$$

$$
\overline{x}_1 = 3
$$

$$
\overline{x}_2 \otimes dom(\overline{A}) = dom(\overline{A}_2)
$$

$$
\overline{x}_2 \otimes 3 = 5
$$

$$
\overline{x}_2 = 2
$$

then obtained

$$
\overline{x} = \left(\frac{\overline{x}_1}{\overline{x}_2}\right) = \left(\frac{3}{2}\right),\tag{18}
$$

with

$$
\begin{pmatrix} 1 & 3 \\ 5 & 2 \end{pmatrix} \otimes \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} \min(4,5) \\ \min(8,4) \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}.
$$

Thus, the solution of the system of linear **Equation (16)** is **Equation (18)**.

Therefore, the solution of the system of linear equations $\begin{pmatrix} [-3,1] & [-2,3] \\ 1,1,5] & [1,4,2] \end{pmatrix}$ $\begin{bmatrix} -3.1 \\ -1.5 \end{bmatrix}$ $\begin{bmatrix} -2.3 \\ -4.2 \end{bmatrix}$ $\overline{\otimes}$ $x = \begin{bmatrix} -2.4 \\ -2.4 \end{bmatrix}$ $\begin{bmatrix} 2.4 \\ -2.4 \end{bmatrix}$ is $x = \begin{pmatrix} 1 & 3 \\ 2 & 3 \end{pmatrix}$ $\begin{bmatrix} 2,2 \end{bmatrix}$.

4. CONCLUSIONS

Based on the results and discussion, the sufficient conditions for a system of linear equations $\overline{A \otimes x} = b$ in interval min-plus algebra to be solved using Cramer's rule are $sign(A_i) =$ $sign(\underline{A})$, $sign(\overline{A}_i) = sign(\overline{A})$ for $1 \leq i \leq n$, and $dom(A) \approx [dom(\underline{A})$, $dom(\overline{A})] < [\varepsilon', \varepsilon']$. The Cramer rule is $x_i \overline{\otimes} dom(A) = dom(A_i)$. Readers who are interested in this topic can continue the research of Cramer's rule for matrix $A \approx [A, \overline{A}]$ with A has inverse and \overline{A} has inverse.

ACKNOWLEDGMENT

The author would like to thank the University of Sebelas Maret for funding and supporting this research in the 2024 academic year.

REFERENCES

- [1] Y. I. Puspitasari and Y. Susanti, "Kongruensi Latis Distributif Terkecil pada Semiring dengan Additive Reduct Semilatis," *Pros. Semin. Nas. Aljabar*, pp. 55–65, 2016.
- [2] H. Anton and C. Rorres, *Elementary Linear Algebra*. 2005.
- [3] Y. Kim and N. Pipattanajinda, "New method for finding the determinant of a matrix," *Chamchuri J. Math.*, vol. 9, no. January 2017, pp. 1–12, 2017.
- [4] G. P. T. Haneefa and Siswanto, "Petri Net Model and Max-Plus Algebra in Outpatient Care at Solo Peduli Clinic, Surakarta," *J. Phys. Conf. Ser.*, vol. 1776, no. 1, 2021, doi: 10.1088/1742-6596/1776/1/012047.
- [5] G. Ariyanti, A. Suparwanto, and B. Surodjo, "Karakterisasi Determinan Matriks atas Aljabar Maks Plus Tersimetri," *J. SILOGISME Kaji. Ilmu Mat. dan Pembelajarannya*, vol. 3, no. 2, p. 48, 2019, doi: 10.24269/silogisme.v3i2.944.
- [6] Siswanto, V. Y. Kurniawan, Pangadi, and S. B. Wiyono, "Characteristic polynomial of matrices over interval max-plus algebra," *AIP Conf. Proc.*, vol. 2326, no. February, 2021, doi: 10.1063/5.0039779.
- [7] K. G. Farlow, "Max-Plus Algebra," 2009.
- [8] S. A. Gyamerah, P. K. Boateng, and P. Harvim, "Max-plus Algebra and Application to Matrix Operations," *Br. J. Math. Comput. Sci.*, vol. 12, no. 3, pp. 1–14, 2016, doi: 10.9734/bjmcs/2016/21639.
- [9] G. J. Olsder and C. Roos, "Cramer and Cayley-Hamilton in the Max Algebra," *Linear Algebra Appl.*, vol. 101, no. C, pp. 87–108, 1988, doi: 10.1016/0024-3795(88)90145-0.
- [10] J. Plavka, "The weak robustness of interval matrices in max -plus algebra," *Discret. Appl. Math.*, vol. 173, pp. 92–101, 2014, doi: 10.1016/j.dam.2014.03.018.
- [11] Siswanto, A. Suparwanto, and M. A. Rudhito, "Strongly regular matrices and simple image set in interval max-plus algebra," *JP J. Algebr. Number Theory Appl.*, vol. 38, no. 1, pp. 63–78, 2016, doi: 10.17654/NT038010063.
- [12] Siswanto, Pangadi, and S. B. Wiyono, "Robust matrices in the interval max-plus algebra," *J. Phys. Conf. Ser.*, vol. 1265, no. 1, pp. 1–8, 2019, doi: 10.1088/1742-6596/1265/1/012029.
- [13] Siswanto, "PERMANEN DAN DOMINAN SUATU MATRIKS ATAS ALJABAR MAX-PLUS INTERVAL," *Pythagoras*, vol. 7, no. 2, pp. 45–54, 2012.
- [14] Siswanto, "Aturan Cramer dalam Aljabar Maks-Plus Interval," *Mat. J.*, vol. 20, no. April, pp. 5–11, 2015.
- [15] Musthofa and D. Lestari, "Metode Perjanjian Password Berdasarkan Operasi Matriks atas Aljabar Min-Plus untuk Keamanan Pengiriman Informasi Rahasia (The Password Agreement Method Based on Matrix Operation over Min-Plus Algebra for Safety of Secret Information Sending)," *J. Sains Dasar*, vol. 3, no. 1, pp. 25–33, 2014.
- [16] A. W. Nowak, "The Tropical Eigenvalue-Vector Problem from Algebraic, Graphical, and Computational Perspectives," p. 136, 2014, [Online]. Available: http://scarab.bates.edu/honorstheses/97.
- [17] Siswanto, A. Gusmizain, and S. Wibowo, "Determinant of a matrix over min-plus algebra," *J. Discret. Math. Sci. Cryptogr.*, vol. 24, pp. 1829–1835, 2021, doi: 10.1080/09720529.2021.1948663.
- [18] S. Siswanto and A. Gusmizain, "Determining the Inverse of a Matrix over Min-Plus Algebra," *JTAM (Jurnal Teor. dan Apl. Mat.*, vol. 8, no. 1, p. 244, 2024, doi: 10.31764/jtam.v8i1.17432.
- [19] S. Watanabe, "Min-Plus Algebra and Networks," *SpringerReference*, vol. 47, pp. 41–54, 2014, doi: 10.1007/springerreference_21127.
- [20] Z. Nur, R. Putri, and V. Y. Kurniawan, "CRAMER ' S RULE IN MIN -PLUS ALGEBRA," vol. 18, no. 2, pp. 1147–1154, 2024.
- [21] A. R. Awallia, Siswanto, and V. Y. Kurniawan, "Interval min-plus algebraic structure and matrices over interval min-plus algebra," *J. Phys. Conf. Ser.*, vol. 1494, no. 1, 2020, doi: 10.1088/1742-6596/1494/1/012010.
- [22] M. A. Rudhito, "Matriks Atas Aljabar Max-Min Interval," *Pros. Semin. Nas. Sains dan Pendidik. Sains VIII*, vol. 4, no. 1, pp. 2087–0922, 2013.
- [23] M. A. Rudhito and D. A. B. Prasetyo, "Sistem Persamaan Linear Min-Plus Bilangan Kabur dan Penerapannya pada Masalah Lintasan Terpendek dengan Waktu Tempuh Kabur." Prosiding Seminar Nasional Sains dan Pendidikan Sains IX, pp. 826– 834, 2014.
- [24] A. S. Septiany, S. Siswanto, and V. Y. Kurniawan, "Permanent and Dominant of Matrix over Interval Min-Plus Algebra," *BAREKENG J. Ilmu Mat. dan Terap.*, vol. 18, no. 3, pp. 2029–2034, 2024, doi: https://doi.org/10.30598/barekengvol18iss3pp2029-2034.