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ABSTRACT 

Article History: The main information of this research is the transformation of the correlation coefficient 

value for stock price into the distance. It is done to create a representation in metric space 

that can be used in cluster analysis on the correlation network, which is a dynamic 
network. The dynamic network is generated from the weighted edges in the form of 

distances in each period. Finding the cluster members of the network can be analyzed 

using a simple technique called a minimum spanning tree. The central cluster member is 

the vertex betweenness. Vertex betweenness represents banking companies with a high 
degree of proximity and correlation. It means that the banks that are members of the 

central cluster are banks with high investment value. Clustering based on betweenness 

centrality in the case study of stock price correlation becomes useful when transforming 

the value of the correlation coefficient to distance. The effort to build a network with the 
edge weight being the distance makes the minimum spanning tree a simple, valuable 

method for cluster analysis on bank stock prices. In particular, the benefit to investors, 

i.e., it can reveal which assets are closely correlated, indicating that they may respond to 

market events in a similar way and make decisions in stock purchases 
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1. INTRODUCTION 

The stock price data of banks at any time is very easy to obtain information. It is important information 

for potential investors in the banking sector in Indonesia. The correlation of stock prices between banks in 

Indonesia can provide an overview of how strong the relationship of stock price movements between one 

bank and another. Investors and analysts often use this correlation to assess the risk and diversification of 

investment portfolios in the banking sector [1]. Correlation analysis is usually used to calculate the correlation 

coefficient between bank stock prices, which measures the linear relationship between two variables. 

In the case study in this research, the bank is represented as a node or vertex. Correlation is represented 

as an edge, a form of vertices interaction [2]. Furthermore, the correlation between vertices is represented as 

a connected graph or network. Some references explain that the connected graph, in this case, is called a 

correlation network [3] [4]. Graphs with edge weights representing correlation coefficients are one way of 

visualizing networks between variables using graph concepts. In the context of stock prices between banks, 

vertices represent banks, and edges connecting two vertices represent the correlation level between the two 

banks' stock prices. The edge weights in the network are correlation coefficient values that range from -1 to 

1, which will then be transformed into distances in the metric space. 

The transformation of correlation coefficient values into Euclidean distances creates a representation 

in metric space that can be used in cluster analysis. Since the correlation coefficient ranges from -1 to 1, while 

the Euclidean distance is always non-negative, we need to perform some transformation. The Euclidean 

distance of the transformation can be used to find vertex betweenness. This method ensures that we are 

working in a metric space that matches the properties of the distance, i.e., non-negative and symmetric values. 

We can build a graph with edge weights showing the Euclidean distance between bank stock prices. 

The smaller the distance, the closer the relationship between the stock prices after converting the correlation 

coefficient value into a distance value. The larger the distance, the more distant the relationship. Next, we 

will look for vertices with the slightest edge weights, which are used to determine vertex betweenness. 

Minimum Spanning Tree (MST) is used to determine vertex betweenness. 

MST is a graph structure that includes all vertices in a connected graph with a path of minimum total 

weight without any cycles [5] [6]. Although MST is usually used to find the minimum path in a connected 

network, it is not a direct method to calculate vertex betweenness. However, both can be used together in 

network analysis, especially to find essential elements in graphs or community structures [7] [8]. There are 

several other methods that have the same use as MST, but the advantage of MST is that the algorithm used 

is very simple; see [2] [4] [6] [7]. Since the networks to be clustered are dynamic, it needs the simplest 

approach to clustering to minimize time. 

Vertex betweenness measures how often a vertex is on the shortest path between two other vertices 

[9]. It indicates the importance of a vertex in facilitating flow through the network [10]. So, the relationship 

between MST and vertex betweenness is that MST provides the minimum path connecting all vertices in the 

graph and thus provides insight into how vertices are efficiently connected. Vertex betweenness focuses on 

how vital a vertex is in facilitating connectivity in the network. 

This research's contribution is to determine the technique of clustering members of bank companies 

with important positions by looking at the level of correlation between banks. Some vertex betweenness from 

the dynamic network can be used as cluster members. 

 

2. RESEARCH METHODS 

2.1 Correlation Analysis 

The goodness of fit of the stock price data from each bank in Figure 1 shows that the data does not 

follow a normal distribution. Furthermore, the correlation analysis will use Spearman rank or Spearman's 𝜌. 

On the other hand, the reason for choosing Spearman rank is that it does not require the assumption of linear 

correlation between research variables and the assumption of data normality. This is because the stock price 

data from each bank tends to be different and change every time. Before looking for the correlation coefficient 
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value, the data is first standardized with a 𝑍-score in Equation (1), 

𝑍𝑖 =
𝑋𝑖 − �̅�

𝑠
, (1) 

where 𝑠 is the standard deviation. After obtaining the 𝑧𝑖 value, the next step is to find the correlation 

coefficient value with the Equation (2), 

𝜌 = 𝜌𝑋𝑌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
, (2) 

where 𝑛 is the number of observations, and 𝑑𝑖 = 𝑅[𝑋𝑖] − 𝑅[𝑌𝑖] is the difference between the two ranks of 

each observation. Equation (2) is used for Spearman's 𝜌 when no similar observation values are found. If a 

similar observation value is found, Equation (3) is used, 

𝜌𝑋𝑌 = 1 −
∑ 𝑋2 + ∑ 𝑌2 − ∑ 𝑑2

2√∑ 𝑋2 ∑ 𝑌2
, (3) 

where ∑ 𝑋2 =
𝑛(𝑛2−1)

12
− ∑

𝑡(𝑡2−1)

12
, ∑ 𝑌2 =

𝑛(𝑛2−1)

12
− ∑

𝑡(𝑡2−1)

12
, and 𝑡 is the number of similar observations. 

Spearman's 𝜌 can range from − 1 to 1, with the coefficient sign indicating a negative or positive 

monotonic relationship. A positive correlation is when one variable increases and the other tends to increase, 

and a negative correlation is when one variable increases and the other tends to decrease. Values close to 

− 1 and 1 indicate a stronger relationship, while values close to 0 indicate a weaker relationship. The 

statistical test used is the 𝑡 statistic in Equation (4), with the null hypothesis being the two independent 

variables; there is no correlation. 

𝑡 = 𝑡𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 = 𝜌√𝑛 − 1 (4) 

 

2.2 Network and Minimum Spanning Tree 

In mathematics, a network is a connected graph. A graph G = G(𝑉, 𝐴) with 𝑉 = {𝑣0, 𝑣1, … , 𝑣𝑛} as 

vertices, and 𝐴 = {(𝑣𝑖 , 𝑣𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} as edges [11]. A graph G = G(𝑉, 𝐴, 𝑔) is called a weighted graph 

G on 𝑉, i.e., a pair (𝑉, 𝐴, 𝑔) where 𝑔 is a function that maps pairs of each element of V to a non-negative real 

number 𝑔: 𝑉 × 𝑉 → ℝ≥0 [12] [13]. In this case, banks are represented as vertices, while correlations are 

represented as edges. The weight of the edge is the distance value derived from the transformation of the 

correlation coefficient value. The network with the vertex is the bank, and the edge is the correlation, 

presented in Figure 1. 

 
Figure 1. Network with Bank Name as Vertex and Correlation as Edge 
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The network in Figure 1 will be a dynamic network, which is a network with weights that change over 

a period. 

MST is a graph theory concept that plays a significant role in optimization problems, especially 

network design and optimization problems. In network optimization, before a problem is solved, it is 

represented or visualized first so that the actual problem structure can be known. It is called network design. 

In network design, the concepts most often used to illustrate or represent problems are concepts from graph 

theory. 

A spanning tree is a subnetwork that is formed without containing cycles in it. At the same time, the 

MST is a construction tree with the minimum number of arc weights [6]. If given a network G, then the MST 

of G is the spanning tree with the smallest number of weights. Betweenness centrality is the setting of the 

centrality of a vertex or edges. Betweenness can be visualized as a symbol of the strength or influence of a 

vertex or edge in the network [9] [10] because the vertex or edge is a link to another vertex or edge.  

Furthermore, vertex betweenness is the setting of the centrality of a point. Using MST can give an 

initial idea of the critical structure of the network. However, to calculate the complete vertex betweenness, it 

is necessary to use a specific algorithm such as Brandes' algorithm, which calculates all shortest paths in the 

graph, not just the paths in MST. The steps to calculate vertex betweenness using shortest paths for MST 

using Kruskal's method are presented in Algorithm 1 [6]. The vertex's betweenness score increases whenever 

a vertex is on the shortest path between two other vertices. 

Algorithm 1. Determining the MST that generates vertex betweenness 

Step 1: Create a weighted graph G. 

Step 2: Find the MST by removing all edges of G and sorting the edges of G from most negligible to 

most considerable weight. Based on the order, we add edges to avoid the formation of cycles. 

The next stop is if a spanning tree with minimum edge weights is formed. 

Step 3: Calculate vertex betweenness: To calculate betweenness, determine all the shortest paths 

between all vertex pairs. Algorithms like Brandes allow us to calculate betweenness centrality 

efficiently. 

 
 

3. RESULTS AND DISCUSSION 

3.1 Data Description 

The data used are bank stock prices per day for 20 months (January 2018-August 2019), taken from 

www.investing.com. The bank data consists of 10 bank companies, namely Bank Bukopin, Bank Danamon, 

Bank Mandiri, Bank Permata, Bank CIMB Niaga, Bank OCBC NISP, Bank BCA, Bank BNI, Bank BRI, and 

Bank BTN. Furthermore, the data and line plot are presented in Figure 2. 

 
Figure 2. Plot Data and the Line Plot 
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3.2 Transformation of Correlation Coefficient Value into Distance 

The weight of the edges of the network is obtained by converting the correlation coefficient value into 

the Euclidean distance in metric space.  Defined 𝑑(𝑥, 𝑦) = √2(1 − 𝜌𝑋𝑌), it will be shown that 𝑑(𝑥, 𝑦) is a 

metric. 

Definition 1. Metric [14] 

Let 𝐴 be a non-empty set, a metric on 𝐴 is a function 𝑑: 𝐴 × 𝐴 → [0, ∞] such that for every pair (𝑥, 𝑦) ∈
𝐴 × 𝐴 holds: (a) 𝑑(𝑥, 𝑦) ≥ 0 for every 𝑥, 𝑦 ∈ 𝐴; (b) 𝑑(𝑥, 𝑦) = 0 for 𝑥, 𝑦 ∈ 𝐴 with 𝑥 = 𝑦;  

(c) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for every 𝑥, 𝑦 ∈ 𝐴; and (d) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for every 𝑥, 𝑦, 𝑧 ∈ 𝐴. 

Let D be a correlation coefficient matrix of size 𝑚 × 𝑚 whose elements express the pairwise correlation 

coefficient values of 𝑚 vectors in ℝ𝑛. Then, we have a correlation 

𝜌𝑋𝑌 =
𝐶𝑜𝑣(𝑋, 𝑌)

√𝑉𝑎𝑟(𝑋)𝑉𝑎𝑟(𝑌)
 (5) 

Take any 𝑥, 𝑦 ∈ 𝐴  so as to obtain 𝜌𝑋𝑌 with −1 ≤ 𝜌𝑋𝑌 < 0, e.g. 𝜌𝑋𝑌 = −𝑎, 𝑎 ∈ (0,1] such that 

𝑑(𝑥, 𝑦) = √2(1 − 𝜌𝑋𝑌) 

= √2(1 − (−𝑎)) 

= √2(1 + 𝑎) 

= √2 + 2𝑎  > 0. 

For 0 ≤ 𝜌𝑋𝑌 ≤ 1, e.g. 𝜌𝑥𝑦 = 𝑎, 𝑎 ∈ [0,1], 

𝑑(𝑥, 𝑦) = √2(1 − 𝜌𝑥𝑦) 

= √2(1 − 𝑎) 

= √2 − 2𝑎  ≥ 0, 
so, 𝑑(𝑥, 𝑦) ≥ 0. 

Take any 𝑥, 𝑦 ∈ 𝐴, 𝑥 = 𝑦  so as to obtain 𝜌𝑋𝑌 = 1, such that 

𝑑(𝑥, 𝑦) = √2(1 − 𝜌𝑋𝑌) 

= √2(1 − 1) 

= 0 

so 𝑑(𝑥, 𝑦) = 0. 

Take any 𝑥, 𝑦 ∈ 𝐴 so as to obtain 𝜌𝑥𝑦. Based on correlation matrix D, we have 𝜌𝑋𝑌 = 𝜌𝑌𝑋, such that 

𝑑(𝑥, 𝑦) = √2(1 − 𝜌𝑋𝑌) 

= √2(1 − 𝜌𝑌𝑋) 

= 𝑑(𝑦, 𝑥) 

so 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). 

Take any  𝑥, 𝑦, 𝑧 ∈ 𝐴   

𝜌𝑋𝑌 =
𝐶𝑜𝑣(𝑋, 𝑌)

√𝑉𝑎𝑟(𝑋)𝑉𝑎𝑟(𝑌)
 

=
𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌])]

√(𝐸(𝑋 − 𝐸[𝑋])2)(𝐸(𝑌 − 𝐸[𝑌])2)
 

=
𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌])]

√(𝐸(𝑋 − 𝐸[𝑋])2)(𝐸(𝑌 − 𝐸[𝑌])2)
 

=
𝐸[𝑋𝑌] − 𝐸[𝑋]𝐸[𝑌]

√(𝐸(𝑋 − 𝐸[𝑋])2)(𝐸(𝑌 − 𝐸[𝑌])2)
 

=
𝐸[𝑋𝑌] − 𝜇𝑋𝜇𝑌

𝜎𝑋𝜎𝑌
. 
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Because the data has been standardized, the data has 𝜇 = 0, 𝜎2 = 1  we have 

𝜌𝑋𝑌 =
𝐸[𝑋𝑌] − 0

1
 

= 𝐸[𝑋, 𝑌] 

=
1

𝑛
〈𝑋, 𝑌〉. 

Suppose we have a squared Euclidean distance, 

𝑑2(𝑥, 𝑦) = ∑(𝑥𝑖 − 𝑦𝑖)2 

= ∑(𝑥𝑖
2 − 2𝑥𝑖𝑦𝑖 + 𝑦𝑖

2) 

= ∑ 𝑥𝑖
2 + ∑ 𝑦𝑖

2 − 2 ∑ 𝑥𝑖𝑦𝑖 

= 𝑛 + 𝑛 − 2〈𝑋, 𝑌〉 
= 2𝑛 − 2〈𝑋, 𝑌〉 

= 2𝑛(1 − 𝜌𝑋𝑌) 

= √2𝑛(1 − 𝜌𝑋𝑌) 

= √𝑛√2(1 − 𝜌𝑋𝑌). 

So, the equation form √𝑛√2(1 − 𝜌𝑋𝑌) is equivalent to Euclidean distance, and Euclidean distance is a metric 

[15]. Thus, if 𝑑(𝑥, 𝑦) is the Euclidean distance, then the product of the constant 𝑛 with 𝑑(𝑥, 𝑦) is the 

Euclidean distance. Then, we have √2(1 − 𝜌𝑋𝑌) ≤ √2(1 − 𝜌𝑋𝑍𝑦) + √2(1 − 𝜌𝑍𝑌), such that 

 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦). 

 

3.3 Minimum Spanning Tree for Network 𝐆 

The data used is bank stock prices per day for 20 months (January 2018 to August 2019), divided into 

32 periods. So, the vertex betweenness is obtained from 32 networks. The spanning tree of the network G in 

the period 01/22/2018 to 06/27/2018 obtained from the network in Figure 1 is presented in Figure 3. The D 

matrix for this period is presented in Table 1, and the distance matrix is in Table 2. 

Table 1. Matrix D in the Period 01/22/2018 to 06/27/2018 

Variables BCA 
Bank 

Bukopin 
BNI BRI BTN 

Bank 

Danamon 

Bank 

Mandiri 

Bank 

Permata 

Bank 

CIMB 

Niaga 

Bank 

OCBC 

NISP 

BCA 1 0.736 0.784 0.789 0.776 0.576 0.836 0.607 0.679 0.117 

Bank Bukopin 0.736 1 0.889 0.916 0.896 0.697 0.893 0.864 0.896 0.122 

BNI 0.784 0.889 1 0.939 0.884 0.689 0.951 0.820 0.909 0.070 

BRI 0.789 0.916 0.939 1 0.954 0.794 0.962 0.858 0.903 0.248 

BTN 0.776 0.896 0.884 0.954 1 0.716 0.932 0.777 0.828 0.343 

Bank 

Danamon 
0.576 0.697 0.689 0.794 0.716 1 0.735 0.759 0.729 0.368 

Bank Mandiri 0.836 0.893 0.951 0.962 0.932 0.735 1 0.846 0.891 0.173 

Bank Permata 0.607 0.864 0.820 0.858 0.777 0.759 0.846 1 0.901 0.045 

Bank CIMB 

Niaga 
0.679 0.896 0.909 0.903 0.828 0.729 0.891 0.901 1 -0.018 

Bank OCBC 

NISP 
0.117 0.122 0.070 0.248 0.343 0.368 0.173 0.045 -0.018 1 
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Table 2. Transformation of Coefficient Correlation Value to Distance from Table 1 

Variables BCA 
Bank 

Bukopin 
BNI BRI BTN 

Bank 

Danamon 

Bank 

Mandiri 

Bank 

Permata 

Bank 

CIMB 

Niaga 

Bank 

OCBC 

NISP 

BCA 0 0.73 0.66 0.65 0.67 0.92 0.57 0.89 0.80 1.33 

Bank Bukopin 0.73 0 0.47 0.41 0.46 0.78 0.46 0.52 0.46 1.33 

BNI 0.66 0.47 0 0.35 0.48 0.79 0.31 0.60 0.43 1.36 

BRI 0.65 0.41 0.35 0 0.30 0.64 0.27 0.53 0.44 1.23 

BTN 0.67 0.46 0.48 0.30 0 0.75 0.37 0.67 0.59 1.15 

Bank 

Danamon 
0.92 0.78 0.79 0.64 0.75 0 0.73 0.69 0.74 1.12 

Bank Mandiri 0.57 0.46 0.31 0.27 0.37 0.73 0 0.55 0.47 1.29 

Bank Permata 0.89 0.52 0.60 0.53 0.67 0.69 0.55 0 0.44 1.38 

Bank CIMB 

Niaga 
0.80 0.46 0.43 0.44 0.59 0.74 0.47 0.44 0 1.43 

Bank OCBC 

NISP 
1.33 1.33 1.36 1.23 1.15 1.12 1.29 1.38 1.43 0 

All correlation coefficient values that are not significant based on the 𝑡 statistical test in Equation (4) 

are not considered the edge weights of network G. It means that there is no correlation between vertices. 

Hence, the distance between vertices is zero. 

 

Figure 3. Spanning Tree with Vertex Betweenness in Period 1 

In Figure 3, the vertex with blue color is the betweenness vertex. The correlation coefficient matrix 

and the distance transformation results in all periods are not presented in this paper. However, the spanning 

tree of all periods can be seen in Figure 4, while the vertex betweenness can be seen in Table 3. 
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Table 3. Vertex Betweenness Based on Time Period 

Period Vertex Betweenness Period Vertex Betweenness 

1 01/22/2018 to 06/27/2018 BRI 17 09/10/2018 to 02/04/2019 Bank Danamon 
2 02/05/2018 to 07/11/2018 BRI 18 09/25/2018 to 02/19/2019 Bank CIMB Niaga, BNI 
3 02/20/2018 to 07/25/2018 BRI, Bank Mandiri 19 10/09/2018 to 03/05/2019 Bank CIMB Niaga, BNI 

4 03/06/2018 to 08/08/2018 Bank Mandiri 20 10/23/2018 to 03/20/2019 Bank OCBC NISP 

5 03/20/2018 to 08/24/2018 BRI, Bank Mandiri, 

BTN 

21 11/06/2018 to 04/04/2019 Bank Permata 

6 04/04/2018 to 09/07/2018 Bank Mandiri, Bank 

CIMB Niaga, BTN 

22 11/21/2018 to 04/22/2019 Bank CIMB Niaga, BNI 

7 04/18/2018 to 09/24/2018 Bank Mandiri 23 12/05/2018 to 05/07/2019 Bank CIMB Niaga, BNI 

8 05/03/2018 to 10/08/2018 BNI, Bank CIMB 

Niaga 

24 12/19/2018 to 05/21/2019 BNI, Bank Bukopin 

9 05/18/2018 to 10/22/2018 Bank CIMB Niaga 25 01/08/2019 to 06/12/2019 Bank Bukopin 

10 06/05/2018 to 11/05/2018 Bank CIMB Niaga 26 01/22/2019 to 06/26/2019 Bank Bukopin, Bank 

Mandiri 

11 06/28/2018 to 11/19/2018 Bank CIMB Niaga, 

BRI 

27 02/06/2019 to 07/10/2019 Bank Bukopin, Bank 

Mandiri 

12 07/12/2018 to 12/04/2018 BRI 28 02/20/2019 to 07/24/2019 Bank Bukopin, Bank 

Mandiri 

13 07/26/2018 to 12/18/2018 Bank CIMB Niaga 29 03/06/2019 to 08/07/2019 Bank Bukopin, BRI 

14 08/09/2018 to 01/07/2019 Bank CIMB Niaga, 

BRI 

30 03/21/2019 to 08/21/2019 BNI, BRI 

15 08/09/2018 to 01/07/2019 Bank CIMB Niaga, 

BNI 

31 04/05/2019 to 08/30/2019 Bank Bukopin, BNI 

16 08/09/2018 to 01/07/2019 Bank Danamon, BCA 32 04/23/2019 to 08/30/2019 Bank Mandiri 

 

 

Figure 4. Spanning Tree with Vertex Betweenness in Periods  
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The information obtained from Figure 4, there is a change in the vertex betweens of each network in 

different periods. This means that the position of banks that influence other banks changes dynamically over 

a period of time. These changes are caused by stock price fluctuations. For this case, we divide the clusters 

based on four periods; the cluster members are presented in Table 4. 

Table 4. Cluster member 

Period Cluster 1 (Vertex Betweenness) Cluster 2 

1 to 8 

(22/01/2018-08/10/2018) 

BRI, Bank Mandiri, BTN, Bank CIMB 

Niaga, BNI 

BCA, Bank Bukopin, Bank Danamon, 

Bank Permata, Bank OCBC NISP 

9 to 16 

(18/05/2018-07/01/2019) 

Bank CIMB Niaga, BRI, BNI, Bank 

Danamon, BCA 

Bank Bukopin, BTN, Bank Permata, 

Bank Mandiri, Bank OCBC NISP 

17 to 24 

(10/09/2018-21/05/2019) 

Bank Danamon, Bank CIMB Niaga, 

BNI, Bank OCBC NISP, Bank Permata, 

Bank Bukopin 

BCA, BRI, BTN, Bank Mandiri 

25 to 32 

(08/01/2019-30/08/2019) 

Bank Bukopin, Bank Mandiri, BRI, BNI BCA, BTN, Bank Danamon, Bank 

Permata, Bank CIMB Niaga, BNI, Bank 

OCBC NISP 

Cluster 1 members in Table 4 are vertex between banks, meaning they are close to other banks. The 

bank's role was vital during that period. It can also be said that cluster member 1 is a bank with significant 

influence on other banks. 

The findings of this research provide helpful information for investors when buying and selling bank 

stock. Based on this information, investors should buy bank stock by looking at the bank's condition, which 

is the vertex betweenness in these periods. 

 

4. CONCLUSIONS 

This study produces several conclusions, namely: 

1. Clustering based on betweenness centrality in a case study of stock price correlation is useful when 

converting correlation coefficient values into distances. Efforts to build a network with edge weights as 

distances make minimum spanning trees a simple and valuable method for cluster analysis of bank stock 

prices. 

2. The main contribution of this study is a new procedure in determining the technique of grouping banking 

companies with important positions by looking at the level of correlation between banks. 

3. Several betweenness vertices obtained from dynamic networks with the minimum spanning tree method 

make banking companies members of clusters that greatly influence other banks. 

Useful information from the findings of this study is for investors in the field of buying and selling 

bank shares to make decisions about buying bank shares. 

Actually, the method used in this research is suitable for small data as well as big data with complex 

networks. However, simulations about it have not been carried out. This research's limitation is that it has yet 

to present a method for predicting cluster conditions in the next period based on historical periods. So, for 

future research, this clustering method will be combined with predictive distribution to predict [13] [16], and 

also correspondence analysis for categorical data as variables in the research [17] [18]. Predictive distribution 

helps determine cluster members (vertex betweenness) based on previous periods. Next, the method can also 

be applied to decompose traffic jams.  The problem of vehicle volume on each road can be correlated as long 

as the roads are connected, so it can be represented as a connected network. 
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