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ABSTRACT 

Article History: 
Investments in stocks are made to make a profit, where the higher the expected profit, the 

greater the risk undertaken. The return on investing in stocks can be influenced by changes 

in the price of stocks that are difficult to predict, which can lead to uncertainty in the value 

of the return and the risk of the stock. The application of the Geometric Brownian Motion 
(GBM) model with Jump Diffusion is crucial for enhancing the accuracy of stock price 

forecasting and risk analysis by incorporating price jumps resulting from external events 

within complex market dynamics. The data used in this study are the closing price data of 

the daily stock of PT Bank Negara Indonesia for the period 1 December 2022 to 31 
January 2024, where the stock return data has a kurtosis value greater than 3 (leptokurtic) 

so that the data indicates a jump. The GBM with Jump Diffusion model was implemented 

to predict the stock price with a simulation repetition of 1000 times. The analysis shows 
that the GBM model with Jump Diffusion has an excellent accuracy rate with the smallest 

MAPE value of 0.86%. The average value of the VaR with Monte Carlo simulation 

obtained at the reliability levels of 80%, 90%, 95%, and 99% in a row is 0.96%, 1.53, 

1.97%, and 2.64%. This result shows that the higher the confidence level used, the greater 

the risk. 

 

Received: 9th August 2024 

Revised: 22nd November 2024 

Accepted: 22nd November 2024 
Published: 13th January 2025  

 

 

Keywords: 

Kurtosis;  

GBM with Jump Diffusion; 

Monte-Carlo;  
Peak-Over-Threshold; 

VaR. 

 This article is an open access article distributed under the terms and conditions of 

the Creative Commons Attribution-ShareAlike 4.0 International License. 

 

  
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
How to cite this article: 

A. Zakiah, E. Sulistianingsih and N. Satyahadewi., “GEOMETRIC BROWNIAN MOTION WITH JUMP DIFFUSION AND VALUE AT 

RISK ANALYSIS OF PT BANK NEGARA INDONESIA STOCKS,” BAREKENG: J. Math. & App., vol. 19, iss. 1, pp. 0617-0628, March, 

2025. 

 

Copyright © 2025 Author(s)  

Journal homepage: https://ojs3.unpatti.ac.id/index.php/barekeng/  

Journal e-mail: barekeng.math@yahoo.com; barekeng.journal@mail.unpatti.ac.id  

Research Article  ∙  Open Access 

 

http://creativecommons.org/licenses/by-sa/4.0/
https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:barekeng.journal@mail.unpatti.ac.id


618 Zakiah, et al.    GEOMETRIC BROWNIAN MOTION WITH JUMP DIFFUSION AND VALUE AT RISK ANALYSIS OF…  

1. INTRODUCTION  

Investing is an activity that attracts the attention of the public, as it serves as one of the ways to allocate 

funds into an asset for a certain period to gain profit or returns. Investing in the capital market offers various 

opportunities for trading long-term instruments, which can be offered by both the government and private 

enterprises. In the capital market, there are various investment products traded that involve ownership; one 

of them is stocks. Currently, stocks have become a popular investment choice among millennials, as 

purchasing stocks no longer requires a large capital [1]. Securities are defined as stocks that serve as evidence 

of ownership in a limited liability company or corporation, where the owner is referred to as a shareholder 

[2]. 

One of the stocks listed on the Indonesia Stock Exchange is the stock of PT Bank Negara Indonesia 

(Persero) Tbk. The bank is one of the businesses that offers various financial products to the public. Stocks 

in the financial sector, especially banking, often experience fluctuating stock prices, making them difficult to 

predict. One technique that can be used to forecast future stock prices is Geometric Brownian Motion (GBM) 

with Jump Diffusion [2]. The GBM model assumes that stock returns in the past follow a normal distribution. 

The GBM with the Jump Diffusion model is possible if past stock returns show jumps [3]. When predicting 

stock prices, the Jump Diffusion approach has smaller modeling errors compared to relying solely on the 

GBM model [4]. If historical stock return data indicates jumps, then the Jump Diffusion model is used [5]. A 

jump is a condition where stock return data experiences extreme increases and decreases. 

When investing in stocks, understanding the frequently changing stock prices is directly proportional 

to the magnitude of the risk that may be incurred in an investment. Specifically, this makes risk evaluation 

important to consider before making an investment decision [6]. Risk is the amount of potential loss that 

occurs when the average profit deviates significantly from expectations. Risk cannot be avoided but can be 

managed [7]. One technique for measuring investment-related risk is Value at Risk (VaR). VaR is defined as 

the measure of the largest potential loss with a certain level of confidence over a specific period [8]. The 

results of this study are expected to effectively implement the GBM with Jump Diffusion model to project 

the stock price of PT Bank Negara Indonesia Tbk and assess the maximum investment loss on this stock 

using VaR estimation with Monte Carlo simulation. 

2. RESEARCH METHODS 

2.1 Stock and Stock Return 

Stocks serve as evidence of ownership in a company or Limited Liability Company (LLC) and are 

considered securities in the capital market, with their holders commonly known as shareholders [1]. Stock 

return refers to the relative change in the price of a financial asset [2], portraying actual shifts in stock prices. 

The computation of stock returns involves log returns, which can be expressed as follows: 

𝑟𝑡 = ln (
𝑆𝑡

𝑆𝑡−1
) (1) 

where 𝑟𝑡 is stock return at time 𝑡, 𝑆𝑡 is stock price at time 𝑡, and 𝑆𝑡−1 is stock price at time (𝑡 − 1) [9]. 

2.2 Kurtosis 

Kurtosis represents how peaked or flat a distribution is, usually assumed to be related to its overall 

spread. It involves identifying stages to determine if there are any significant changes in the data. The kurtosis 

value indicates the presence of jumps in the data distribution by measuring the sharpness of the peak and the 

heaviness of the tails. When kurtosis is less than 3 (platykurtic), it suggests there are no significant changes 

[2]. A kurtosis value of 3 (mesokurtic) indicates no significant deviations, while a kurtosis greater than 3 

(leptokurtic) suggests notable changes. Kurtosis estimation can be performed using Equation (2) [4]: 

𝛾 =
1

𝑛
∑ (𝑟𝑡−𝜇)𝑛

𝑡=1
4

𝜎4  (2) 

where γ is kurtosis of stock returns, 𝑛 is number of stock return data, 𝑟𝑡 is stock return at time 𝑡, 𝜇 is mean 

stock return, and 𝜎 is standard deviation of stock returns. 



BAREKENG: J. Math. & App., vol. 19(1), pp. 0617- 0628, March, 2025.     619 

 

2.3 Kolmogorov-Smirnov Normality Test 

The GBM Model with Jump Diffusion and VaR assumes that stock returns follow a normal 

distribution. Therefore, it's necessary to conduct a normality test on the stock return data first. This test aims 

to ascertain whether the stock returns data conform to a normal distribution or not. Several Kolmogorov-

Smirnov test procedures can be performed for this purpose [8]: 

a. Hypothesis:  

𝐻0: Data are normally distributed 

𝐻1: Data are not normally distributed 

b. Determining the significance level: 𝛼 

c. Test Statistic 

𝐷𝑐𝑜𝑢𝑛𝑡 = 𝑚𝑎𝑥|𝑆(𝑥) − 𝐹0(𝑥)|                                                   (3) 

where 𝐷𝑐𝑜𝑢𝑛𝑡 is maximum value for all 𝑥 of the absolute value 𝑆(𝑥) − 𝐹0(𝑥), 𝑆(𝑥) is cumulative 

distribution function of the sample data, and 𝐹0(𝑥) is cumulative distribution function of the 

normal distribution. 

d. Rejection Criteria: 

𝐻0 is rejected if the value of 𝐷𝑐𝑜𝑢𝑛𝑡 > 𝐷(𝛼,𝑛), where 𝐷(𝛼,𝑛) represents the critical value obtained 

from the Kolmogorov-Smirnov table with 𝛼 indicating the significance level and 𝑛 represents the 

number of truncated stock return data. Additionally, 𝐻0 is rejected if the p-value < 𝛼. 

2.4 Peak Over Threshold 

Peaks Over Threshold (POT) is a crucial component in modeling with Jump Diffusion, serving to 

determine the extent to which stock return data in a sample exhibits significant jumps. The primary function 

of Peaks Over Threshold (POT) is to identify extreme values that exceed a certain threshold, enabling the 

analysis of asset price fluctuations. By understanding the patterns and factors influencing these price changes, 

the analysis becomes a critical aspect in supporting investment decision-making and developing effective risk 

management strategies. Kurtosis values exceeding 3, which indicate fat tails or leptokurtic phenomena, are 

considered indicators of significant jumps in the data, signaling the occurrence of extreme events [10]. By 

utilizing POT to ascertain the quantity of extreme value data in worst-case scenarios, indications of jumps in 

stock return data can be identified. The computation of the number of data jumps in stock return data is 

conducted using POT, exclusively with stock return data. The subsequent steps delineate the POT calculation 

process [11]: 

a. Sorting the stock return data from highest to lowest. 

b. Determine the quantity of jump data through the following formula: 

𝑗 = 10% × 𝑛 (4) 

10% in the context of data analysis, particularly in the Peaks Over Threshold (POT) method, refers 

to the percentage of the total data used to determine the threshold for extreme values. In other 

words, using 10% helps ensure that the analysis remains focused on potentially extreme values 

without sacrificing too much data from the overall dataset. 𝑛 and 𝑗 in Equation (4) are the number 

of stock return data and the number of jump return data. 

c. Determine the lower threshold value and upper threshold value using Equation (5): 

𝑢 = 𝑗 + 1 (5) 

where 𝑢 and 𝑗 in Equation (5) are number of truncated stock return data and number of jump 

return data. 

d. Based on step 1, trimming the stock return data using the calculation of the value 𝑢 in step 3, will 

serve as a reference to determine the amount of stock return data that should be trimmed at the 

lower and upper thresholds. 
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2.5 Parameter Estimation 

2.5.1 Average Return 

The average stock return over 𝑛 (number of truncated stock return data) can be estimated using the 

mean return, formulated as follows [12]: 

𝜇 =
1

𝑛
∑ 𝑟𝑡

𝑛
𝑡=1  (6) 

where 𝜇 is mean stock return, 𝑛 is number of stock return data, 𝑡  is time, and 𝑟𝑡 is stock return at time 𝑡. 

2.5.2 Standard Deviation of Return 

The standard deviation can be defined as the amount of fluctuation in the price of stock returns. The 

formula for the mean return of stock can also be used to obtain the standard value of the equity return 

deviation. The standard deviation of stock returns is formulated as follows [12]: 

𝜎2 =
1

𝑛−1
∑ (𝑟𝑡 − 𝜇)2𝑛

𝑡=1  (7) 

where 𝜎 is standard deviation of stock returns, 𝑛 is number of stock return data, 𝑡 is time, 𝑟𝑡 is stock return at 

time 𝑡, and 𝜇 is mean stock return.  

2.5.3 Jump Intensity 

Parameter estimation for Jump Diffusion on jump intensity can utilize data indicating jumps or jump 

data through Equation (8) [11]: 

𝜆 =
1

𝑗
∑ 𝑟𝑖

𝑗
𝑖=1  (8) 

where 𝜆  is intensity of jump returns, 𝑗 is number of jump return data, and 𝑟𝑖 is jump return at time 𝑖.  

2.5.4 Mean Jump Size 

The jump size in the Jump Diffusion model refers to the magnitude of price change that occurs due to 

significant price jumps. It is measured as the difference between the asset price before and after the jump, 

thus providing insights into the impact of extreme events on asset value and the associated risks. The 

following formula can be used with jump difference data to estimate parameters in Jump Diffusion for the 

mean [11]: 

𝛽 =
1

𝑠
∑ 𝑟𝑝

𝑠
𝑝=1  (9) 

where 𝛽 is mean jump size, 𝑠 is number of jump size return data, and 𝑟𝑝 is jump size return at time 𝑝. 

2.5.5 Standard Deviation of Jump Size 

The standard deviation using jump size data for parameter estimation in Jump Diffusion [11] can be 

calculated with Equation (10): 

𝛿 = √
1

𝑠−1
∑ (𝑟𝑝 − 𝛽)

2𝑠
𝑝=1  (10) 

where 𝛿 is a standard deviation of jump size, 𝑠 is number of jump size return data, 𝑟𝑝 is jump size return at 

time 𝑝, and 𝛽 is mean jump size. 

2.6 Brownian Motion 

Brownian Motion is a continuous-time stochastic process commonly used to depict the random 

movement of a variable [13]. The stochastic process {X(t),t ≥ 0} is a standard Brownian Motion if it satisfies 

the following characteristics [8]: 

a. The change in 𝑊𝑡 during the period ∆𝑡 is ∆𝑊𝑡 = ε√∆t, where ε is a random number with a standard 

normal distribution, having a mean of 0 and a variance of 1. At time t = 0, ∆𝑊𝑡 = 0, the standard 

deviation of ∆𝑊𝑡 = √∆t, and its variance is ∆𝑡. 
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b. Each movement within the time interval 0 ≤ 𝑠 < 𝑡 ≤ 𝑇, 𝑊𝑡 − 𝑊𝑠 is normally distributed, with a 

mean of 0 and a variance of 𝜎𝑡−𝑠
2 . 

c. Within any interval 0 ≤ 𝑠 < 𝑡 < 𝑢 < 𝑣 ≤ 𝑇, the changes in 𝑊𝑡 − 𝑊𝑠 and 𝑊𝑢 − 𝑊𝑣 are 

independent or not dependent on past states. 

Meanwhile, a stochastic process called Brownian Motion with a drift term 𝜇∗, the drift parameter describes 

the average return rate of an asset over time. In the GBM model, drift indicates the potential expected return. 

The drift parameter illustrates the average return rate of an asset over time. Variance 𝜎2, a stochastic process 
{𝑋𝑡 , 𝑡 ≥ 0} is called Geometric Brownian Motion with 𝜀 is a standard normally distributed random number, 

and 𝑊𝑡 = 𝜀√∆𝑡 is given as follows: 

𝐵𝑡 = 𝜇𝑡
∗ + 𝑊𝑡 (11) 

where 𝜇𝑡
∗ is the drift parameter with 𝜇∗ = 𝜇 −

1

2
𝜎2, and 𝐵𝑡 is the Brownian Motion at time 𝑡. 

2.7 Stochastic Differential Equation Method for Jump Diffusion 

A stochastic process is a collection of random variables indexed by time {𝑊𝑡 , 𝑡 ∈ 𝑇}, where t denotes 

time and 𝑋𝑡 represents the process occurring at time 𝑡 [2]. The set of indices of a stochastic process is called 

set 𝑇. A stochastic process is called a continuous-time stochastic process and is represented in the form 

{𝑋𝑡 , 𝑡 ≥ 1}, if the set 𝑇 is a time interval 𝑡 ∈ [0, ∞) [14]. Meanwhile, if the set 𝑇 is a countable set 𝑡 ∈ [1, 𝑇], 
then the stochastic process used is a discrete-time stochastic process expressed in the form {𝑋𝑡 , 𝑡 = 1,2, … }.  

Stochastic processes in finance and investment are exemplified by stock price fluctuations. This is due 

to sudden or uncertain fluctuations that can happen at any time within certain or uncertain time frames [4]. 

Therefore, the following equation can be used to represent stock price changes [15]: 

𝑑𝑋𝑡 = 𝜇𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝑊𝑡 (12) 

where 𝑋𝑡 is stochastic process at time 𝑡, 𝑊𝑡 is denotes the standard Wiener process at time 𝑡,  𝜇 is mean stock 

return and 𝜎 is standard deviation of return stock. Then, for the Jump Diffusion model, the stochastic 

differential equation follows Equation (13) [3]: 

𝑑𝑋𝑡 = 𝜇𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝑊𝑡 + 𝑋𝑡𝑑𝐽𝑡   (13) 

where 𝑋𝑡 is the stochastic process at time 𝑡, 𝑊𝑡 denotes the standard Wiener process at time 𝑡, 𝜇 is the mean 

stock return, 𝜎 is the standard deviation of return stock, 𝐽𝑡 is jump process at time 𝑡, and 𝑡 is time. 

2.8 The It𝒐 Theorem for Jump Diffusion Models 

A mathematician named Kiyoshi It�̂� discovered Lemma It𝑜 in 1951 [11]. Let 𝑋 is a Jump Diffusion 

process, which is defined as the sum of drift, stochastic Brownian motion integral, and Poisson process [2]: 

𝑋𝑡 = 𝑋𝑡−1 + ∫
𝜕𝑓

𝜕𝑥
𝜇𝑑𝑡

𝑡

𝑡−1
+ ∫

𝜕𝑓

𝜕𝑥
𝜎𝑑𝑊𝑡

𝑡

𝑡−1
+ ∑ (𝑌𝑡 − 1)𝑁𝑡

𝑡=1                          (14) 

Then, for each function 𝑓: [0, 𝑇] × ℝ → ℝ, the process 𝐺 = 𝐺(𝑡, 𝑋(𝑡)) can be represented as [16]: 

𝐺(𝑡, 𝑋𝑡) − 𝐺(0, 𝑋0) = ∫ [𝜇
𝜕𝐺

𝜕𝑥
(𝑡, 𝑋𝑡) +

𝜕𝐺

𝜕𝑠
(𝑡, 𝑋𝑡) +

1

2
∫ 𝜎2

𝜕2𝐺

𝜕𝑥2

𝑡

0

(𝑡, 𝑋𝑡)] 𝑑𝑡
𝑡

0

 

                                                 + ∫
𝜕𝐺

𝜕𝑥
(𝑡, 𝑋𝑡)𝜎𝑑𝑊𝑡

𝑡

0
+ ∑ (𝑌𝑡 − 1)𝑁𝑡

𝑡=1  (15) 

The stochastic differential equation with jumps is given by Equation (12) [17], where 𝑊𝑡 is denotes the 

standard Wiener process at time 𝑡, 𝐽𝑡 is jump process at time 𝑡, and defined as: 

𝐽𝑡 = ∑ (𝑌𝑡 − 1)𝑁𝑡
𝑡=1  (16) 

𝑑𝐽𝑡 = (𝑌𝑡 − 1)𝑑𝑁𝑡 (17) 

𝑁𝑡  represents a Poisson process with intensity λ, where 𝑊𝑡, 𝑁𝑡 , and 𝑌𝑁(𝑡) are mutually independent. 

Meanwhile 𝑊𝑡 represents Brownian Motion, and the values of 𝜇 and 𝜎 are parameters of 𝑋 and 𝑡 [18]. Based 

on Equations (13) and Equations (17), they are simplified as follows [2]: 
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𝑑𝑋𝑡 = 𝜇∗𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝑊𝑡 + 𝑋𝑡𝑑𝐽(𝑡)𝐽𝑡      (18) 

when 𝜇 is the mean of stock returns, 𝜎 is the standard deviation of stock returns, if a jump occurs, 𝐵𝑡 is 

Brownian Motion at time 𝑡, 𝑁𝑡  is the Poisson process with intensity, and 𝑌𝑁(𝑡) − 1 is relative jump size. Based 

on the Ito process for the jump diffusion model in Equation (14), if there is a function 𝐺 = 𝐺(𝑡, 𝑋𝑡), then the 

function 𝐺 will follow Equation (19) [19]: 

   𝑑𝐺 = (
𝜕𝐺

𝜕𝑋𝑡
(𝜇 − 𝜆)𝑋𝑡 +

𝜕𝐺

𝜕𝑡
+

1

2

𝜕2𝐺

𝜕𝑋𝑡
2 𝜎2𝑋𝑡

2) 𝑑𝑡 +
𝜕𝐺

𝜕𝑋𝑡
𝜎(𝑋𝑡)𝑑𝑊𝑡 + ∑ (𝑌𝑡 − 1)𝑁𝑡

𝑡=1                   (19) 

Let 𝐺 = 𝑙𝑛𝑋𝑡 be a function, with 
𝜕𝐺

𝜕𝑋𝑡
=

1

𝑋𝑡
,

𝜕2𝐺

𝜕𝑋𝑡
2 = −

1

𝑋𝑡
2 ,

𝜕𝐺

𝜕𝑡
= 0, it can be obtained: 

𝑑𝐺 = ((𝜇 − 𝜆)
1

𝑋𝑡
𝑋𝑡 + 0 +

1

2
(−

1

𝑋𝑡
2) 𝜎2𝑋𝑡

2) 𝑑𝑡 +
1

𝑋𝑡
𝜎𝑋𝑡𝑑𝑊𝑡 + ∑ (𝑌𝑡 − 1)𝑁𝑡

𝑡=1    

𝑑𝐺 = (𝜇 − 𝜆 −
𝜎2

2
) 𝑑𝑡 + 𝜎𝑑𝑊𝑡 + ∑ (𝑌𝑡 − 1)𝑁𝑡

𝑡=1                   (20) 

If there is a change in stock price in the current period compared to the previous period, which is one day 

with 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 , then based on the processes in Equations (15) and Equations (20), it can be 

obtained [2]: 

∫ 𝑑𝐺
𝑡

𝑡−1
= ∫ (𝜇 − 𝜆 −

𝜎2

2
) 𝑑𝑡

𝑡

𝑡−1
+ ∫ 𝜎𝑑𝑊𝑡

𝑡

𝑡−1
+ ∑ (𝑌𝑡 − 1)𝑁𝑡

𝑡=1                       (21) 

2.9 Geometric Brownian Motion with Jump Diffusion 

Assuming the model generated follows a normal distribution based on the Jump Diffusion approach. 

The Poisson process is used to represent the likelihood of jumps occurring in a short period [4]. The 

continuous stochastic process is Jump Diffusion. When stock prices move rapidly and there are spikes or 

sharp jumps in previous stock price increases and decreases, the GBM approach known as GBM with Jump 

Diffusion is used [12]. The final stock price model generated using the GBM with Jump Diffusion Model, 

based on proportions and the Wiener process, is as follows [2]: 

𝑆𝑡 = 𝑆𝑡−1𝑒𝑥𝑝 [(𝜇 − 𝜆 −
𝜎2

2
) + 𝜎𝑍𝑡−1 + 𝑁𝑡]                  (22) 

where 𝑆𝑡 is stock price at time 𝑡, 𝑆𝑡−1 is the stock price at time (𝑡 − 1), 𝜇 is the mean stock return, 𝜎 is the 

standard deviation of stock return, 𝜆 is jump intensity, 𝑍𝑡−1 is normally distributed generated data at time 
(𝑡 − 1), 𝑁𝑡is normally distributed generated data at time 𝑡, and 𝑡 is time. 

2.10 Mean Absolute Percentage Error 

Mean Absolute Percentage Error (MAPE) is defined as the average absolute percentage of prediction 

errors. MAPE indicates how large the absolute error rate of the predictions is compared to the actual values. 

The MAPE value indicates the accuracy of the predictions as given in Equation (23) [20]:  

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑆𝑡−�̂�𝑡|

𝑆𝑡

𝑛
𝑡=1  (23) 

where 𝑆𝑡 is the actual stock price at time 𝑡, �̂�𝑡 is the predicted stock price at time 𝑡, and 𝑛 is the number of 

stock return data.  

The prediction results will be better if the obtained MAPE value is smaller. The smallest MAPE value 

is chosen because it indicates the smallest error. MAPE has a range of accuracy levels that can be used as a 

measurement for prediction models. This accuracy level can be seen in Table 1 [20]. 

Table 1. Accuracy Assessment Scale for MAPE 

MAPE Value Prediction Accuracy 

𝑀𝐴𝑃𝐸 ≤ 10% Prediction accuracy is very good 

10% < 𝑀𝐴𝑃𝐸 ≤ 20% Prediction accuracy is good 

20% < 𝑀𝐴𝑃𝐸 ≤ 50% Prediction accuracy is quite good 

𝑀𝐴𝑃𝐸 > 50% Prediction accuracy is poor 
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2.11 VaR in Monte Carlo Simulation 

VaR is one of the calculations that can be used to determine the maximum potential losses that may 

occur on owned assets based on a confidence level, investment amount, and a specific period [8]. Simply put, 

VaR is used to ascertain the extent of an investor's losses in percentage or monetary terms over the investment 

period (𝑡) through a confidence level (1 − 𝛼) [6]. Based on the characteristics of the data that will be 

generated by the random number generator used to estimate VaR values, the steps in determining VaR 

through Monte Carlo simulation are as follows [8]: 

a. Based on the previous stock price forecasting results, where it is assumed that returns follow a 

normal distribution with mean (𝜇) and standard deviation (𝜎2), the parameter values for the stock 

return data are determined. 

b. Using 𝑛 parameters from step (1) to generate random stock return estimates, running simulations 

on return data to create an empirical distribution, and determining simulated returns. 

c. Calculating the largest loss estimate at a confidence level (1 − 𝛼), represented by 𝑅∗, the 𝛼 quantil 

value of the empirical return distribution obtained in step (2). 

d. Calculating the VaR value at confidence level (1 − 𝛼) over a period of 𝑡 days:  

𝑉𝑎𝑅(1−𝛼) = 𝑉𝑜𝑅∗√𝑡                                                         (24) 

𝑉𝑜 𝑅∗ and √𝑡 in Equation (24) subsequently are initial investment fund, 𝑅∗is quantile value of 

return distribution, and √𝑡 is period. The obtained VaR value represents the maximum loss to be 

incurred when investing. 

e. Repeating steps (2) to (4) for 𝑚 iterations to reflect various possible values of a single asset. 

f. Calculating the average based on the VaR values generated in step (5), to stabilizing the VaR 

value, where the VaR value generated in each simulation differs. 

3. RESULTS AND DISCUSSION 

3.1 Research Data 

The case study was conducted by analyzing the stocks of PT Bank Negara Indonesia Tbk for the period 

from December 1, 2022, to January 31, 2024, comprising a total of 283 trading days. The data used in this 

research was sourced from secondary sources accessed through the website https://finance.yahoo.com/. PT 

Bank Negara Indonesia (Persero) Tbk. is one of the companies offering various financial products to the 

public. Stocks in the financial sector, especially banking, often experience fluctuating price movements, 

making them difficult to predict. In this study, software such as Microsoft Excel and R-Studio were utilized 

for data analysis.  

 

Figure 1. Movement of Stock Closing Prices 

In Figure 1, it can be observed that the stock prices fluctuate, with BBNI stock prices experiencing 
unpredictable increases and decreases. The closing price data of BBNI stock is then divided into in-sample 
and out-of-sample data. The in-sample data is used to estimate the parameter values of the GBM with Jump 
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Diffusion model, starting from December 1, 2022, to December 1, 2023, comprising 243 data points. The 
out-of-sample data is used to validate the model, starting from December 4, 2023, to January 31, 2024, 
comprising 40 data points.  

3.2 Calculating Stock Return In-Sample 

After determining the in-sample and out-of-sample data, the next step is to calculate the in-sample 

stock return data. Stock return is the rate of return obtained based on stock ownership. The stock return value 

is obtained using Equation (1). 

  

Figure 2. Plot of Stock Return In-Sample 

In Figure 2, it is evident that the returns obtained can be both positive and negative. Positive returns 

indicate profit or gain from the investment, meaning that the value of the investment has increased compared 

to its initial value. Conversely, negative returns indicate a loss, where the value of the investment has 

decreased. It is important to understand that these fluctuations are a natural part of market dynamics. Investors 

need to consider the risks and potential rewards when making investment decisions, as well as recognize that 

inconsistent returns can occur with changing market conditions. 

Table 2. Descriptive Statistics  

Mean Stock 

Return 

Standard Deviation of 

Stock Return 
Maximum Minimum Median Kurtosis 

0.0003 0.0129 0.0431 -0.0513 0.0000 4.67925 

In Table 2, it is observed that descriptive statistics on in-sample stock returns are provided, where the 

largest return value in the in-sample stock data is 0.0431 and the smallest return value is -0.0513. The average 

return obtained is 0.0003. A positive average return value indicates profit in the stock investment. 

Furthermore, a normality test is conducted on the return data before proceeding to the model formation using 

the GBM with Jump Diffusion. 

3.3 Calculating of Kurtosis and Kolmogorov-Smirnov 

The calculation of kurtosis serves as an initial indication of the presence of a jump. Extreme values or 

jumps are present in the data if the kurtosis value (leptokurtic) is greater than 3. Based on Table 3, a kurtosis 

value of 4.6793 is obtained, indicating that jump data with a kurtosis value greater than 3 is present in the in-

sample stock return data. The GBM with Jump Diffusion model assumes that past stock returns follow a 

normal distribution. The GBM with Jump Diffusion model also assumes that data with stock returns not 

normally distributed can be used if the resulting kurtosis value is greater than or equal to 3, indicating the 

presence of jumps in the data [2].  

A normality test was conducted based on the Kolmogorov-Smirnov (KS) table with a significance level 

of 𝛼 = 5% or 0,05 using R-Studio software. The analysis results show a p-value of 0.122 is greater than 0.05. 

The 𝐷𝑐𝑜𝑢𝑛𝑡 value obtained is 0.0760, which is smaller than the 𝐷(0.05,242) value of 0.0869. Based on these 

values, it is concluded that 𝐻0 is accepted, indicating that the in-sample stock return data follows a normal 

distribution. 

Days 
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3.4 Peak Over Threshold Calculation for Stock Returns In-Sample 

After identifying the presence of jumps in the data, the next step is to determine the number of worst-

case data with extreme values through Peak Over Threshold (POT) calculation, where the in-sample stock 

return data indicates the presence of jumps. Based on the 10% quantile value of the in-sample stock return 

data, the determinants of the upper and lower threshold quantile values are provided in Table 3. 

Table 3. The Quantile Value of Data Return In-Sample  

Quantile Value 

The lower threshold quantile -0.0142 

The upper threshold quantile 0.0162 

Based on Table 3, the lower threshold quantile value obtained is -0.0142, and the upper threshold 

quantile value is 0.0162. Thus, it can be concluded that based on the previously sorted data, a total of 48 in-

sample stock return data with a 10% threshold have 24 data with values less than -0.0142 and 24 data of 

values greater than 0.0162, indicating jump data. 

3.5 Parameter Estimation for GBM with Jump Diffusion 

Parameter estimation based on the GBM with Jump Diffusion model is calculated using several 
parameter values, including the mean stock return, standard deviation of stock return, jump intensity value, 
mean jump difference value, and standard deviation of jump difference value. These values are calculated 
respectively using Equation (8), Equation (9), and Equation (10):  

Table 4. Parameter Value  

Parameter Value 

Jump intensity 0.0002 

Mean jump difference 0.0020 

Standard deviation of jump difference 0.0049 

 
Based on Table 2 and Tabel 4 the stock price prediction model using the GBM with Jump Diffusion 

method in Equation (22) is as follows: 

𝑆𝑡 = 𝑆𝑡−1𝑒𝑥𝑝 [(0.0003 − 0.0002 −
(0.0129)2

2
) + 0.0129𝑍𝑡−1 + 𝑁𝑡] 

After modeling using the GBM with the Jump Diffusion method, the next step is to predict the stock price 
for the next 40 days using the obtained model. 

3.6 Stock Price Prediction using GBM with Jump Diffusion  

After obtaining the estimated parameter values and the GBM with Jump Diffusion model, the next step 

is to predict the stock price. Predictions are made by repeating the process 1000 times to generate price paths 

to forecast the stock price and its changes over the next 40 periods, starting from December 4, 2023, to 

January 31, 2024. Additionally, the predicted stock prices are compared with the actual stock prices or out-

of-sample stocks. This comparison is presented in Table 5: 

Table 5. Comparison of Predicted Results and Actual Stock Price of BBNI 

No Date Actual Predicted No Date Actual Predicted 

1 4 Dec 2023 5300 5300 21 4 Jan 2024 5600 5465 

2 5 Dec 2023 5300 5292 22 5 Jan 2024 5575 5487 

3 6 Dec 2023 5225 5273 23 8 Jan 2024 5575 5518 

4 7 Dec 2023 5275 5251 24 9 Jan 2024 5650 5509 

5 8 Dec 2023 5075 5044 25 10 Jan 2024 5600 5592 

6 11 Dec 2023 5175 5293 26 11 Jan 2024 5600 5513 

7 12 Dec 2023 5275 5279 27 12 Jan 2024 5600 5566 

8 13 Dec 2023 5175 5272 28 15 Jan 2024 5625 5581 

9 14 Dec 2023 5350 5327 29 16 Jan 2024 5600 5557 

10 15 Dec 2023 5275 5190 30 17 Jan 2024 5550 5536 

11 18 Dec 2023 5200 5183 31 18 Jan 2024 5550 5521 
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No Date Actual Predicted No Date Actual Predicted 

12 19 Dec 2023 5200 5190 32 19 Jan 2024 5500 5500 

13 20 Dec 2023 5200 5193 33 22 Jan 2024 5525 5522 

14 21 Dec 2023 5150 5141 34 23 Jan 2024 5425 5506 

15 22 Dec 2023 5250 5234 35 24 Jan 2024 5475 5499 

16 27 Dec 2023 5275 5268 36 25 Jan 2024 5400 5502 

17 28 Dec 2023 5350 5288 37 26 Jan 2024 5425 5532 

18 29 Dec 2023 5375 5349 38 27 Jan 2024 5575 5512 

19 2 Jan 2024 5375 5372 39 30 Jan 2024 5650 5544 

20 3 Jan 2024 5350 5311 40 31 Jan 2024 5750 5675 

Based on Table 5, the stock prediction results obtained using the GBM with Jump Diffusion method 

are presented. By comparing these predictions with out-of-sample stock prices or actual data, the analysis 

shows that the difference between the predicted stock prices and the actual prices is not significant, indicating 

that the prediction model is quite accurate in reflecting the movements of stock prices in the market. 

 
 

Figure 3. Stock Price Movement Prediction using GBM with Jump Diffusion Model and Monte Carlo 

Simulation 

In Figure 3, it can be seen that the prediction results using the GBM with Jump Diffusion model spread 

randomly and produce predicted stock price paths that differ from one another. This is because there is a 

stochastic element in the form of a random variable with a standard normal distribution. The calculation of 

the MAPE value in Equation (23) yields the smallest MAPE value of 0.86%. Thus, it can be concluded that 

the accuracy level of the MAPE value using the GBM with Jump Diffusion model is categorized as very good 

because the MAPE value is below 10%, which is a common threshold in prediction analysis; a MAPE value 

below 10% indicates that the model has relatively small errors in estimation, making it reliable for investment 

decision-making.  

The calculation of predicted stock returns is carried out to determine the parameters used in measuring 

the Value at Risk (VaR). Before proceeding to the calculation of predicted stock returns, a Kolmogorov-

Smirnov normality test is conducted on the predicted stock returns with a significance level of 𝛼 = 5% or 

0.05. The obtained p-value is 0.0628 which is greater than 0.05. The 𝐷𝑐𝑜𝑢𝑛𝑡 which is smaller than the 

𝐷(0.05,39) value of 0.2100. Based on these results, it is concluded that 𝐻0 is accepted, indicating that the 

predicted BBNI stock data follows a normal distribution. 

3.7 Monte Carlo Simulation for VaR Calculation 

After conducting the Kolmogorov-Smirnov normality test, estimation of predicted stock returns and 

parameter calculations were performed. Value at Risk (VaR) calculation with Monte Carlo simulation will 

use the average and standard deviation parameters of predicted stock returns. Since the previous normality 

test results showed that the predicted stock return data follows a normal distribution, it can proceed to estimate 

the VaR value. Based on the predicted stock return values, VaR parameters are obtained using Equation (6) 

for the average predicted stock returns and Equation (7) for the standard deviation of predicted stock returns 

as follows: 

Table 6. Parameters for VaR of Predicted Stock Return Data  

Parameter Value 

Mean predicted stock return 0.0021 

Standard deviation of predicted stock return 0.0157 
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Based on Table 6, the average predicted stock return is obtained as 0.0021, and the standard deviation 

of predicted stock return is 0.0157. After obtaining the parameter values from the predicted stock returns, the 

VaR calculation using Monte Carlo simulation is performed using Equation (24). The VaR calculation is 

conducted with confidence levels of 80%, 90%, 95%, and 99% over a one-day, with 1000 repetitions. The 

VaR calculation results are obtained using R-Studio and Microsoft Excel software and can be seen in Table 

7. 

Table 7. VaR Value 

Confidence Level VaR(%) VaR(Rp) 

80% 0.96 963,362 

90% 1.53 1,530,266 

95% 1.97 1,974,099 

99% 2.64 2,642,933 

The VaR value at a confidence level of 90% is higher than that at a confidence level of 80%, as outlined 

in Table 7, indicating that when investors choose a higher confidence level, they anticipate greater potential 

losses over a specific period. Furthermore, the VaR value also increases at a 95% confidence level compared 

to that at 90%, suggesting that as the confidence level rises, the risk that investors must accept not only 

increases but also reflects the need to account for the possibility of larger extreme losses, thereby emphasizing 

the importance of a deep understanding of the relationship between confidence levels and potential risk in 

investment decision-making. 

4. CONCLUSIONS 

The Geometric Brownian Motion (GBM) with Jump Diffusion method applied to the stock prices of 

PT Bank Negara Indonesia Tbk (BBNI) from December 1, 2022, to January 31, 2024, resulted in the smallest 

MAPE value, which is 0.86%. The prediction accuracy using the Geometric Brownian Motion (GBM) with 

the Jump Diffusion method is categorized as very good because the MAPE value is below 10%. The 

maximum loss estimation using VaR in the Monte Carlo simulation based on confidence levels of 80%, 90%, 

95%, and 99%, respectively, amounts to Rp963,362, Rp1,530,266, Rp1,974,099, and Rp2,642,933. 
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