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ABSTRACT 

Article History: Investment plays a crucial role in supporting economic development by allocating funds 

to generate future profits. Among various investment options, stock investment is widely 

popular. However, investors face the challenge of developing strategies to maximize 

returns while minimizing risks. Effective investment requires understanding the potential 
maximum risk of loss, known as Value at Risk (VaR). This research focuses on estimating 

VaR for four top general insurance companies in Indonesia: PT Lippo General Insurance 

Tbk (LPGI), PT Asuransi Tugu Pratama Indonesia Tbk (TUGU), PT Victoria Insurance 

Tbk (VINS), and PT Asuransi Dayin Mitra Tbk (ASDM). These companies were selected 
due to their leading positions in the industry. The Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) model, an extension of the ARIMA method designed to 

handle volatility clustering, is utilized for VaR estimation. Results at confidence levels of 

90%, 95%, and 99% reveal that VINS carries the highest risk, with a maximum VaR of 
IDR 2,848,710 at 99% confidence, while LPGI shows the lowest risk, with a maximum 

VaR of IDR 22,677. For TUGU, the maximum possible loss is IDR 517,589, and for ASDM, 

it is IDR 1,532,267. Backtesting confirms the reliability of the models, with some accepted 

at specific significance levels. Based on this analysis, the results can help investors make 
investment decisions that minimize potential losses, specifically in the four stocks 

analyzed. 
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1. INTRODUCTION 

Investment refers to the activity of allocating money or capital (valuable assets) with the expectation 

of earning a profit in the future. Stock investment is popular because it offers opportunities for large gains, 

although it comes with high risk due to market fluctuations, the global economy, and company performance 

[1]. Risk refers to the level of potential loss that occurs because the expected investment returns are not as 

expected [2]. There is a direct relationship between risk and return: higher potential returns come with higher 

risks. Investors aim to find stocks with high-profit potential while minimizing risk. One approach to 

measuring risk in stock investments is calculating Value at Risk (VaR), which estimates the maximum 

potential loss within a certain period and confidence level [3]. VaR is a key tool that helps investors determine 

the level of risk they are willing to accept [4]. With the increasing volatility in financial markets, it is critical 

for institutions to utilize more advanced and accurate methods for estimating VaR to better manage and 

mitigate potential risks. 

In 1982, Robert Engle developed the Autoregressive Conditional Heteroscedasticity (ARCH) model, 

which is a time series model that contains an element of heteroscedasticity. Heteroscedasticity refers to a 

condition where the variance of the error term is not constant. The ARCH model becomes less effective when 

analyzing data in a large order. To solve the problem in 1986, Dr. Bollerslev developed the ARCH model 

into the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model [5]. The GARCH 

model improves volatility estimation by directly incorporating both historical volatility data and residual 

variance into the calculation.  

Several related studies have been conducted on the estimation of VaR using the GARCH model. First, 

the VaR calculation for blue-chip stocks in the financial industry listed on the Indonesia Stock Exchange 

(IDX), such as BRI, BCA, and Bank Mandiri, from May 25, 2005, to May 21, 2021, using the GARCH, 

EGARCH, or TGARCH model, showed that with a 95% confidence level, and an initial investment of IDR 

10,000,000. This indicates that Bank Mandiri's stock has the highest investment risk level, while BCA has 

the lowest [6]. Second, researched predicting stock returns and risk of the top ten stocks on the Indonesia 

Stock Exchange using the ARIMA-GJR-GARCH model from December 17, 2018, to December 14, 2021. 

The VaR analysis shows that BBCA, TLKM, PTBA, and UNVR performed better, with VaR values of 

0.025227 for PTBA, 0.014661 for TLKM, 0.012222 for UNVR, and 0.047088 for BBCA [7]. Third, the 

predicted VaR for the GJR-GARCH aggregation model with a confidence level of 99%, 95%, and 90%. The 

data used is stock data of ASII and AALI from January 2, 2020, until May 31, 2022. From the result, it can 

be concluded that to define the VaR prediction result of an aggregated return, GARCH (1,1) and GJR-

GARCH (1,1) models can be used [8].  

In this research, VaR estimation will be performed using the Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) model and carried out for four general insurance companies' stock prices. The 

urgency of this study lies in the increasing complexity and volatility of financial markets, which expose 

investors to significant risks. Insurance companies, as key players in financial markets, are particularly 

vulnerable to market fluctuations, making effective risk management critical for their stability and 

performance. By estimating VaR, this research provides valuable insights into the potential maximum loss 

that can occur within a specific time horizon at varying confidence levels. The findings equip investors and 

financial institutions with a robust tool for managing and mitigating risks, ensuring better decision-making 

in an uncertain economic environment. 

By applying the ARIMA-GARCH method to the stocks of selected general insurance companies, this 

study aims to identify the best-fitting model for each stock that can provide accurate volatility forecasts. The 

Autoregressive Integrated Moving Average (ARIMA) method is utilized to model and predict time series 

data by capturing trends and patterns, while the Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) model extends this approach to account for time-varying volatility, which is crucial for financial 

data. Together, these methods enable precise estimation of VaR by modeling both the underlying data 

structure and volatility clustering. 

This research uses stock data from PT Lippo General Insurance Tbk (LPGI), PT Asuransi Tugu 

Pratama Indonesia Tbk (TUGU), PT Victoria Insurance Tbk (VINS), and PT Asuransi Dayin Mitra Tbk 

(ASDM), leading insurance companies in Indonesia. Unlike previous studies focused on the financial sector, 

telecommunication, and consumer goods [6] [7] [8], this study uniquely analyzes the risk profiles of insurance 

companies in the context of VaR. Through backtesting, the study assesses the reliability of VaR estimates, 

ensuring their effectiveness in real-world risk management within the insurance industry. 
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2. RESEARCH METHODS 

2.1 Return 

Stock returns refer to the benefits of share ownership, including dividends and capital gains or losses. 

In securities analysis, the natural logarithm ratio method is commonly used, where the result of the expected 

return is not significantly large compared to the conventional method  [9]. Here, 𝑅𝑡 represents the stock return 

at time 𝑡, 𝑃𝑡 is the closing stock price in period 𝑡, and 𝑃𝑡−1 is the closing stock price in period 𝑡 − 1. Stock 

returns can be calculated using the following formula: 

𝑅𝑡 =  𝑙𝑛 (
𝑃𝑡

𝑃𝑡−1
) (1) 

 
 

2.2 Stationary 

In the analysis of time series, stationary is an important concept in observing data. Time series can be 

said to be stationary if the relative data does not show a significant change in value for data around a constant 

mean value. The Augmented Dickey-Fuller (ADF) test developed by Dickey-Fuller is one of the methods to 

check the stationarity of data in the mean. 

To determine if the data is stationary or not, the 𝒑-value of the Augmented Dickey-Fuller (ADF) test 

is compared to the significance level (alpha) specified in the analysis. In this study, alpha levels of 10% 

(0.10), 5% (0.05), and 1% (0.01) are used, corresponding to confidence levels of 90%, 95%, and 99%, 

respectively. If the 𝒑-value of the ADF test is smaller than the chosen alpha, the data is considered stationary. 

Conversely, if the 𝒑-value is greater than the specified alpha, the data is not stationary and requires 

differencing to achieve stationarity. 

 

2.3 Autoregressive Moving Average (ARMA) Model 

The combination of the autoregressive model, denoted by AR(𝑝), and the moving average (MA) model 

of order 𝑞, is known as the Autoregressive Moving Average model [10]. The equation is: 

 
𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞 (2) 

 

where 𝑌𝑡 is the time series variable, 𝜙𝑝 denotes constant or AR parameter, 𝑒𝑡  denotes residual at time 𝑡, and 

𝜃𝑞 denotes constant or the parameter of MA. 

 

2.4 Autoregressive Integrated Moving Average (ARIMA) Model 

ARIMA is an attempt to determine the most appropriate data pattern from a set of data. Hence, it 

requires completely historical data along with current data to forecast future values in time series. The 

ARIMA model is generally denoted as ARIMA (𝑝, 𝑑, 𝑞) which implies that the model uses 𝑝-dependent lag 

values or degree of Autoregressive (AR), 𝑑 levels of the differentiation process, and 𝑞 residual lags or degree 

of Moving Average (MA). 

With 𝑊𝑡 = 𝑌𝑡 − 𝑌𝑡−1 the equation for ARIMA (𝑝, 1, 𝑞) is as follows: 

 
𝑊𝑡 = 𝜙1𝑊𝑡−1 + 𝜙2𝑊𝑡−2 + ⋯ + 𝜙𝑝𝑊𝑡−𝑝 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞 (3) 

 

2.5 ARCH 

In regression analysis, it is important the variance of the residuals is constant or referred to as 

homoscedasticity. In some cases of analysis, the variance of the residuals is not constant, called 
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heteroskedasticity. The Autoregressive Conditional Heteroscedasticity - Lagrange Multiplier (ARCH-LM) 

test is used to detect heteroscedasticity in residual. The basic idea is that the residual variance is not only a 

function of the independent variables but also depends on the squared residuals in the previous period, where 

𝑟𝑡 is the residuals at time 𝑡, and 𝜎𝑡
2 is the residual variance at time 𝑡.  

 𝜎𝑡
2 = 𝛼0 + 𝛼1𝑟𝑡−1

2 + ⋯ . . +𝛼𝑝𝑟𝑡−𝑝
2  (4) 

 

2.6 GARCH 

Robert Engle developed the ARCH model in 1982. The ARCH model is a time series model that 

contains an element of heteroscedasticity. Heteroscedasticity refers to a situation where the variance of the 

error term is not constant. ARCH model is not effective when analyzing the model with a large order. To 

solve the problem in 1986, Dr. Bollerslev developed the ARCH model into the Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) model [11]. In general, the GARCH (p, q) model equation is as 

follows: 

 𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝑟𝑡−𝑖

2

𝑝

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑞

𝑗=1

(5) 

where, 𝜎𝑡
2 is conditional variance, 𝜔 is a constant component, 𝛼𝑖 is weighting on the previous period’s return, 

𝑟𝑡−𝑖 is residual at time 𝑡 − 𝑖, 𝛽𝑗 is weighting on the previous volatility estimate, and 𝜎𝑡−𝑗
2  is conditional 

variance at time 𝑡 − 𝑗. The GARCH model implies the previous squared residual and the previous conditional 

variance in the equation [12].  

 

2.7 Value at Risk 

One of the instruments of risk measurement is Value at Risk, abbreviated to VaR, developed by J.P. 

Morgan [13]. The VaR method is used to estimate the maximum potential loss over a given period with a 

specific level of confidence. VaR has become a popular method for measuring financial risk [14]. 

Mathematically, VaR is defined as [15]: 

 𝑉𝑎𝑅 = inf{𝑥 ∈ ℝ ∶  𝑃(𝐿 ≤ 𝑥) ≥ 𝛼} (6) 

 VaR is closely related to the GARCH model, which is often applied in cases of heteroskedasticity of 

return data and can estimate future volatility. This is one of the advantages of the GARCH method compared 

to ordinary variance estimation, which is unable to estimate forward predictions. The calculation of VaR at a 

period of t using the GARCH model is formulated as follows: 

𝑉𝑎𝑅(𝑡) = 𝑆0(𝜇 + (𝑍𝛼𝜎𝑡))  (7) 

where, 𝑆0 represents initial investment fund, 𝜇 represents average asset return, 𝑍𝛼 represents the standard 

normal distribution value corresponding to the 𝛼, and 𝜎𝑡 represents volatility at time 𝑡. In case the return is 

not normally distributed, the Z score needs to be adjusted using the Cornish-Fisher Expansion with the 

formula: 

𝑍𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑍𝛼 +
1

6
(𝑍𝛼

2 − 1)𝑆 +
1

24
(𝑍𝛼

3 − 3𝑍𝛼)(𝐾 − 3) −
1

36
(2𝑍𝛼

3 − 5𝑍𝛼 )𝑆2 (8) 

where 𝑆 is skewness, and 𝐾 is kurtosis [15]. 

 

2.8 Backtesting 

Backtesting is a technique used to evaluate the accuracy of VaR. The VaR models are only useful if 

the model accurately predicts risk, which helps to determine whether the model will work well in the future. 

For VaR models, which predict the potential loss, backtesting involves comparing the predicted losses with 

actual historical losses.  
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One common method for backtesting the VaR model is Kupiec Test. The Kupiec Test checks whether 

the number of times actual losses exceed the VaR prediction (known as exceptions) matches what is expected 

from the model [16]. The formula for the Kupiec Test is: 

 𝐿𝑅𝑢𝑐 = −2𝑙𝑛[(1 − 𝑝)𝑇−𝑁𝑝𝑁]  + 2𝑙𝑛 {[1 − (
𝑁

𝑇
)]

𝑇−𝑁
(

𝑁

𝑇
)

𝑁
}  (9)

where: 

𝐿𝑅𝑢𝑐   : Loglikelihood ratio approach 

T : Total observation data 

N : Total failure 

𝑝 : Probability (1 −  𝛼) 

 

2.9 Research Flowchart 

 

Figure 1. Research Flowchart 

 

3. RESULTS AND DISCUSSION 

3.1 Descriptive Statistics 

In this research, the data used is the daily stock close price data of general insurance companies, 

including LPGI, TUGU, VINS, and ASDM, obtained from the Yahoo Finance website for the period August 

16th, 2021, to April 30th, 2024, with a total of 656 data. After collecting the data, the return for each stock 

was calculated using Equation (1). The details of the calculation return are presented in Table 1. 

Table 1. Descriptive Statistics of Data Return 

No. Code Maximum Minimum Mean 

1 LPGI 0.22254277 -0.120702746 0.00113334 

2 TUGU 0.178923083 -0.111669685 0.000458658 

3 VINS 0.300104592 -0.236388778 0.000629596 

4 ASDM 0.143455391 -0.101782694 -0.000152643 
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3.2 Return Data Stationarity Test 

In ARIMA-GARCH modeling, it is essential to check whether the data is stationary. If the data is not 

stationary, differencing is required. In this study, a stationary test was conducted on the returns of the data 

using the Augmented Dickey-Fuller (ADF) Test. The stationarity test includes the following steps: 

𝐻0: the data is not stationary 

𝐻1: the data is stationary 

The results of the stationarity test are given in Table 2. 

Table 2. Result of ADF Test 

   LPGI TUGU  VINS  ASDM 

𝒑-value 0.01 0.01 0.01 0.01 

According to Table 2, the probability value of each stock return has a 𝑝-value of 0.01 which is less 

than the probability value used. This means that the stock return data for LPGI, TUGU, VINS, and ASDM 

are stationary.  

 

3.3 ARIMA Model Specifications 

The ARIMA model can be identified by analyzing the Partial Autocorrelation Function (PACF) and 

Autocorrelation Function (ACF) on the correlogram plot. After identifying the model based on the ACF and 

PACF correlogram plots, the ARIMA model parameters for each stock return were estimated. Based on Table  

2, for the four stock return data, the differencing process was not performed because the four stock return 

data were stationary at the level. Thus, the differencing process applied is 0, and the model process follows 

Equation (2). The following will explain the results of the identification and estimation of the ARIMA model 

on each stock return data.  

 

3.3.1 ARIMA Model Estimation of LPGI 

In the process of estimating the ARIMA model for LPGI return stock, the PACF and ACF plots on the 

correlogram diagram were analyzed. While the ACF and PACF plots show cut-offs at lags 2, 4, and 8, these 

were not included in the resulting model due to the principle of parsimony, which prioritizes simpler models 

that adequately explain the data. The final ARIMA (2,0,2) model for LPGI stock was selected, identifies the 

Autoregressive (AR) with order 𝑝 equal to 2, the differencing process is 0, and the value of 2 indicates the 

Moving Average (MA) with order 𝑞.  

 
 

 

 

 

(a)                                            (b) 

    Figure 2. Plot for LPGI (a) PACF (b) ACF  

By getting several models formed from the ARIMA (2,0,2) model, the following parameter estimation 

coefficients consist of AR1, AR2, MA1, MA2, MSE, AIC, and Log-Likelihood, which will be considered in 

conducting further analysis. 
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Table 3. Parameter Estimation Result of LPGI 

ARIMA Model AR1 AR2 MA1 MA2 MSE 
Log 

Likelihood 
AIC 

ARIMA (0,0,1)     -0.10   7.737×10-4 1416.92 -2829.83 

ARIMA (0,0,2)   -0.09 -0.12 7.642×10-4 1420.95 -2835.91 

ARIMA (1,0,0) -0.08    7.751×10-4 1416.32 -2828.64 

ARIMA (2,0,0) -0.09 -0.11   7.654×10-4 1420.41 -2834.83 

ARIMA (1,0,1) 0.50  -0.62  7.67×10-4 1419.75 -2833.51 

ARIMA (1,0,2) -0.18  0.09 -0.13 7.639×10-4 1421.07 -2834.15 

ARIMA (2,0,1) -0.40 -0.13 0.31  7.647×10-4 1420.71 -2833.42 

ARIMA (2,0,2) -0.11 0.13 0.02 -0.26 7.633×10-4 1421.32 -2832.65 

 

According to Table 3, the ARIMA model that has the lowest AIC is the ARIMA (0,0,2) model with 

an AIC value of -2835.91. After getting the best ARIMA model for LPGI stock, the subsequent step is to test 

for residual white noise. The result of the 𝑝-value for the white noise test is 0.9687. This value means that 

the residual of the ARIMA (0,0,2) model is not autocorrelated because the 𝑝-value > 0.05. Here the ARIMA 

(0,0,2) model using Equation (2): 

 𝑌𝑡 = 0.0902𝑒𝑡−1 − (−0.1194𝑒𝑡−2) + 𝑒𝑡   (10) 

 

3.3.2 ARIMA Model Estimation of TUGU 

In the next section of this research, the TUGU stock return data was analyzed. The PACF and ACF 

plots for TUGU show cut-offs at lags 1 and 6. However, these lags were not included in the resulting model 

due to the principle of parsimony, which favors simpler models that still provide a good fit to the data. The 

ARIMA model obtained is the ARIMA (1,0,1) model.   

 

 

 

 

 

 
(a)                                            (b) 

Figure 3. Plot for TUGU (a) PACF (b) ACF  

Parameter estimation will be an important input for the next analysis. Here are the details of the 

estimated parameters of each model.  

Table 4. Parameter Estimation Result of TUGU 

ARIMA Model AR1 MA1 MSE 
Log 

Likelihood 
AIC 

ARIMA (0,0,1)   0.09 8×10-4 1404.16 -2804.33 

ARIMA (1,0,0) 0.09  8×10-4 1403.98 -2803.96 

ARIMA (1,0,1) -0.23 0.32 8×10-4 1404.40 -2802.80 

Based on Table 4, the smallest AIC of the 3 models formed is -2804.33. Then, the ARIMA (0,0,1) 

model will be used to test the white noise in the residuals using the Ljung-Box Test. Referring to the result 

of the white noise test, the 𝑝-value has a value of 0.9454 which fulfills the assumption that there is no 

significant correlation between the residual in the ARIMA (0,0,1) model. Below is the ARIMA (0,0,1) model 

using Equation (2) 

𝑌𝑡 = 0.0941𝑒𝑡−1 + 𝑒𝑡 (11) 
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3.3. 3 ARIMA Model Estimation of VINS 

In the case of VINS stock data, the ARIMA (1,0,1) model was obtained after analyzing the ACF and 

PACF patterns on the correlogram plot.  

 

 

 

 

 

 

 

 

 
(a)                                            (b) 

Figure 4. Plot for VINS (a) PACF (b) ACF  

The parameter estimates of the models are shown below. 

Table 5. Parameter Estimation Result of VINS 

ARIMA Model AR1 MA1 MSE 
Log 

Likelihood 
AIC 

ARIMA (0,0,1)   -0.23 2.63×10-3 1015.96 -2027.91 

ARIMA (1,0,0) -0.23  2.63×10-3 1015.96 -2027.92 

ARIMA (1,0,1) -0.12 -0.12 2.63×10-3 1016.20 -2026.41 

According to Table 5, the best model for VINS stock data is an ARIMA (1,0,0) model based on the 

lowest AIC value of -2027.92. Although the value is almost the same as the parameter estimation value of 

the ARIMA (0,0,1) model, the AIC value of the ARIMA (0,0,1) model and the ARIMA (1,0,0) model still 

have a difference of 0.01. So it can be concluded that the VINS stock data model to be used in the test of 

white noise is the ARIMA (1,0,0) model. The p-value on the white noise test is 0.87 > 0.05, which means 

that there is no autocorrelation in the residual value. The following is the ARIMA (1,0,0) model using 

Equation (2) 

𝑌𝑡 = −0.2295𝑌𝑡−1 + 𝑒𝑡   (12) 

 

3.3.4 ARIMA Model Estimation of ASDM 

ASDM stock data is the last data to be analyzed in the estimation of the ARIMA model before 

proceeding to the next process. The ACF plot for ASDM shows a cut-off at lag 4; however, this lag was not 

included in the resulting model due to the principle of parsimony, which aims to select the simplest model 

that still captures the essential features of the data. The ARIMA (3,0,1) model was obtained in this data 

analysis. 

 

 

 

 

 

 

 

 

 
(a)                                            (b) 

Figure 5. Plot for ASDM (a) PACF (b) ACF  
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The following are the details of the estimated parameters for each model.  

Table 6. Parameter Estimation Result of ASDM 

ARIMA Model AR1 AR2 AR3 MA1 MSE 
Log 

Likelihood 
AIC 

ARIMA (0,0,1)       -0.30 2.183×10-4 1831.23 -3658.45 

ARIMA (1,0,0) -0.25    2.211×10-4 1827.03 -3650.06 

ARIMA (2,0,0) -0.28 -0.09   2.190×10-4 1830.15 -3654.29 

ARIMA (3,0,0) -0.29 -0.13 -0.11  2.166×10-4 1833.87 -3659.75 

ARIMA (1,0,1) 0.20   -0.48 2.176×10-4 1832.37 -3658.74 

ARIMA (2,0,1) 0.29 0.04  -0.57 2.175×10-4 1832.46 -3656.93 

ARIMA (3,0,1) -0.62 -0.22 -0.14 0.34 2.162×10-4 1834.45 -3658.90 

Referring to Table 6, the ARIMA (3,0,0) model is a model that has the smallest AIC value with a value 

of -3659.75. The result from the test fulfills the assumptions that are useful for continuing to the next analysis. 

With a 𝑝-value of 0.9244 for the white noise test which indicates no significant correlation in the residual 

data of ASDM. The ARIMA (3,0,0) model can be formed using the Equation (2) 

 𝑌𝑡 = −0.2863𝑌𝑡−1 − 0.1272𝑌𝑡−2 − 0.1067𝑌𝑡−3 + 𝑒𝑡  (13) 
 

For the residuals of the fourth dataset, the results of the Shapiro-Wilk test show a p-value close to zero, 

indicating that the return data does not follow the normal distribution. Despite this non-normality of the 

ARIMA residuals, the continuation of this study is justified, as the assumption of normality in ARIMA is not 

critical for the overall modeling process. This is because the subsequent GARCH model is specifically 

designed to address heteroskedasticity and capture the time-varying volatility in the residuals, which is a more 

significant characteristic in financial data. Furthermore, the primary focus of this research is on the predictive 

performance of the ARIMA-GARCH model in estimating VaR. The resulting VaR estimates will be 

evaluated using backtesting tests, ensuring that the model provides accurate and robust risk measures despite 

the non-normality of residuals. 

 
 

3.4 The Lagrange Multiplier Test 

The Lagrange Multiplier (LM) test aims to check and verify the effects of ARCH or heteroskedasticity 

on the residuals of the model. The hypotheses for the test are as follows: 

𝐻0: There is no heteroskedasticity in the residuals 

𝐻1: There is heteroskedasticity in the residuals 

If the 𝑝-value of the Lagrange Multiplier (LM) test is less than 0.05, we reject 𝐻0 and conclude that 

there is evidence of heteroskedasticity in the residuals. Conversely, if the p-value is greater than or equal to 

0.05, we fail to reject 𝐻0, indicating insufficient evidence of heteroskedasticity. The following are the results 

of the Lagrange Multiplier (LM) test on each data based on the residual of the best ARIMA model that has 

been selected.  

Table 7. Result of Lagrange Multiplier Test 

  LPGI TUGU  VINS ASDM 

𝒑-

value 
0.005204 0.000001212 0.0000008897 0.0000002551 

 

The Lagrange Multiplier (LM) test results show all 𝑝-values are less than 0.05; it can be concluded 

that the selected ARIMA model on each data will be used further in the estimation of VaR 
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3.5 GARCH Model  

The GARCH modeling is very crucial before estimating the VaR because it measures the volatility that 

will be used in the calculation. The following are the equations for the best estimation of the GARCH model 

selection for each data set.  

Table 8. GARCH Model Equation 

Name GARCH Model Equation of Model 

LPGI GARCH (1,1) 
 

TUGU GARCH (1,1) 

VINS GARCH (1,1)   
ASDM GARCH (1,2)   

 

3.6 Value at Risk 

The VaR estimation using the GARCH model can be performed after the mean and variance modeling 

is carried out by following the steps described in the previous section. Based on the Shapiro-Wilk test, the 

return data is confirmed to deviate from normality. To address this, the Z-score is corrected using the Cornish-

Fisher Expansion, as detailed in Equation (8), which adjusts for skewness and kurtosis. The result of 

calculations of the VaR with a confidence level of 90%, 95%, and 99% and the initial investment is IDR 

10,000,000 is an arbitrary figure chosen to illustrate the investment scenario. The analysis can be scaled 

proportionally to different investment amounts without affecting the overall findings, by using Equation (7) 

are given in Table 9: 

Table 9. The Result of VaR 

Data 

Confidence Level 

90% 95% 99% 

VaR 

(%) 
VaR (IDR) 

VaR 

(%) 
VaR (IDR) 

VaR 

(%) 
VaR (IDR) 

LPGI 0.23%   IDR        22,677.39  1.16%  IDR        116,212.07  5.30%  IDR        530,262.15  

TUGU 1.54%  IDR        153,585.60  2.36%  IDR        236,199.95  5.18%  IDR        517,589.57  

VINS  4.74%   IDR        474,356.73  8.91%  IDR        891,220.32 28.49%  IDR     2,848,710.02  

ASDM 0.65%   IDR        64,784.37  3.49%  IDR        349,031.00  15.32%  IDR    1,532,267.72  

The VaR calculated in this study is based on actual historical data. The analysis uses real market data 

to estimate potential losses at a given confidence level, ensuring that the results reflect real investment 

scenarios. 

 

3.7 Backtesting 

After calculating the VaR values for each data and confidence level, the next step is to backtest this 

result using the Kupiec Test, which employs the log-likelihood ratio approach. The purpose of this test is to 

evaluate whether the calculated VaR values are accurate in accordance with the requirements. The test is 

based on the following hypothesis: 

𝐻0: The model’s VaR predictions are consistent with the observed data at the confidence level 𝛼 

𝐻1: The model’s VaR predictions are inconsistent with the observed data at the confidence level 𝛼 

𝐻0 is accepted if 𝐿𝑅𝑢𝑐 < 𝑋(𝛼:1)
2 , otherwise is rejected. 

 

The backtesting test results are presented in the table below. 

 

 

𝜎𝑡
2 = 0.00003163 + 0.1953𝑟𝑡−1

2 + 0.8094𝜎𝑡−1
2  

𝜎𝑡
2 = 0.00002648 + 0.148𝑟𝑡−1

2 + 0.8339𝜎𝑡−1
2  

𝜎𝑡
2 = 0.0009106 + 0.6204052𝑟𝑡−1

2 + 0.1923281𝜎𝑡−1
2  

𝜎𝑡
2 = 0.00004421 + 0.593𝑟𝑡−1

2 + 0.07876𝜎𝑡−1
2 + 0.2331𝜎𝑡−2

2  



BAREKENG: J. Math. & App., vol. 19(2), pp. 1071- 1082, June, 2025.     1081 

 

 

Table 10. The Result of the Backtesting Test 

Company α Total Data Log-Likelihood Ratio Chi-Square Critical Value Decision 

LPGI 

0.01 656 75.809 6.635 Rejected 

0.05 656 12.173 3.841 Rejected 

0.1 656 0.033 2.706 Accepted 

TUGU 

0.01 656 42.110 6.635 Rejected 

0.05 656 9.159 3.841 Rejected 

0.1 656 0.482 2.706 Accepted 

VINS 

0.01 656 7.405 6.635 Rejected 

0.05 656 31.030 3.841 Rejected 

0.1 656 71.157 2.706 Rejected 

ASDM 

0.01 656 4.401 6.635 Accepted 

0.05 656 42.078 3.841 Rejected 

0.1 656 91.506 2.706 Rejected 

From the backtesting results of VaR using the GARCH model for the four companies (LPGI, TUGU, 

VINS, and ASDM), it can be seen that the VaR values for LPGI and TUGU are only accurate at the 𝛼 = 0.1 

significance level, but not at the stricter significance levels of 𝛼 = 0.01 and 𝛼 = 0.05. The model for VINS 

is not accurate at any significance level, while the model for ASDM is accurate at the 𝛼 = 0.01 significance 

level. This indicates that the GARCH model generally performs better at higher significance levels for most 

companies, except for ASDM, where it is more accurate at the stricter 𝛼 = 0.01 level. 

 

4. CONCLUSIONS 

This study aimed to estimate the VaR for general insurance companies’ stocks using the ARIMA-

GARCH model and evaluate the reliability of these estimates through backtesting. The analysis revealed that 

each company’s stock required a distinct ARIMA-GARCH model to accurately capture volatility and risk, 

reflecting the unique characteristics of the historical data for each insurance company. The estimated VaR 

values for the companies under different confidence levels were as follows: for PT Lippo General Insurance 

Tbk (LPGI), the VaR was 0.23% with an alpha of 0.1; for PT Asuransi Tugu Pratama Indonesia Tbk (TUGU), 

the VaR was 1.45% with an alpha of 0.1; and for PT Asuransi Dayin Mitra Tbk (ASDM), the VaR was 

15.32% with an alpha of 0.01. The backtesting results showed that these VaR estimates were accurate, 

confirming the model’s ability to predict financial risk effectively for each company. Despite some models 

being less reliable at lower confidence levels, the findings provide valuable insights into risk management in 

the general insurance industry. In conclusion, this research highlights that customized ARIMA-GARCH 

models are essential for estimating VaR, enabling insurers to enhance their risk management strategies by 

considering specific volatility patterns and adjusting for desired confidence levels tailored to each company. 

Future research could explore alternative risk models like Copula-GARCH or stochastic volatility to 

better capture asset dependencies in the insurance sector. Investigating the impact of macroeconomic factors 

and market events on insurance risk profiles could provide deeper insights into dynamic market conditions. 

Expanding the dataset to include more insurance companies or cross-country comparisons could further 

validate these findings. 
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