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ABSTRACT 

Article History: 
Recidivists, or ex-prisoners who commit crimes after serving a prior sentence, pose a 

critical challenge to the criminal justice system. This study examines social and economic 

factors that may reduce the likelihood of recidivists being re-arrested. Using survival 
analysis, the probability that a recidivist could survive in society without being re-arrested 

could be estimated. The purpose of this work is to compare the AFT and Cox models to 

determine which provides a better fit to identify factors affecting the likelihood of re-arrest 

within one year after release and to statistically assess the impact of these factors. This 
study utilizes a stratified Cox model to address variables that violate the proportional 

hazards (PH) assumption. The analysis is limited to four types of AFT models: Weibull, 

log-normal, log-logistic, and exponential. Results show that the stratified Cox model 

provides the best fit, based on Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC). This demonstrates the Cox model's robustness in analyzing 

survival data, accurately approximating the distribution of survival times without 

restrictive assumptions, unlike AFT models. The study reveals that recidivists who 

received financial aid upon release have a 0.66644 lower risk of re-arrest compared to 
those who did not, and each additional prior theft arrest increased the risk of re-arrest by 

1.09193 times. 
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1. INTRODUCTION 

It is believed that poverty contributes to crime, as crime rates are often higher in poorer neighborhoods, 

and prisons are predominantly occupied by individuals from the lowest economic classes [1]. However, 

poverty is linked to various individual characteristics associated with criminal behavior; therefore, it is 

challenging for researchers to identify the personal factors that directly contributed to the likelihood of these 

individuals being able to survive in society after release. 

Survival analysis in general is an analytical method that observes the time span of events expected to 

occur [2]. The Cox model and Accelerated Failure Time (AFT) are some of the models widely used to test 

covariate effects at failure time. In the Cox Proportional Hazard (PH) model, the covariates affect the hazard 

function, while in the AFT model, covariates affect directly the estimated survival time [3]. 

The Cox model is a model in which the data distribution is unknown; therefore, the form of baseline 

hazard is unknown. Nonetheless, the Cox PH model produces estimates close to the actual data distribution 

[2]. Although this model offers certain advantages, it is recognized that the Cox model has some drawbacks, 

one of which is the requirement to examine the PH assumption [4]. If the PH assumption is not satisfied by 

the predictor variables, Stratified Cox is used to overcome the issue [2]. The stratified Cox regression model 

deals with variables that do not satisfy the assumption by stratifying the data into subgroups/strata. Despite 

not being incorporated into the model, they contribute through strata. 

Another alternative is to use AFT models when the hazard is not proportional [5]. In the AFT model, 

covariate effects are assumed to be constant and multiplicative on a time scale, modeled by an acceleration 

factor [6]. In addition, the AFT model assumes survival time follows a specific distribution to estimate 

parameters. Since it is a parametric model, it is expected to give a better analysis than the nonparametric or 

semiparametric one [7]. Failure time distribution is assumed to have a homogenous population. Some specific 

distributions are frequently used, such as Exponential, Weibull, Log-normal, and Gamma [8]. 

Survival analysis using the Cox model and the AFT model has been carried out, such as Cox PH and 

AFT analysis on under-five mortality data in Uttar Pradesh, where the log-normal model of AFT gave the 

smallest AIC [9]. According to [10], AFT gave an optimal outcome compared to Cox PH in modeling the 

survival time among melioidosis patients. In addition, the recent study by the AFT model gave a better fit 

than the Cox PH model in identifying factors of malaria reinfection in Congo [11]. Another previous research 

conducted by [12] compared the application of Cox and AFT models and revealed that log-normal AFT was 

chosen as the best model to estimate student performance at universities due to the violation of the PH 

assumption. In another study by [13], the violation of the PH assumption is extended using stratified Cox in 

modeling second-line antiretroviral therapy data in South Wollo Zone Public Hospitals.  

This study utilized experimental data from The Baltimore LIFE Project (Living Insurance for Ex-

Prisoners), a project funded by the U.S. Department of Labor in 1971, which was conducted to determine 

whether offering a certain amount of financial aid to released prisoners would reduce recidivism and support 

them to survive later in society. The data involved 432 inmates released from prison in Maryland and 

observed for one year after release. Research subjects were limited to male recidivists under 45 years with 

several punishments, one of which was related to property crime—crimes committed to enrich the 

perpetrators, such as theft, robbery, and property-related crime [14].  

Earlier studies on recidivism behavior have been explored by [15] through several statistical 

approaches, such as the logistic regression model, the Cox regression model, and the cure rate model. Another 

analysis by [16] compares different techniques to predict recidivism in young offenders, utilizing logistic 

regression, random forest, and boosted classification trees. Additionally, a separate study conducted by [17] 

investigates the impact of demographic, psychosocial, and driving characteristics of Spanish drivers on their 

risk perception related to recidivist traffic offenders. Furthermore, [18] conducted a quantitative analysis 

using machine learning to examine topics related to the risk of habitual offenders. 

Several studies have utilized experimental data from The Baltimore LIFE Project, including [19], who 

applied the Cox PH model with both time-independent and time-dependent covariates, and [20], who 

employed the Stratified Cox method. In this research, the analyzed covariates included financial aid, age, 

race, work experience before arrest, marital status at the time of release, parole status, and the number of 

previous theft arrests. 
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The purpose of this study is to model the length of time the observed recidivists were re-arrested for 

one year after release and identify the factors that affect recidivists being re-arrested within one year after 

release using hazard ratios from the Stratified Cox model and time ratios from the AFT model. The considered 

AFT models in this study are limited to four commonly used distributions as identified in prior studies, such 

as Weibull, log-normal, log-logistics, and exponential. Additionally, the data used in this research is limited 

to observations from a single year following the release of prisoners. 

The rest of the paper is constructed as follows. In Section 2, the research methods and procedure are 

stated. In Section 3, the analysis and comparison are demonstrated through the AFT model and Cox model, 

and issues that did not meet the PH assumption are discussed. Finally, Section 4 concludes the paper with a 

brief discussion of further research. 

2. RESEARCH METHODS 

2.1 Cox PH Model 

One of the models widely used for survival data analysis is Cox model. The selection of this model 

was motivated by the ease of understanding the interpretation, the existence of some empirical evidence to 

support Proportional Hazard assumptions used in certain fields and censoring that is accommodated by 

model. According to [21], Cox PH regression is used to determine the relationship between response and 

predictor variables, utilizing survival time data for individuals. In general, Cox regression model is faced with 

a situation where the probability of an individual’s death at a time is influenced by one or more predictor 

variables. The Cox Regression model is [2]: 

ℎ𝑖(𝑡|𝑿) = ℎ0(𝑡) ∗ 𝑒𝑥𝑝(𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑝𝑥𝑝𝑖) 

  = ℎ0(𝑡) exp (∑ 𝛽𝑗𝑥𝑗𝑖

𝑝

𝑗=1

) 
(1) 

where 

ℎ𝑖(𝑡|𝑿) : 𝑖 − 𝑡ℎ individual failure function  

ℎ0(𝑡) : baseline hazard function (hazard function at 𝑥𝑗𝑖 = 0) 

𝑥𝑗𝑖 : the value of the 𝑗 − 𝑡ℎ independent variable from the 𝑖 − 𝑡ℎ individual, 𝑗 = 1,2, … , 𝑝 and 

𝑖 = 1,2, … , 𝑛 

𝛽𝑗 : 𝑗 − 𝑡ℎ regression coefficient 

The failure function in this model can take any form, but the failure functions of different individuals are 

assumed to always be proportional.  

Hazard ratio is defined as the ratio of hazard of an individual to another individual, namely [2]:  

𝐻𝑅̂ =
ℎ𝐴(𝑡|𝑋∗)

ℎ𝐵(𝑡|𝑋)
=

ℎ0(𝑡) exp{∑ 𝛽𝑖𝑋𝑖
∗𝑝

𝑖=1 }

ℎ0(𝑡) exp{∑ 𝛽𝑖𝑋𝑖
𝑝
𝑖=1 }

= exp {𝛽𝑖 (∑ 𝑋𝑖
∗ − 𝑋𝑖

𝑝

𝑖=1

)} (2) 

If the hazard ratio values between the two groups being compared remains constant over time, then the 

predictor variable 𝑋1, 𝑋2, … , 𝑋𝑝 have satisfied the PH assumption. This PH assumption test is performed with 

global test statistics based on Schoenfeld residuals formulated by: 

𝑅𝑖𝑗 = 𝛿𝑖 (𝑥𝑗𝑖 −
∑ 𝑥𝑞𝑗 exp(𝛽̂′𝑥𝑞)𝑞∈𝑅(𝑡𝑖)

∑ exp(𝛽̂′𝑥𝑞)𝑞∈𝑅(𝑡𝑖)

) (3)  

with  

𝑅𝑖𝑗  : Schoenfeld residuals for individuals who experience events at the time 𝑡𝑖 on the 𝑗 − 𝑡ℎ predictor 

variables 
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𝛿𝑖 : censorship indicator 

𝑅(𝑡𝑖) : the set of individuals at risk at the time 𝑡𝑖 

𝛽̂ : estimator partial maximum likelihood of 𝛽 

The hypotheses testing is: 

𝐻0 : proportional hazard assumption is satisfied 

𝐻1 : proportional hazard assumption is not satisfied 

The statistics used is 

𝑧 = 𝑟√𝑛 − 1       (4) 

With 𝑟 is defined as 

𝑟 =
∑ (𝑅𝑖𝑗 − 𝑅̅𝑖𝑗)(𝑅𝑇𝑖 − 𝑅𝑇̅̅ ̅̅

𝑖)
𝑟
𝑖=1

√∑ (𝑅𝑖𝑗 − 𝑅̅𝑖𝑗)𝑟
𝑖=1 √∑ (𝑅𝑇𝑖 − 𝑅𝑇̅̅ ̅̅

𝑖)𝑟
𝑖=1

 
         (5) 

 

𝑅̅𝑖𝑗  : Schoenfeld residual mean for individuals who experienced an event at time 𝑡𝑖 on the 𝑗 − 𝑡ℎ 

independent variable 

𝑅𝑇𝑖 : survival time ranking for the time of the 𝑖 − 𝑡ℎ event 

𝑅𝑇̅̅ ̅̅
𝑖 : Average survival time ranking for the time of the 𝑖 − 𝑡ℎ event 

 

If the value |𝑍| > 𝑍𝛼/2 or 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 𝛼 , then 𝐻0 is rejected. In other words, the PH assumption is not 

satisfied, indicating a correlation between Schoenfeld's residual and the survival time ranking.  

2.2 Stratified Cox  

The Stratified Cox model is a modification of Cox PH model that accommodates multiple strata. The 

strata form the variables into disjoint groups, containing unique baseline hazard function [22]. In this model, 

variables that satisfy the PH assumption are included in the model, while variables that do not meet the 

proportional hazard assumption are stratified. The stratified Cox model identifies variables that increase the 

likelihood of certain events while accounting for the effects of variables that violate PH assumptions.  

Suppose there is a 𝑝 covariates, Cox PH model formed as in Equation (2). If there are 𝑚 covariates 

that meet the PH assumption and 𝑘 covariates that violate the PH assumption, that is 𝑘 = 𝑝 − 𝑚 then the 

variables that do not meet the PH assumption will then be denote as 𝑍1, 𝑍2, … , 𝑍𝑘, and the variables satisfying 

PH assumption will be denoted as 𝑋1, 𝑋2, … , 𝑋𝑚. If the model does not account for interactions between 

covariate variables and variables that violate PH assumption, it is referred to as a stratified Cox model without 

interaction:  

ℎ𝑔(𝑡|𝑿) = ℎ0𝑔(𝑡) ∗ exp{𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑝𝑥𝑝𝑖} (6) 

with 𝑔 = 1,2, … , 𝑘∗, where 𝑘∗ is the total number of combination or strata formed after categorizing 

each 𝑍. Then define a single new variable 𝑍∗, representing new variable with 𝑘∗ categories stratify on 𝑍∗. 

For each different stratum 𝑔, the baseline hazard function expressed by ℎ0𝑔(𝑡) from each model is also 

different. However, the coefficients 𝛽𝑗 remain the same across all strata [2]. 

2.3 Accelerated Failure Time (AFT) Model 

The AFT model outlines the relationship between the survival time and the response variable. This 

model assumes that the covariate effect is multiplicative with respect to the survival time [23]. For covariates 

(𝑋1, 𝑋2, … , 𝑋𝑝), the AFT model mathematically is [7]: 

𝑆(𝑡|𝑋) = 𝑆0(𝑡|𝜂(𝑥))  (7) 

where 𝑆0(𝑡|𝜂(𝑥)) is the baseline survival function with 𝜂 is an acceleration factor formulated by 

 𝜂(𝑥) = exp{𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝} (8) 

Based on the relationship between the survival function and the hazard function with the covariate of 

the hazard function (𝑋1, 𝑋2, … , 𝑋𝑝), the hazard function is obtained as follows [24]: 
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ℎ(𝑡|𝑋) = [
1

𝜂(𝑥)
] ℎ0 (

𝑡

𝜂(𝑥)
) (9) 

In an AFT model, the effects of covariates are assumed to be constant and multiplicative on the time 

scale, meaning that covariates affect survival by a fixed factor. 

a. Weibull AFT Model 

Let the survival time 𝑇~𝑊(𝜆, 𝛾), under AFT model, the hazard function for the 𝑖𝑡ℎ individual is 

ℎ𝑖(𝑡) = [
1

(𝜂𝑖(𝑥))
𝛾 𝜆𝛾𝑡𝛾−1] (10) 

with γ representing the shape parameter of the Weibull distribution [5]. 

b. Log-logistic AFT Model 

Let the survival time 𝑇~𝐿𝑜𝑔 − 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝜃, 𝑘), 𝑘 > 0 , under AFT model, the hazard function for 

the 𝑖𝑡ℎ individual is [5] 

ℎ𝑖(𝑡) =
𝑒𝜃−𝜅ln (𝜂𝑖)𝜅𝑡𝑘−1

1 + 𝑒𝜃−𝜅ln (ηi)𝑡𝑘
 (11) 

c.   Log-normal AFT Model 

  Let the survival time assumes to have a log-normal distribution, the hazard function is given by  

[5]. 

ℎ0(𝑡) =
𝜙 (

ln (𝑡)
𝜎

)

[1 − Φ (
ln (𝑡)

𝜎
)] 𝜎𝑡

 (12) 

  Where 𝜎 is parameter, 𝜙(𝑥) is the probability density function and Φ(x) is the cumulative density 

function of the standard normal distribution [5]. 

d. Exponential AFT Model 

Let the survival time assumed to have exponential distribution, the hazard function is 𝜆(𝑡) =
𝜆, 𝜆 > 0. From Equation (5), the hazard function of Exponential AFT model is given by [5] 

𝜆(𝑡; 𝑥) = 𝜆𝑒𝛽′𝑥 (13) 

2.4 Parameter Estimation with Maximum Partial Likelihood Estimator 

Suppose 𝑋𝑖(𝑡) = (𝑋1𝑖(𝑡), 𝑋2𝑖(𝑡), … , 𝑋(𝑡)𝑝𝑖)
′
 be the 𝑝 × 1 covariate vector of the 𝑖 − 𝑡ℎ individual at 

time 𝑡. Let 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑝)
′
 denote the 𝑝 × 1 vector of regression coefficient and let 𝐷𝑜𝑏𝑠 denote the 

observed data. Let 𝑅(𝑡𝑖) be the risk set at time 𝑡𝑖 which consist of all individuals who are at risk at time 𝑡𝑖 

[25]. The partial likelihood of the Cox regression is: 

𝐿(𝛽|𝐷𝑜𝑏𝑠) = ∏
𝑒𝑥𝑝{∑ 𝛽𝑖𝑥𝑗𝑙

𝑝
𝑗=1 }

∑ 𝑒𝑥𝑝 {∑ 𝛽𝑗𝑥𝑗𝑞
𝑝
𝑗=1 }𝑞∈𝑅(𝑡𝑖)

 

𝑖∈𝐷

 (14) 

While the Partial Likelihood of the AFT model is  

𝐿(𝛽|𝐷𝑜𝑏𝑠) = ∏
𝑓(𝑡𝑖|𝑥𝑖) 

∑ 𝑓(𝑡𝑖|𝑥𝑖)𝑞∈𝑅(𝑡𝑖)

𝑛

𝑖=1

 (15) 

Where 𝑓(𝑡𝑖|𝑥𝑖) is a density function of the distribution used.  

The Maximum Partial Likelihood Estimator (MPLE) 𝛽 ̂ of  𝛽 is obtained by solving the equation: 
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𝜕

𝜕𝛽
ln (𝐿(𝛽|𝐷𝑜𝑏𝑠)) = 0 (16) 

2.5 Parameter Significance Testing 

Parameter testing is used to determine the significant differences in parameters on both model. Testing 

the significance of the 𝛽 parameter is carried out simultaneously with the partial likelihood ratio test and 

individually with the Wald test. 

a. Simultaneous Parameter Testing 

Simultaneous testing aims to determine whether predictor variables simultaneously affect 

response variables in Cox and AFT regression models. The hypotheses underlying this test are: 

𝐻0  : 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝 = 0 

𝐻1 : at least there is a 𝑗 = 1,2, … , 𝑝 so that 𝛽𝑗 ≠ 0 

The test statistics are carried out with a partial likelihood ratio test which is notated by 𝐺, namely: 

𝐺 = 2[ln 𝐿(𝛽̂) − ln 𝐿(0)] (17) 

with  

ln 𝐿(0) : log partial likelihood of the Cox/AFT regression model without predictor variables, 

i.e. 𝛽𝑗 = 0 

ln 𝐿(𝛽̂) : log partial likelihood of the Cox/AFT regression model containing predictor 

variables 

If the value 𝐺 > 𝜒𝑝,𝛼
2  or 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 𝛼, then 𝐻0is rejected, in other words there is at least one 

predictor variable significant to the model fit. 

b. Individual Parameter Testing 

This test was carried out to determine the effect of individual predictor variables on response 

variables. The hypotheses underlying this test are: 

𝐻0  : 𝛽𝑗 = 0 

𝐻1 : 𝛽𝑗 ≠ 0 

The test statistics are carried out with the Wald Test which is denotated by 𝑊, namely: 

𝑊 =
𝛽̂𝑗

𝑆𝐸(𝛽̂𝑗)
 (18) 

If the value |𝑊| > 𝑍𝛼

2
 or 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 𝛼 , then 𝐻0 is rejected, in other words the predictor 𝛽𝑗 

significantly improves model fit. 

2.6 Research Data and Variables 

This study used secondary data from The Baltimore LIFE (Living Insurance for Ex-Prisoners) Project 

1971 [14]. The data was originated from a study of 432 prisoners related to property/theft crime who had 

been released and limited to male sex with a maximum age of 45 years, and 50% of the study subjects were 

given financial aid. The variables used in this study are as follows. 

Table  1. Research Variables 

Variable Variable name Category Scale Unit 

𝑌 Survival time  - Ratio Week 

𝑑 Status  
0: Not arrested 

1: Arrested 
Nominal - 

𝑋1 Financial Aid 
0: No 

1: Yes 
Nominal - 

𝑋2 Age - Ratio Year 

𝑋3 Race 
0: Other 

1: Blacks 
Nominal - 
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Variable Variable name Category Scale Unit 

𝑋4 Experience 
0: No 

1: Yes 
Nominal  

𝑋5 Married 
0: No 

1: Yes 
Nominal - 

𝑋6 Parole 
0: No 

1: Yes 
Nominal - 

𝑋7 Prior - Ratio  

2.7 Research Procedure 

The procedure in this study is as follows: 

a. Describe the characteristics of research data. 

b. Construct an Accelerated Failure Time (AFT) model: 

i. Estimate AFT parameters from Weibull, exponential, log-normal, and log-logistic 

distributions. 

ii. Choose the best AFT model based on the smallest AIC and BIC value. 

iii. Create the best AFT model. 

c. Construct a Cox Regression Model: 

d. Test proportional hazard assumptions. 

e. Handle predictor variables that do not meet proportional hazard assumptions. 

f. Estimate Cox regression parameters. 

g. Select the best Cox regression model based on the smallest AIC and BIC value. 

h. Create the best Cox regression model. 

i. Compare the AFT and Cox model based on the AIC and BIC value. 

j. Interpret the best model. 

All statistical procedures are performed using R and Matlab Program. 

3. RESULTS AND DISCUSSION 

3.1 Data Description 

An overview of the data used in this study is presented in Figure 1 below. Among 432 observations, 

318 (approximately 73.6%) were censored, meaning that these recidivists were not re-arrested within a 52-

week observation period. Furthermore, the proportion of recidivists receiving and not receiving financial aid 

is equal, each at 50%. However, recidivists who did not receive financial aid tend to return to prison more 

frequently within 52 weeks, with 66 cases compared to 48 cases for those receiving financial aid. Regarding 

work experience, recidivists without work experience (42.82%) are re-arrested more often (62 cases) than 

those with work experience (57.18%). 
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Figure 1.  Descriptive Analysis of Financial Aid, Work Experience, Race, Married and Parole  

The distribution shows that most recidivists are non-black (87.73%) and married (87.73%). Within 52 

weeks, there were 102 cases of non-black recidivists who were re-arrested and 106 cases of married 

recidivists, compared to 12 cases of black recidivists and 8 cases of unmarried recidivists. Additionally, 

recidivists on parole (38.19%) are re-arrested less frequently than those released without conditions (61.81%), 

which is 46 and 68 cases, respectively. The imbalance in variables of work experience, race, marital status, 

and parole status increases the risk of recidivists being re-arrested within 52 weeks. The following table 

presents a numerical description of the data used. 

Table  2. Numerical Description of Survival Time, Age, and Prior 

Statistics Survival time Age Prior 

Min 1 17 0 

Max 52 44 18 

Mean  45.85 24.6 2.98 

SD 12.66 6.11 2.9 

Median 52 23 2 

Q1 50 20 1 

Q3 52 27 4 

Skewness -1.98 1.38 2.07 

Kurtosis 2.62 1.32 5.21 

Table 2 shows that the average time for a recidivist to return to prison after release was 45.85 weeks, 

with the shortest time being 1 week and the longest time being 52 weeks, and a standard deviation of 12.66 

weeks. The average age of the observed recidivists was 24.6 years old, with the youngest subject being 17 

years old and the oldest subject being 44 years old. Additionally, the average number of prior theft arrests 

was 3 times, with the fewest being none and 18 being the highest number. Although Table 2 indicates that 

the distribution of survival time is left-skewed, the survival time data will be modeled using common 

distributions in AFT analysis, such as Weibull, exponential, log-logistic, and log-normal distributions. 

However, it is important to note that the data observation is limited to one year following the release of 

prisoners. In reality, it is possible that recidivists would be re-arrested after 52 weeks, but such cases fall 

outside the scope of the recorded data. This paper aims to explore the distributional patterns of recidivists’ 

likelihood of being re-arrested using commonly applied distribution. The best AFT model demonstrates the 

distribution of the survival time data. 

Table 3. AIC and BIC of The Survival Time Distribution 

Model Weibull Exponential Log-normal Log-logistics 

AIC 3406.829 4171.203 3885.867 3662.439 

BIC 3414.966 4175.271 3849.004 3670.576 

Figure 2 displays the distribution of survival data. Based on Figure 2, it is found that the Weibull 

distribution is the best fit for modeling the data compared to the other three distributions. This is further 

supported by Table 3, which shows that the smallest AIC and BIC are given by the Weibull distribution. 
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Figure 2. Distribution of Survival Time 

Source: Analysis output by RStudio 

3.2 Regression Modeling 

a. AFT Modeling 

In this study, the AFT model was selected by comparing the AIC and BIC values of candidate 

models from the Weibull, exponential, log-normal, and log-logistic distributions. The following 

presents estimates of AFT model parameters for each distribution. 

Table 4. Multiple Distribution AFT Model Parameter Estimates 

Variable 

 Weibull Exponential Log-normal Log logistics 

𝑋1 0.2722 0.3663 0.3428 0.2889 

𝑋2 0.0407 0.0556 0.0272 0.0364 

𝑋3 0.2248 0.3049 023632 0.2791 

𝑋4 0.1066 0.1467 0.2681 0.1784 

𝑋5 -0.3113 -0.4270 -0.4604 -0.3473 

𝑋6 -0.0588 -0.0826 -0.0559 -0.0508 

𝑋7 -0.0658 -0.857 -0.0655 -0.0692 

Metric 
AIC 1377.833 1388.732 1384.469 1377.877 

BIC 1414.449 1421.279 1421.085 1414.493 

Given that the Weibull AFT model shows the lowest AIC and BIC values compared to other 

distributions, the model selected for this study is the Weibull AFT model, incorporating significant 

predictor variables. This also confirms that the best AFT model aligns with the distribution of 

survival time. Table 5 presents a significance test of predictor variables. 

Table 5. Weibull AFT Model Parameter Significance Testing 

Variable Coefficient 𝒑 − 𝒗𝒂𝒍𝒖𝒆 Results 

Intercept 4.1354 2 × 10−16 Reject 𝐻0 

X1 0.2722 0.04852 Reject 𝐻0 

X2 0.0407 0.01096 Reject 𝐻0 

X3 0.2248 0.30721 Failed to reject 𝐻0 

X4 0.1066 0.48196 Failed to reject 𝐻0 

X5 -0.3113 0.25473 Failed to reject 𝐻0 

X6 -0.0588 0.67355 Failed to reject 𝐻0 

X7 -0.0658 0.001678 Reject 𝐻0 

Likelihood ratio  2.2 × 10−5 Reject 𝐻0 

𝜆 = 0.712 
 

𝛾 =
1

𝜆
= 1.404 

Based on Table 5, p − value of the partial likelihood ratio test is smaller than 0.05, therefore it is 

concluded that there is at least one predictor variable significant to the model fit, namely the 

variable 𝑋1, 𝑋2, and 𝑋7 which has a value smaller than 0.05.  
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The next step is to build survival function from Weibull's AFT model as follows: 

                           𝑆(𝑡|𝑿) = 𝑒𝑥𝑝(−𝑒𝑥𝑝(4.1354 + 0.2722𝑋1 + 0.0407𝑋2 − 0.0658𝑋7)𝑡)1.404) (19) 

The hazard function of the Weibull AFT model is expressed in Equation (20) below. 

ℎ(𝑡|𝑿) = 250.4108𝑡4.0462𝑒𝑥 𝑝(0.2722𝑋1 + 0.0407𝑋2 − 0.0658𝑋7) (20) 

b. Cox Modeling 

The first step in Cox regression analysis is to test whether the hazard ratios of two different groups 

are proportional to time or in other words will be tested whether the predictor variable 

𝑋1, 𝑋2, … , 𝑋7 has satisfied the PH assumption. The results of the assumption test are given by 

Table 6 as follows. 

Table 6. PH Assumption Testing 

Variable 

Base 

Form 

Elimination 

𝑿𝟐 and 𝑿𝟒 

Stratification 𝑿𝟐 and 

𝑿𝟒 
Decision 

𝐩 − 𝐯𝐚𝐥𝐮𝐞  

𝑋1 0.803 0.78 0.82 Failed to reject 𝐻0 

𝑋2 0.015   Reject 𝐻0 

𝑋3 0.150 0.15 0.17 Failed to reject 𝐻0 

𝑋4 0.040   Reject 𝐻0 

𝑋5 0.315 0.33 0.43 Failed to reject 𝐻0 

𝑋6 0.892 0.86 0.97 Failed to reject 𝐻0 

𝑋7 0.471 0.50 0.78 Failed to reject 𝐻0 

Global  0.66 0.77 Failed to reject 𝐻0 

 

Based on Table 6, variables 𝑋2 and 𝑋4 violate the PH assumption at a significant level 𝛼 = 0.05. 

To address this, the violating variables were incorporated into the strata, leading to the application 

of the stratified Cox model. Prior to this, variable 𝑋2 was categorized based on the average age: 

𝑎𝑔𝑒 = {
  1,                𝑓𝑜𝑟 𝑎𝑔𝑒 ≤ 25 
0,                𝑓𝑜𝑟 𝑎𝑔𝑒 > 25

 (21) 

Table 6 also presents the results of the PH assumption test after variables 𝑋2 and 𝑋4 were 

eliminated and stratified, showing that all remaining variables satisfy the PH assumption. 

Parameter estimates for both the Cox PH and stratified Cox models are presented in Table 7. 

Table 7. Parameter Estimates of Cox PH and Stratified Cox 

Variables 

 Cox PH Stratified Cox 

𝑋1 -0.42702 -0.40580 

𝑋3 -0.29396 -0.23181 

𝑋5 0.69371 0.345408 

𝑋6 0.01404 0.04998 

𝑋7 0.10414 0.08795 

Metric 
AIC 1338.619 1051.619 

BIC 1352.104 1065.300 

The best Cox regression model is determined based on the smallest AIC and BIC as presented in 

Table 7. Since the AIC and BIC values of the stratified Cox model are both smaller than those of 

the Cox PH model, it is shown that the stratified Cox model fits the data set better than the Cox 

PH model. Consequently, a stratified Cox regression model is constructed by considering the 

independent variable significant to the model fit. Parameter significance testing results are 

presented in Table 8. 
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Table 8. Parameter Significance Testing of Stratified Cox Model 

Variable Coefficient 𝒑 − 𝒗𝒂𝒍𝒖𝒆 Results 

𝑋1 -0.40580 0.00337 Reject 𝐻0 

𝑋3 -0.23181 0.45394 Failed to reject 𝐻0 

𝑋5 0.34541 0.23312 Failed to reject 𝐻0 

𝑋6 0.04998 0.79737 Failed to reject 𝐻0 

𝑋7 0.08795 0.00245 Reject 𝐻0 

Likelihood ratio   0.01 Reject 𝐻0 

The partial p-values from the likelihood ratio test in Table 8, which are both smaller than 0.05, 

indicate that at least one predictor is significant to the response variable. Specifically, 𝑋1 and 𝑋7 

have p-values of 0.003373 and 0.00245, respectively. Thus, a stratified Cox regression model is 

obtained as shown in Equation (22) below. 

ℎ𝑔(𝑡, 𝑋) = ℎ0𝑔(𝑡)𝑒𝑥𝑝 (−0.40580𝑋1 + 0.08795𝑋7) (22) 

where ℎ0𝑔(𝑡) represents the baseline hazard function, which varies for each possible combination 

of strata conditions. 

c. Comparison and Interpretation  

Table 4 indicates that the Weibull AFT model fits the data better than the other AFT models with 

AIC and BIC of 1377.833 and 1414.449, respectively. However, based on Table 7, the stratified 

Cox model was identified as the best-performing Cox model with AIC and BIC of 1036.831 and 

1065.300, respectively. Additionally, from Figure 2, the result of the fitting distribution indicates 

that the Weibull distribution did not adequately capture the characteristics of the observed survival 

time data. This observation underscores a limitation of the Weibull AFT model, as its assumption 

of a specific form for the survival time distribution may not align well with the predictor data 

distribution.  

This analysis led to the conclusion that stratified Cox model outperformed the Weibull AFT 

model. The Cox model's advantage lies in its capacity to closely estimate the true distribution of 

survival time without needing to assume a specific distribution form, along with its robustness in 

managing complex data variations and censored data.  

Table 9. Hazard Ratio of Stratified Cox Model 

Variable Hazard ratio 

Financial Aid (𝑋1) 0.66644 

Prior (𝑋7)) 1.09193 

As shown in Table 9, recidivists who received financial aid after release had a 0.66644 times 

lower risk of re-arrest compared to those who did not receive financial aid. Each additional one-

time prior theft arrest increases the risk of re-arrest by 1.09193 times. This is further supported 

by Figure 3, which indicates that receiving financial aid 𝑋1 = 1 is associated with a reduced risk 

of re-arrest within the same time frame, while a history of prior theft arrests is linked to an 

increased risk of re-arrest. 

 

 
(a) 

 
      (b) 

Figure 3.  Simulated Hazard Function of Stratified Cox Model from Variable: (a) Financial Aid (b) Prior 

Source: Analysis output by MATLAB 
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The result indicates contrasting interpretations of predictor variables between the AFT and Cox 

models. The AFT model, assuming survival time follows a Weibull distribution, does not fully 

align with the data as shown in Figure 2. Additionally, as illustrated in Figure 4, the hazard 

function curve for recidivists who received financial aid (blue line) is higher than that for 

recidivists who did not receive financial aid (red line).  

 

Figure 4.  Simulated Hazard Function of AFT model 

Source: Analysis output by MATLAB 

It indicates that recidivists who received financial aid are more likely to return to custody sooner. 

This conclusion differs from the results obtained in the Cox model. The difference may occur 

because the Weibull distribution assumption in the AFT model does not capture all the 

characteristics of the empirical data. 

4. CONCLUSIONS 

This paper aims to explore the distributional patterns of the force of recidivists being re-arrested by 

conducting AFT and Cox models. Based on the results and discussion, the stratified Cox model is identified 

as the most effective model for estimating the survival time of recidivists in society using the 1971 LIFE 

project data. This conclusion is based on the comparison between the AFT and Cox models, where the 

stratified Cox model yielded a smaller AIC and BIC value compared to the AFT model. The result obtained 

highlights the robust nature of the Cox model in dealing with survival data, particularly if the parametric 

distribution of the survival time is unknown. 

The stratified Cox model further identified significant variables affecting recidivists' survival times, 

specifically Financial Aid (𝑋1) and Prior (𝑋7). Recidivists who received financial aid had 0.66644 times lower 

the risk of being re-arrested compared to those without financial aid. Moreover, each additional one-time of 

prior theft arrest increased the risk of re-arrest by 1.09193 times. These findings highlight the stratified Cox 

model's ability to effectively capture the nuanced effects of covariates on recidivism risk, making it the 

preferred choice for this analysis over the AFT model.  

Further development in this paper could involve exploring alternative distributions within the AFT 

model to obtain a better fit with the data. Analysis using spline-based models or mixture models can provide 

flexibility in modeling complex survival time distributions. Therefore, further research on the AFT model 

using these approaches could enhance the understanding of predictor variable behavior in the context of 

complex survival data and significant censoring. 
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