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ABSTRACT 

Article History: Climate change is one of the major challenges in the world today, characterized by 

changes in meteorological values, such as rainfall and temperature, caused by the 

concentration of greenhouse gases in the atmosphere, such as CO2, N2O, and CH4. These 

accumulated greenhouse gases form a layer that prevents heat radiation from escaping, 
causing the greenhouse effect and global warming. Addressing the effects of greenhouse 

gas emissions requires appropriate strategies, one of which is to predict future greenhouse 

gas emissions for planning appropriate actions. Time series models such as the 
Autoregressive Integrated Moving Average (ARIMA) model are often used but have 

drawbacks due to their assumption of linear relationships. On the other hand, the Long 

Short-Term Memory (LSTM) model, introduced by Hochreiter and Schmidhuber in 1997, 

can learn complex and nonlinear relationships in data. This study uses LSTM to estimate 
greenhouse gas emissions in Indonesia based on emitting sectors, hoping to anticipate 

negative impacts and reduce greenhouse gas emissions. The results show that the LSTM 

model has good performance with an error below 20%, and it is predicted that greenhouse 

gas emissions will continue to increase. 
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1. INTRODUCTION 

Climate change is one of the significant challenges for the world today. Climate change is in the form 

of changes in values in meteorological aspects such as rainfall and temperature [1], [2]. One of the causes of 

these changes in value is the concentration of greenhouse gases in the atmosphere [3]. This greenhouse gas 

contains several gases that are harmful to the environment, such as carbon dioxide (CO2), Nitrogen Oxide 

(N2O), methane gas (CH4), and various other harmful gases [4]. Greenhouse gases accumulated in the 

atmosphere result in the formation of a layer covering the earth and not allowing heat energy to radiate out, 

thus causing the greenhouse effect, which leads to global warming [5], [6].  

 To mitigate the adverse effects of greenhouse gas emissions, accurate forecasting of greenhouse gas 

emissions is crucial for developing effective strategies and policies. Estimating future emissions allows 

policymakers to anticipate trends and take timely action [7]. Various time series models have been used to 

estimate emissions, such as the Autoregressive Integrated Moving Average (ARIMA) model [8], [9]. 

However, ARIMA assumes a linear relationship in the data, which may not adequately capture the complex, 

non-linear nature of emission patterns [10], [11]. 

To address this limitation, Long Short-Term Memory (LSTM), a deep learning-based model 

introduced by Hochreiter and Schmidhuber in 1997, offers an advanced alternative [12]. LSTM has 

demonstrated a superior ability to learn complex temporal dependencies and capture nonlinear relationships 

in sequential data [13], [14]. Moreover, LSTM can handle both short and long-term predictions, making it a 

promising tool for estimating greenhouse gas emissions [15], [16]. 

 This study aims to develop an LSTM-based time series model for forecasting greenhouse gas 

emissions in Indonesia over the period 1970 to 2022, focusing on major emission-contributing sectors. Unlike 

traditional forecasting approaches, this research not only provides emission projections but also examines 

sectoral trends to support targeted mitigation policies. By leveraging LSTM's predictive power, the study 

seeks to contribute to data-based decision-making for emission reduction strategies in Indonesia. The results 

are expected to assist policymakers and environmental agencies in designing more effective interventions to 

curb emissions and combat climate change. 

 

2. RESEARCH METHODS 

2.1 Data Source 

The data used in this research is data on greenhouse gas emissions in Indonesia from 1970 to 2022, 

which can be obtained from https://edgar.jrc.ec.europa.eu/. The data obtained is annual data on several 

greenhouse gas-producing sectors with the following information: 

Table 1. Research Variable 

Sector Description 

Agriculture Includes agriculture livestock, agriculture soils, and field burning of agricultural 

residues. 

Buildings Includes small-scale non-industrial stationary combustion 

Fuel exploitation Includes solid waste disposed on land, solid waste composted, hazardous solid waste 

processing/storage, waste water handling, and waste incineration. 

Industrial combustion Includes combustion for industrial manufacturing 

Power industry Includes power and heat generation plants 

Processes  Includes industrial process emissions 

Transport  Includes road transport, rail transport, domestic aviation, domestic shipping, and 

inland waterway transport 

Waste  Includes solid waste disposed on land, solid waste composted and hazardous solid 

waste processing/storage, waste water handling, and waste incineration. 

Table 2 below presents the historical GHG emissions data for the first five-year period that was used 

in this research, covering the eight sectors identified as research variables in Table 1. The data in Table 2 are 

expressed in metric tons of CO2eq, derived from the data source obtained. 
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Table 2 The First 5 Data Points of The Data Used 

Year Agriculture Buildings 
Fuel 

Exploitation 
Industrial 

Combustion 
Power 

Industry 
Processes Transport Waste 

1970 132159670 16612168 31908488 4938001 3653496 1914473 8253790 18447532 
1971 133982675 16612168 32250537 4938001 3653226 1928243 8256379 19057394 
1972 129240735 17930973 39990990 5324691 3952725 2038089 8903075 19654530 
1973 132788547 18916604 48693559 5722832 4194392 2263751 9438943 20370806 
1974 133553122 20391057 50885341 6141811 3877281 2540359 10845549 21007323 

 

2.2 Preprocessing Data 

The data that has been obtained previously goes through a data preprocessing process before being 

used in the model. Data preprocessing is carried out as follows: 

Data normalization. Data normalization is done to change the value interval to [0,1] because the value in 

the data is tremendous so as not to interfere with the model-building process [17]. The data normalization 

used in this paper is a min-max scaler with the following equation: 

 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑥 −  𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥  −  𝑥𝑚𝑖𝑛
 (1) 

 

Description: 

𝑥 : Data before normalization 

𝑥𝑚𝑖𝑛  : The minimum data from the dataset 

𝑥𝑚𝑎𝑥  : The maximum data from the dataset 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑  : Data after normalization 

 

Data Sequencing. Data sequencing is a key step in creating models that work with data based on sequences 

like RNN (Recurrent Neural Networks) or LSTM (Long Short-Term Memory). The main goal of data 

sequencing is to help the model understand the order or sequence of data points. This allows the model to 

predict the next data point based on patterns it has learned from previous sequences. This process involves 

creating multiple data sequences that match the model's input, where each sequence has a specific length 

called 𝑘. The length of the sequence determines how many data points will be fed into the model in one 

process. For example, if 𝑘 = 5, each sequence will consist of 5 data points. This process is illustrated in 

Figure 1 

 
Figure 1 Data Sequencing Process 

 

Split of training and testing data. It is an essential step in the modeling process to ensure the model can 

handle new data. The dataset is split into two parts: 70% for training and 30% for testing. The training data, 

which covers the period from 1970 to 2006, is used to train the model so it can learn patterns and relationships 

within the data. The testing data from 2007 to 2022 is used to see how well the model works with data it 

hasn't seen before. This ensures that the model doesn't just memorize the training data but also makes accurate 

predictions based on new data. This process helps show how well the model can be used in the real world. 
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2.3 Long Short-Term Memory 

LSTM is a specialized model of RNN [14]. It uses a memory unit that can update the previous hidden 

state and provide feedback to each neuron [10]. Therefore, it not only relies on the current neuron's input and 

weight but also relies on the previous neuron's input, which allows the model to understand temporal 

relationships in the long term [18]. The internal memory unit and gate mechanism can overcome the problem 

of exploding and missing gradients that often occur in conventional RNN models [19]. The LSTM model 

includes four critical units: the input gate, output gate, forget gate, and cell state. The process is as in Figure 

2 and can be given in the following equation: 

𝑓𝑡  =  𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (2) 

𝑖𝑡  =  𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (3) 

𝑜𝑡  =  𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (4) 

�̃�𝑡  = tanh(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (5) 

𝑐𝑡  =  𝑓𝑡 ∙ 𝑐𝑡−1  +  𝑖𝑡 ∙ �̃�𝑡 (6) 

ℎ𝑡  =  𝑜𝑡 ∙ tanh 𝑐𝑡 (7) 

Description: 

𝑓𝑡  : Forget gate 

𝑖𝑡 : Input gate 

𝑜𝑡  : Output gate 

𝑐𝑡 : Cell state 

𝑥𝑡  : Input vector 

ℎ𝑡 : Hidden state 

𝑊 : Weight matrix 

𝑏 : Bias vector 

𝜎  : Activation function sigmoid 

tanh : Activation function hyperbolic tangent 

 
Figure 2 LSTM Architecture 

 

2.4 Model Accuracy 

The measurement error is calculated to determine the accuracy of the model. The best model is the 

model with the smallest error obtained by comparing the variation of the difference between the actual value 

𝑦𝑖 and the predicted value �̂�𝑖. The error measures used in this study are Mean Squared Error (MSE), which 

calculates the squared difference between the actual value and the predicted value [20], and Mean Absolute 
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Percentage Error (MAPE), which calculates the percentage ratio of the error between the predicted value and 

the actual value [19]. The MSE and MAPE equations are as follows: 

𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)2

𝑁

𝑖 = 1

(8) 

𝑀𝐴𝑃𝐸 =  
1

𝑁
∑ |

𝑦𝑖 − �̂�𝑖

𝑦𝑖
|

𝑁

𝑖 = 1

× 100% (9) 

The assessment criteria of mape are as follows [21]: 

a) If the MAPE rate is < 10%, then the criteria for the model are very good. 

b) If the MAPE rate is 10% to 20%, then the model criteria are good. 

c) If the MAPE rate is 20% to 50%, then the model criteria are pretty good. 

d) If the MAPE rate is >50%, then the model criteria are not good. 

 

3. RESULTS AND DISCUSSION 

3.1 Descriptive Statistic 

The plot of annual data of greenhouse gas emissions in each sector from 1970 to 2022 is visualized in 

the following graph: 

 
Figure 3 Greenhouse Gas Data for 1970-2022 for Various Greenhouse Gas Emitting Sectors 

Source of application: python 

As illustrated by the graph in Figure 3, there have been fluctuations in greenhouse gas emissions in 

Indonesia from 1970 to 2022, with varying increases across different sectors. The Agriculture sector has seen 

a significant rise since the 1980s, with continuous growth up to 2022. The Buildings sector experienced a 

sharp increase until around 2000, followed by a substantial decline, but emissions have started rising again 

in the past two years. The Fuel Exploitation sector exhibited fluctuations, with notable surges after 2000, 

although some periods showed temporary declines. The Industrial Combustion sector displayed a steady 

upward trend since 1970, with a more pronounced acceleration after 2000. The Power Industry sector 

emerged as a major contributor to emissions, consistently increasing, especially post-2000, indicating 

significant growth. The Industrial Processes sector has experienced a sharp increase since the 1980s, with an 

ongoing upward trend until 2022. The Transportation sector exhibited a stable increase from 1970 to 2022, 
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with no significant declines, while the Waste sector demonstrated a gradual and sustained growth in emissions 

since 1970, reflecting contributions from the management of both solid and liquid waste. The comprehensive 

analysis of data reveals a consistent upward trend in emissions across various sectors, accompanied by distinct 

growth patterns. 

 

3.2 Model Used 

The model architecture used in this study was chosen after trying out various possible model 

architectures. After trying the possible model architectures, the model architecture was selected as follows: 

 
Figure 4 Model Architecture 

Source of application: python (tensorflow) 

As illustrated in Figure 4, the model architecture employed in this study comprises three primary layers 

designed to efficiently process time series data. The initial layer is designated as the input layer, which 

receives input data in the form of a tensor with dimensions (None, 1, 1). The second layer is the Long Short-

Term Memory (LSTM) layer with 32 neurons, which plays a crucial role in capturing both short-term and 

long-term dependencies within time series data. By utilizing memory cells and gating mechanisms, LSTM 

retains relevant information while mitigating the vanishing gradient problem, making it more effective than 

traditional neural networks for sequential data processing. The third layer is the dense layer, which serves as 

the output layer. This layer transforms the LSTM output, which has dimensions of (None, 32), into a final 

output with a single neuron (None, 1). The dense layer generates the predicted value based on the patterns 

learned by the model. The model is then trained using the Adaptive Moment Estimation (ADAM) 

optimization algorithm, which dynamically adjusts the learning rate to improve convergence speed and 

stability. The loss function employed is Mean Squared Error (MSE), which seeks to minimize the discrepancy 

between the predicted and actual values, thereby enhancing the model's precision. 

 

3.3 Model Training Result 

The model in Figure 4 will then be trained for 1000 epochs by paying attention to the loss value on 

the training data (loss) and the loss value on the testing data (val_loss) during the training process. The results 

of the model training process are as follows: The model in Figure 3 will then be trained for 1000 iterations 

by paying attention to the loss value on the training data (loss) and the loss value on the testing data (val_loss) 

during the training process. The results of the model training process are as follows: 



BAREKENG: J. Math. & App., vol. 19(2), pp. 0949- 0960, June, 2025.     955 

 

 

 
Figure 5 Model Training Results 

Source of application: python 

As illustrated in Figure 5, the model's training outcomes exhibit robust performance across all sectors 

examined. The graph illustrates a substantial decrease in the loss (training data loss) and val_loss (validation 

data loss) values during the training process, attaining convergence after approximately 1,000 epochs. A close 

examination of the loss and val_loss values across various sectors reveals similar patterns, with a pronounced 

decline in the initial phases of training, followed by a gradual deceleration and stabilization at low values. 

This observation suggests that the model can effectively learn patterns from the data without experiencing 

overfitting or underfitting. 

The sectors of buildings and fuel extraction demonstrate a more precipitous decline in loss values 

compared to other sectors, suggesting that the model exhibits a higher degree of proficiency in recognizing 

patterns within these data sets. In contrast, the power industry and waste sectors initially exhibit higher loss 

values compared to other sectors but still achieve good convergence. Furthermore, the disparity between loss 

and val_loss in each sector is minimal, suggesting that the model demonstrates effective generalization 

capabilities when confronted with novel data. The absence of a significant disparity between these two 

metrics further validates the model's resilience to overfitting, a phenomenon where the model becomes overly 

reliant on the training data yet struggles to effectively predict new data. In summary, these findings indicate 

that the model employed is capable of producing reliable and precise predictions for both training and 

validation data. 

 

3.4 Model Training Result 

After the model is trained, it is evaluated to see how it performs by looking at the MSE and MAPE 

values of the model for each greenhouse gas-producing sector. The evaluation results of the model are as 

follows 

Table 3 Model Error Results 

 Agriculture Buildings Fuel Industrial Power Processes Transport Waste 

MSE 0.0033 0.0027 0.0011 0.0079 0.0001 0.0005 0.0003 0.0003 

MAPE (%) 1.9863 4.8156 6.9406 10.4804 10.7469 15.4851 6.6913 2.4128 

Val_MSE 0.0131 0.0033 0.0075 0.0254 0.0083 0.0057 0.0145 0.0028 

Val_MAPE (%) 3.1524 5.1584 6.6425 19.8025 11.0317 6.5946 10.3429 4.6894 
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As illustrated in Table 3, the model's performance is evaluated through the analysis of key performance 

indicators, including Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE), for various 

greenhouse gas-producing sectors. MSE quantifies the mean squared deviation between the model's 

predictions and the observed data, with lower values denoting higher precision. As evident in Table 3, the 

MSE values on the training data are comparatively minimal for all sectors, with the lowest value recorded in 

the Power sector (0.0001) and the highest in the Industrial Combustion sector (0.0079). This observation 

signifies the model's adept capacity to predict the training data accurately. When evaluated on the validation 

set, an increase in the MSE values was observed, which is to be expected as the model is subjected to testing 

on new data. However, this increase was not significant, with the lowest value recorded in the Power sector 

(0.0083) and the highest in the Industrial Combustion sector (0.0254), indicating the model's overall 

effectiveness.  

Conversely, the MAPE metric calculates the percentage of absolute error between the model's 

predictions and the actual data. A lower percentage, in this case, indicates more accurate predictions. On the 

training data, the Agriculture sector demonstrated the lowest MAPE (1.9863%), indicating high accuracy, 

while the Processes sector exhibited the highest MAPE (15.4851%), potentially attributable to elevated data 

complexity or variability. A similar trend is observed in the validation data, where the MAPE values, though 

higher, remain within acceptable limits. The agriculture sector maintains its position as the sector with the 

lowest MAPE (3.1524%), while the industrial combustion sector has the highest MAPE at 19.8025%.  

Despite the observed increase, the overall MAPE values remain within acceptable limits, thereby indicating 

the model's satisfactory generalization capability. The model's performance in predicting both training and 

validation data for all sectors is promising, as evidenced by the low MSE and MAPE values on the training 

data. These findings suggest that the model possesses the capacity to effectively learn data patterns. The 

slightly higher values observed on the validation data demonstrate the model's capability to predict new data 

with a satisfactory degree of accuracy. The observed variation in error values across sectors, such as Industrial 

Combustion and Processes, might be attributed to the complexity and variability of the data in these specific 

sectors. In summary, this model demonstrates effectiveness in predicting greenhouse gas emissions across 

various sectors. 

 

3.5 Model Prediction 

After evaluating the model, the pre-trained model was used to predict greenhouse gas emissions in 

each sector. The results of the model prediction are as follows: 

 
Figure 6 Actual Data vs Model Predicted Data 

Source of application: python 

Figure 6 shows how well the model can predict greenhouse gas emissions data. The model was trained 

to predict emissions in each sector. The results show that the model can predict the actual values. The 
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predicted values are close to the actual values. This shows that the model can find patterns and trends in the 

data. This allows the model to make accurate estimates of greenhouse gas emissions in different sectors. This 

means that the model can learn complex relationships between variables that influence emissions and 

generalize to new data. 

 

 
Figure 7 Predicted Greenhouse Gas Emissions for the Next 3 Years 

Source of application: python 

Figure 7 shows how much greenhouse gas emissions will increase or decrease in the next three years. 

This is based on a pre-trained model. In the agriculture sector, predictions show that emissions will likely 

increase because of livestock farming, how land is used for farming, and burning crop waste on fields. The 

buildings sector will likely not increase as much as other sectors. It will have small changes instead of a 

consistent increase. This suggests that emissions from small, non-industrial, stationary combustion may not 

grow as much as in other sectors. The fuel extraction sector is increasing its emissions because of waste 

management, hazardous waste processing and storage, and waste burning and wastewater treatment. The 

industrial combustion sector is also increasing its emissions, according to the model. The power industry is 

increasing its emissions from power and heat generation plants, suggesting a continued reliance on fossil 

fuels. The industrial processes sector also shows an upward trend due to various industrial activities that 

generate greenhouse gases. The transport sector records an increase in emissions from road transport, rail 

transport, domestic aviation, and inland waterway shipping. This suggests that without significant changes in 

transportation policies, emissions from this sector will likely continue to rise. 

Finally, the waste sector also shows an increase in emissions. These emissions come from disposing 

of solid waste on land, processing and storing hazardous solid waste, handling wastewater, and burning waste. 

This rise can be linked to population growth and increasing waste production. Overall, the model predicts 

that greenhouse gas emissions will continue to increase in almost all sectors. However, the buildings sector 

is relatively stable compared to the other sectors. This shows that we need stricter policies to reduce 

greenhouse gas emissions. These policies should include switching to cleaner energy sources, improving 

industry and transportation efficiency, and using more sustainable waste management practices. 

 

4. CONCLUSIONS 

 After conducting research using the LSTM model, the model as a whole produces good predictions 

with an average error below 20%, which means that the LSTM model created is good in the prediction process 

based on the previous criteria. This also suggests that the LSTM model is effective in capturing patterns of 

greenhouse gas emissions based on historical data. In addition, the model predicts that, except for the building 

sector (which is expected to remain stable), other sectors will experience a significant increase in emissions 

over the next three years. These emphasize the urgent need for stricter policies and sustainable practices to 
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mitigate greenhouse gas emissions. Without proper intervention, Indonesia's emissions will continue to rise 

at an accelerated rate, potentially exacerbating environmental and climate-related challenges. Policymakers 

must consider implementing measures such as transitioning to renewable energy, improving energy 

efficiency in industries, promoting sustainable transportation, and enhancing waste management strategies. 

Strengthening regulations and encouraging low-carbon technologies will be crucial in ensuring a more 

sustainable future while minimizing the environmental impact of these increasing emissions. 
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