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ABSTRACT 

Article History: In this study, we investigate the joint distribution of local and global climate factors in 

Kalimantan, Indonesia, using fully and partially nested copula models. The analysis 

focuses on capturing the dependencies between local factors (precipitation and the 

number of dry days) and global indices (ENSO and IOD). The methodology involves 

estimating the marginal distributions of each variable using goodness-of-fit tests, and then 

modeling the dependence structure between variables with a range of copulas. We used 

both one-parameter copulas, including Gaussian, Clayton, Gumbel, Joe, and Frank, as 

well as two-parameter copulas, such as BB1, BB7, and BB8, with rotations of 90°, 180°, 

and 270° applied to account for negative dependencies. Nested copula structures were 

employed to model multivariate dependencies, with fully nested and partially nested 

approaches used to capture interactions between all four variables. The results show that 

global climate indices, particularly ENSO and IOD, have a more substantial influence 

during the dry season, impacting drought conditions in Kalimantan. The copula method 

offers a flexible and efficient way to construct multivariate joint distributions, better 

representing complex climate relationships than traditional models. Future work could 

extend this approach to include additional climate variables and use real-time data for 

forest fire risk prediction. 
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1. INTRODUCTION 

Forest and land fires are significant environmental challenges in Indonesia, particularly affecting 

regions like Central Sumatra, South Sumatra, South Kalimantan, and Merauke [1]. These areas frequently 

experience extensive burned land due to various factors, including climatic conditions and human activities. 

The El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are two key climatic 

phenomena influencing the occurrence and severity of these fires [2]. The positive phase of the IOD, 

characterized by warmer sea surface temperatures in the western Indian Ocean, can lead to drier conditions 

in Indonesia. Similarly, during the warm phase of ENSO, prolonged dry spells and elevated temperatures can 

exacerbate the likelihood of forest and land fires. 

Indonesia is a country located at the equator, so many factors influence the season system in Indonesia, 

including global phenomena such as ENSO and IOD [3]. The Indian Ocean Dipole (IOD) is a phenomenon 

resulting from the interaction between the sea and the atmosphere in the Indian Ocean. IOD consists of 

positive and negative IOD. Meanwhile, El Nino-Southern Oscillation (ENSO) is a phenomenon of deviation 

from sea surface temperatures in the Pacific Ocean near the central and eastern equator. The ENSO 

phenomenon is divided into two phases: El Nino, the warm ENSO phase, and La Nina, the cold ENSO phase 

[4]. 

The phenomenon of positive IOD and El Nino co-occurring will cause a decrease in sea surface 

temperatures in Indonesian waters. This will impact reducing the intensity of rainfall, which will indirectly 

create a drought risk in several regions of Indonesia [5]. Drought causes litter and trees to dry out or even die, 

and groundwater reserves will decrease, thus triggering forest and land fires. 

Several studies have previously been carried out to examine the influence of rainfall and global climate 

indicators, namely ENSO and IOD, on the incidence of forest and land fires in Indonesia. Nuralita et al. [5] 

studied the relationship between rainfall and the El Nino climate phenomenon and positive IOD, which was 

analyzed using statistical time functions. Ryadi et al. [6] discussed the influence of El Nino and La Nina on 

the level of land drought, distribution of rainfall and sea surface temperature using linear regression statistical 

analysis. Najib et al. [7] used the copula method to study the influence of ENSO on the joint distribution of 

drought indicators, such as total precipitation, the number of dry days, and precipitation anomalies in relation 

to increased risk of forest fires. 

Based on the research that has been carried out, the multidimensional copula method is not widely used 

in research on the influence of drought and global climate indicators on forest fire incidents in Indonesia. 

Copula is a function that allows users to separate marginal distributions from dependency structures in certain 

multivariate distributions [8]. In multivariate statistical analysis, copula is a valuable approach to studying 

non-linear dependencies between events in multivariate cases. Thus, the copula can model the dependency 

structure between indicators and is flexible enough to model data that does not meet the characteristics of a 

normal distribution. As an annual disaster in Indonesia, forest and land fires cause various losses. It would 

be better if this phenomenon could be detected early as an initial step in preventing it. 

Therefore, this study analyzes the joint distribution between total precipitation and the number of dry 

days in Kalimantan, ENSO, and IOD. The total precipitation and the number of dry days data used in this 

research have been processed in previous research by Najib et al. [7]. Meanwhile, data on global climate 

indicators, i.e., ENSO and IOD, were obtained from the Oceanic Nino index, SST 3.4 Index (ONI), and 

Dipole Mode Index (DMI). The analysis was carried out using the fully and partially nested copulas method 

based on the Inference of Function for Margins (IFM) to estimate copula parameters. 

2. RESEARCH METHODS 

A copula is a statistical concept that represents the dependence pattern between random variables in 

probability theory and multivariate statistics. It is beneficial when working with complicated, high-

dimensional data where the relationships between variables are difficult to define using conventional 

approaches. Copulas are used in various disciplines, including economics, finance, hydrology, and earth 

science [9]–[11]. Copula theory's main premise is to distinguish between modeling marginal distributions 

and modeling the joint distribution, enabling more flexible and thorough representations of dependence 

patterns. 
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2.1. Definition of Copulas 

Sub-copulas are first defined as a specific class of grounded 2-increasing functions with margins, and 

then copulas are defined as sub-copulas with domain 𝑰 where 𝑰 = [𝟎, 𝟏]. 

Definition 1. A 2-dimensional sub-copula (or 2-subcopula, or just a sub-copula) is a function 𝐶′ that has the 

following properties: 

1. Domain 𝐶′ = 𝑆1 × 𝑆2 where 𝑆1 and 𝑆2 are subsets of 𝐼 containing 0 and 1; 

2. 𝐶′ is grounded and 2-increasing; 

3. For every 𝑢 ∈ 𝑆1 and 𝑣 ∈ 𝑆2, 𝐶′(𝑢, 1) = 𝑢 and 𝐶′(1, 𝑣) = 𝑣 

Definition 2. A 2-dimensional copula (or 2-copula, or just a copula) is a 2-subcopula 𝐶 whose domain is 𝐼2. 

Equivalently, a copula is a function 𝐶 from 𝐼2 to 𝐼 with the following properties: 

1. For every 𝑢, 𝑣 ∈ 𝐼, 𝐶(𝑢, 0) = 𝐶(0, 𝑣) = 0, 𝐶(𝑢, 1) = 𝑢, and 𝐶(1, 𝑣) = 𝑣 

2. For every 𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ 𝐼 such that 𝑢1 ≤ 𝑢2 and 𝑣1 ≤ 𝑣2, 

𝐶(𝑢2, 𝑣2) − 𝐶(𝑢1, 𝑣2) − 𝐶(𝑢2, 𝑣1) + 𝐶(𝑢1, 𝑣1) ≥ 0 

It should be noted that for every (𝑢, 𝑣) in 𝐶′, 0 ≤ 𝐶′ ≤ 1, implying that Range 𝐶′ is likewise a subset 

of 𝐼. In summary, copulas model the dependence structure among several random variables. In contrast, sub-

copulas are a subset of copulas that explicitly explain the dependence structure among a specified subset of 

those variables. 

2.1.1. Sklar’s Theorem 

The foundation of many, if not most, of the practical applications of the theory of copulas to statistics 

is Sklar's theorem, which is essential to understanding that theory. Sklar's theorem explains the importance 

of copulas in the link between multivariate distribution functions and their univariate margins. As a result, 

this section opens with a quick overview of distribution functions. 

Definition 3. A cumulative distribution function (or distribution function, or CDF) is a function 𝐹𝑋 with 

domain ℝ that has the property 

1. 𝐹𝑋 is non-decreasing, 

2. 𝐹𝑋(−∞) = 0 and 𝐹𝑋(∞) = 1. 

Definition 4. A joint cumulative distribution function (or joint distribution function, or joint CDF) is a 

function 𝐹𝑋𝑌 with domain ℝ2 that has the property 

1. 𝐹𝑋𝑌 is 2-increasing, 

2. 𝐹𝑋𝑌(𝑥, −∞) = 𝐹𝑋𝑌(−∞, 𝑥) = 0 and 𝐹𝑋𝑌(∞, ∞) = 1 

Based on Definition 4, 𝐹𝑋𝑌 is grounded, and because Domain 𝐹𝑋𝑌 = ℝ2. 𝐹𝑋𝑌 has margins 𝐹𝑋 and 𝐹𝑌 

given by 𝐹𝑋(𝑥) = 𝐹𝑋𝑌(𝑥, ∞) and 𝐹𝑌 = 𝐹𝑋𝑌(∞, 𝑦). Since 𝐹𝑋𝑌 is a grounded 2-increasing function, 𝐹𝑋𝑌 is non-

decreasing in each argument, meaning that the horizontal, vertical, and diagonal sections of a joint distribution 

function 𝐹𝑋𝑌 are all non-decreasing. Therefore, 𝐹𝑋 and 𝐹𝑌 are distribution functions. Sklar's Theorem is a 

fundamental result in the field of copula theory, which is used to study the dependence structure between 

random variables. Sklar's Theorem provides a way to construct multivariate joint distribution functions from 

marginal distribution function of individual variables and a copula function that describes their dependence. 

Copulas allow us to separate the effect of dependence from effects of the marginal distributions [12]. 

Theorem 1. (Sklar’s Theorem). Let 𝑋 and 𝑌 be random variables with marginal cumulative distribution 

functions (CDFs) 𝐹𝑋(𝑥) and 𝐹𝑌(𝑦), respectively. Then there exists a copula function 𝐶(𝑢, 𝑣) such that for 

any values 𝑥 and 𝑦 in the support of the respective marginal distributions: 

 

𝐹𝑋𝑌(𝑥, 𝑦)  =  𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) (1) 
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where 𝐹𝑋𝑌 is the joint distribution function (CDF) of 𝑋 and 𝑌. If 𝐹𝑋 and 𝐹𝑌 are continuous, then 𝐶 is unique; 

otherwise, 𝐶 is uniquely determined on Range 𝐹𝑋 × Range 𝐹𝑌. 

In other words, the joint distribution functions can be expressed as a function of the marginal 

distribution functions through a copula function, which characterizes the dependence structure between the 

variables. This theorem is particularly useful in cases where you want to separate the modeling of marginal 

distributions from the modeling of dependence. Copula methods have become ubiquitous when analyzing, 

modeling, and quantifying the dependence between variables [13]. 

2.2. Copula-based Joint Density Function 

Given the copula and the marginal distributions of the variables, the joint density function can be 

derived. It describes the likelihood of observing specific values for all the variables simultaneously. 

Definition 5. A probability density function (or density function, or PDF) is a function 𝑓𝑋 with domain ℝ that 

has the property 

1. 𝑓𝑋 is non-negative, 𝑓𝑋(𝑥) ≥ 0, 

2. ∫ 𝑓𝑋(𝑥) 𝑑𝑥 = 1
∞

−∞
 

3. 𝑃(𝑎 ≤ 𝑥 ≤ 𝑏) = ∫ 𝑓𝑋(𝑥) 𝑑𝑥
𝑏

𝑎
 

Definition 6. A joint probability density function (or joint density function, or joint PDF) is a function 𝑓𝑋𝑌 

with domain ℝ2 that has the property 

1. 𝑓𝑋𝑌 is non-negative, 𝑓𝑋𝑌(𝑥, 𝑦) ≥ 0, 

2. ∫ ∫ 𝑓𝑋𝑌(𝑥, 𝑦) 𝑑𝑥
∞

−∞
𝑑𝑦

∞

−∞
= 1 

3. 𝑃(𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑) = ∫ ∫ 𝑓𝑋𝑌(𝑥, 𝑦) 𝑑𝑥
𝑏

𝑎
𝑑𝑦

𝑑

𝑐
 

The distribution function (CDF) and density function (PDF) are complementary concepts for 

describing random variables. The CDF gives a cumulative view of probabilities, while the PDF provides a 

detailed view of probabilities at specific values. They are mathematically related through differentiation (for 

continuous random variables) and thoroughly describe a random variable's probability distribution. 

Therefore, several references provide other definitions of CDF, as follows. 

Definition 7. A cumulative distribution function (or distribution function, or CDF) is a function 𝐹𝑋 with 

domain ℝ defined for each number x, such that: 

 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓𝑋(𝑡)
𝑥

−∞

𝑑𝑡 (2) 

 

where 𝑓𝑋 is a probability density function.  

2.2.1. Consequence of Sklar’s Theorem 

Just as a distribution function has a density function, a copula also has a density. Therefore, a copula 

can also be written as the integral of its density function. 

Definition 8. Let C is a unique copula, then C can be expressed as: 

 

𝐶(𝑢, 𝑣) = ∫ ∫ 𝑐(𝑠, 𝑡)
𝑢

0

𝑑𝑠
𝑣

0

𝑑𝑡 (3) 

 

where 𝑢 = 𝐹𝑋(𝑥) and 𝑣 = 𝐹𝑌(𝑦) and 𝑐 is the corresponding copula density function.  

 

The important consequence of Sklar’s theorem then stated that every joint probability density 𝑓𝑋𝑌 is 

also writable by the product of its marginal probability densities 𝑓𝑋 and 𝑓𝑌 and the copula density 𝑐. 
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Corollary 1. Let 𝑓𝑋𝑌 is a joint density with marginal densities 𝑓𝑋 and 𝑓𝑌, then there exists a copula density c 

such that 

 

𝑓𝑋𝑌(𝑥, 𝑦) =  𝑐(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) ⋅ 𝑓𝑋(𝑥) ⋅ 𝑓𝑌(𝑦) (4) 

 

Proof. By deriving the right and left sides of Sklar's Theorem (Equation (1)) with respect to x and y, then 

Equation (4) proven. ∎ 

2.3. High-Dimension: Nested Copula 

For high-dimensional cases, Sklar's theorem can be extended as follows. 

Theorem 2. (Sklar’s Theorem) Let 𝑋1, 𝑋2, … , 𝑋𝑑 be random variables with marginal cumulative distribution 

functions (CDFs) 𝐹1, 𝐹2, … , 𝐹𝑑, respectively. Then there exists a copula function 𝐶 such that for any values 

𝑥1, 𝑥2, … , 𝑥𝑑 in the support of the respective marginal distributions: 

 

𝐹𝑋1,𝑋2,…,𝑋𝑑
(𝑥1, 𝑥2, … , 𝑥𝑑) =  𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑑(𝑥𝑑)) (5) 

 

where 𝐹𝑋1,𝑋2,…,𝑋𝑑
 is the joint distribution function (CDF) of 𝑋1, 𝑋2, … , 𝑋𝑑. If 𝐹1, 𝐹2, … , 𝐹𝑑 are continuous, then 

𝐶 is unique; otherwise, 𝐶 is uniquely determined on Range 𝐹1 × Range 𝐹2 × ⋯ × Range 𝐹𝑑. 

Copulas with higher dimensions, 𝑑 ≥ 3, can be constructed by exploiting the arrangement of several 

bivariate copulas. One approach is a nested copula, which constructs a multi-dimensional copula as a nested 

structure of a bivariate copula. Nested copulas offer several conveniences in constructing high-dimensional 

multivariate distributions, such as structural simplicity and computational conveniences. Figure 1 provides 

the structural construction of nested copulas in the 3-variate and 4-variate cases. Mathematically, the 

formulation for nested 3-copula and (fully and partially) nested 4-copula can be written as follows. 

 
Figure 1. Nested Structure of High-Dimensional Copulas, (a) Nested 3-Copula, (b) Fully Nested 4-Copula, and  

(c) Partially Nested 4-Copula 

Definition 9. (Nested 3-Copula) Let 𝑋1, 𝑋2, 𝑋3 be random variables with marginal cumulative distribution 

functions (CDFs) 𝐹1, 𝐹2, 𝐹3, respectively. Then, 3-copula C can be constructed from a nested structure of two 

bivariate copula (2-copulas) as follows: 

 

𝐶(𝑢1, 𝑢2, 𝑢3) =  𝐶2(𝐶1(𝑢1, 𝑢2), 𝑢3) (6) 

 

where 𝑢𝑖 = 𝐹𝑖(𝑥𝑖) for 𝑖 = 1,2,3. 

Definition 10. (Nested 4-Copula). Let 𝑋1, 𝑋2, 𝑋3, 𝑋4 be random variables with marginal cumulative 

distribution functions (CDFs) 𝐹1, 𝐹2, 𝐹3, 𝐹4, respectively. Then, 4-copula C can be constructed from a nested 

structure of three bivariate copula (2-copulas) as follows: 

1. Fully nested 4-copula 

𝑢1 𝑢2 

 
𝑢3 𝑢1 𝑢2 𝑢3 𝑢4 𝑢1 𝑢2 𝑢3 𝑢4 

𝐶1 

 

𝐶2 

 

𝐶1 

 

𝐶2 

 

𝐶1 

 

𝐶3 

 

𝐶3 

 

𝐶2 

 

(a)  (b)  (c)  
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𝐶(𝑢1, 𝑢2, 𝑢3, 𝑢4) = 𝐶3(𝐶2(𝐶1(𝑢1, 𝑢2), 𝑢3), 𝑢4) (7) 

 

2. Partially nested 4-copula 

 

𝐶(𝑢1, 𝑢2, 𝑢3, 𝑢4) = 𝐶3(𝐶1(𝑢1, 𝑢2), 𝐶2(𝑢3, 𝑢4)) (8) 

 

where 𝑢𝑖 = 𝐹𝑖(𝑥𝑖) for 𝑖 = 1,2,3,4. 

According to Definition 9, Definition 10, and Theorem 2, the joint distribution and probability density 

functions for the 3-variate and 4-variate cases are given by the following proposition. 

Proposition 1. Let 𝑋1, 𝑋2, 𝑋3 be random variables with marginal cumulative distribution functions (CDFs) 

𝐹1, 𝐹2, 𝐹3, respectively. Then, the joint distribution 𝐹1,2,3 can be constructed from a nested structure of two 

bivariate copula (2-copulas) as follow: 

 

𝐹1,2,3(𝑥1, 𝑥2, 𝑥3) =  𝐶2 (𝐶1(𝐹1(𝑥1), 𝐹2(𝑥2)), 𝐹3(𝑥3)) (9) 

 

As a result, the joint probability density function is written by: 

 

𝑓1,2,3(𝑥1, 𝑥2, 𝑥3) =  𝑐2 (𝐶1(𝐹1(𝑥1), 𝐹2(𝑥2)), 𝐹3(𝑥3)) ⋅ 𝑐1(𝐹1(𝑥1), 𝐹2(𝑥2)) ⋅ 𝑓1(𝑥1) ⋅ 𝑓2(𝑥2) ⋅ 𝑓3(𝑥3) (10) 

 

Proof. By deriving the right and left sides of Equation (9) with respect to 𝑥1, 𝑥2 and 𝑥3, then Equation (10) 

proven. ∎ 

Proposition 2. Let 𝑋1, 𝑋2, 𝑋3, 𝑋4 be random variables with marginal cumulative distribution functions 

(CDFs) 𝐹1, 𝐹2, 𝐹3, 𝐹4, respectively. Then, the joint distribution 𝐹1,2,3,4 can be constructed from a fully nested 

structure of three bivariate copula (2-copulas) as follow: 

 

𝐹1,2,3,4(𝑥1, 𝑥2, 𝑥3, 𝑥4) =  𝐶3 (𝐶2 (𝐶1(𝐹1(𝑥1), 𝐹2(𝑥2)), 𝐹3(𝑥3)) , 𝐹4(𝑥4)) (11) 

 

As a result, the joint probability density function is written by: 

 

𝑓1,2,3,4(𝑥1, 𝑥2, 𝑥3, 𝑥4)

= 𝑐3 (𝐶2 (𝐶1(𝐹1(𝑥1), 𝐹2(𝑥2)), 𝐹3(𝑥3)) , 𝐹4(𝑥4)) ⋅ 𝑐2 (𝐶1(𝐹1(𝑥1), 𝐹2(𝑥2)), 𝐹3(𝑥3))

⋅ 𝑐1(𝐹1(𝑥1), 𝐹2(𝑥2)) ⋅ 𝑓1(𝑥1) ⋅ 𝑓2(𝑥2) ⋅ 𝑓3(𝑥3) ⋅ 𝑓4(𝑥4) 

(12) 

 

Proof. By deriving the right and left sides of Equation (11) with respect to 𝑥1, 𝑥2, 𝑥3 and 𝑥4, then Equation 

(12) proven. ∎ 

Proposition 3. Let 𝑋1, 𝑋2, 𝑋3, 𝑋4 be random variables with marginal cumulative distribution functions 

(CDFs) 𝐹1, 𝐹2, 𝐹3, 𝐹4, respectively. Then, the joint distribution 𝐹1,2,3,4 can be constructed from a partially 

nested structure of three bivariate copula (2-copulas) as follow: 

 

𝐹1,2,3,4(𝑥1, 𝑥2, 𝑥3, 𝑥4) =  𝐶3 (𝐶1(𝐹1(𝑥1), 𝐹2(𝑥2)), 𝐶2(𝐹3(𝑥3), 𝐹4(𝑥4))) (13) 

 

As a result, the joint probability density function is written by: 
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𝑓1,2,3,4(𝑥1, 𝑥2, 𝑥3, 𝑥4)

= 𝑐3 (𝐶1(𝐹1(𝑥1), 𝐹2(𝑥2)), 𝐶2(𝐹3(𝑥3), 𝐹4(𝑥4))) ⋅ 𝑐1(𝐹1(𝑥1), 𝐹2(𝑥2))

⋅ 𝑐2(𝐹3(𝑥3), 𝐹4(𝑥4)) ⋅ 𝑓1(𝑥1) ⋅ 𝑓2(𝑥2) ⋅ 𝑓3(𝑥3) ⋅ 𝑓4(𝑥4) 

(14) 

 

Proof. By deriving the right and left sides of Equation (13) with respect to 𝑥1, 𝑥2, 𝑥3 and 𝑥4, then Equation 

(14) proven. ∎ 

2.4. Estimation Method 

The Inference of Function for Margin (IFM) method is a parametric method consisting of two steps, 

with the basis of each step containing the log likelihood approach [14]. This method is usually used to estimate 

the parameters of a multidimensional copula. The first step in this method is to construct a log likelihood 

function to estimate the marginal parameter vector �̂�𝑖, i.e. 

 

�̂�𝑖 = arg max ln 𝐿𝑖 = arg max ln ∏ 𝑓𝑖(𝑥𝑖
𝑡; 𝛼𝑖)

𝑁

𝑡=1

 (15) 

 

where 𝑓𝑖 is the probability density function of the random variable 𝑋𝑖. The second step of the IFM method is 

to estimate the copula parameters by maximizing the log value of the copula likelihood function 𝐿. For 

bivariate cases, it is written as follow. 

 

𝜃 = arg max ln 𝐿 = arg max ln ∏ 𝑐(𝐹1(𝑥1
𝑡; �̂�1), 𝐹2(𝑥2

𝑡; �̂�2); 𝜃)

𝑁

𝑡=1

 (16) 

 

where 𝜃 is the estimate of the copula parameter 𝜃 and 𝑐 is the copula probability density function [15], [16]. 

For 3- and 4-variate cases, copulas are formed through a nested structure of bivariate copulas as in Figure 1. 

The IFM method assumes independent working between marginal parameters and their log likelihood. 

The rules for estimating parameters with IFM are almost identical to the maximum likelihood method (MLE). 

We selected the most suitable copula function after the parameters were obtained from the estimation process. 

Selection is carried out using the goodness-of-fit test on each copula function based on several test statistics 

such as Root Mean Squared Error (RMSE), Akaike's Information Criterion (AIC), and Cramer-von Mises 

(CvM). 

The fully nested copula structure is constructed with the following procedures (based on the degree of 

dependence between the pair variables): 

a. As the first two variables (1 and 2), select the variables with the highest degree of dependence 

(rank-based), such as the Kendall-tau correlation. 

b. Using variables 1 and 2, estimate the copula. 

c. Evaluate the degree of dependence (rank-based) between empirical copula from step 2 with the 

remaining variables. 

d. Select variable 3, which has the maximum degree of dependence (rank-based) with the copula 

constructed using variables 1 and 2. 

e. Continue the process until the last variable is considered. 

Meanwhile, the partially nested copula structure is constructed by combining two or more fully nested ones. 
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3. RESULTS AND DISCUSSION 

3.1. Datasets 

We use four types of data in this research: total precipitation, the number of dry days, the Oceanic Nino 

Index (ONI), and the Dipole Mode Index (DMI). Total precipitation and dry days represent Kalimantan's 

local climate conditions. At the same time, ONI and DMI are global climate indices representing conditions 

in the Pacific and Indian Oceans. These four data sources come from different sources. Below is a brief 

explanation of each data source used. 

Total precipitation and the number of dry days are datasets processed in previous research by Najib et 

al. [7] with a spatial resolution of 0.25° × 0.25°. The temporal resolution used is monthly. ONI is a time series 

data downloaded from https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/, calculated using the average 

Hadley Center Sea Ice and Sea Surface Temperature (HadISST) data with monthly time intervals derived 

from observations in the Pacific Ocean (5°S-5°N and 170°-120°W). Meanwhile, DMI is a time series data 

downloaded from https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/ with monthly time intervals. DMI is data 

calculated using the average of HadISST data based on the sea surface temperature gradient anomaly between 

the western Indian Ocean (50°E-70°E and 10°S-10°N) and the southeastern Indian Ocean (90°-110°E and 

10°S-0°). We downloaded all data from 2001-2020. Then, we divided the data set into the dry season (May 

to October) and the rainy season (November to April). The determination of the dry season is based on the 

six months with the lowest average precipitation, as seen in Figure 2. 

 
Figure 2. Average Precipitation for Each Month in the Study Area in 2001-2020 

3.2. Marginal Distributions 

Data analysis begins by identifying the marginal distribution for each data group. The ten types of 

distribution used are normal, lognormal, extreme value, generalized extreme value, exponential, gamma, 

Weibull, logistic, loglogistic, and inverse Gaussian distributions. The initial step is to estimate each 

distribution's parameters by maximizing the likelihood function's log value. After that, the process continues 

by testing the fit distribution using the Anderson-Darling test. The distribution is then selected based on the 

most significant -value of Anderson-Darling statistics. Table 1 shows the chosen distribution and its 

parameters for each variable with the Anderson-Darling test. 

Table 1. Selected Marginal Distribution and Its Parameters for Each Variable with Anderson-Darling Test 

Variables 
Seasons 

Dry Rainy 

Total precipitation (𝑋1) 
Weibull: A = 217.6901, B = 3.2481 

fails to reject ℎ0 (𝑝 = 0.8233) 

Gamma: 𝑎 = 39.4287, 𝑏 = 8.007 

fails to reject ℎ0 (𝑝 = 0.9677) 

Number of dry days (𝑋2) 
Lognormal: 𝜇 =  2.7107, 𝜎 = 0.25076 

fails to reject ℎ0 (𝑝 = 0.5164) 

Loglogistic: 𝜇 = 2.333, 𝜎 = 0.099 

fails to reject ℎ0 (𝑝 = 0.6720) 

ONI (𝑋3) 
Logistic: 𝜇 = 0.054669, 𝜎 = 0.34694 

fails to reject ℎ0 (𝑝 = 0.9563) 

Generalized Extreme Value: 

𝑘 = −0.15, 𝜎 = 0.839, 𝜇 = −0.356 

fails to reject ℎ0 (𝑝 = 0.9662) 

DMI (𝑋4) 

Generalized Extreme Value: 

𝑘 = −0.19, 𝜎 = 0.3173, 𝜇 = 0.0206 

fails to reject ℎ0 (𝑝 = 0.9803) 

Logistic: 𝜇 = 0.10255, 𝜎 = 0.131 

fails to reject ℎ0 (𝑝 = 0.9825) 
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Table 1 shows that the families of marginal distributions selected for each variable are diverse. No one 

distribution family dominates. However, all selected distributions passed the Anderson-Darling statistical 

test, as indicated by their p-values of more than 5%. Figure 3 compares each variable's empirical and 

theoretical distribution in the dry and rainy seasons. 

 

Figure 3. Empirical (Bar Plot) and Theoretical (Line Plot) Distribution of Each Variable in Dry (Red) and  

Rainy (Blue) Seasons.  

Figure 3 shows that the distributions in the dry and rainy seasons are significantly different for 

variables 𝑋1 (total precipitation) and 𝑋2 (number of dry days), which shows that the season influences the 

conditions of these two variables. Meanwhile, the distribution of variables 𝑋3 and 𝑋4 is not significantly 

different in the dry and rainy seasons. This is because ENSO and IOD are annual phenomena, so they do not 

depend on the season in Kalimantan. 

3.3. Bivariate Copulas 

In our study, we employed a variety of copula functions to characterize the dependency structures 

between variables better. Copulas are powerful statistical tools that allow for the modeling of complex 

dependencies beyond linear relationships, particularly in multivariate distributions. Different copulas capture 

distinct aspects of the dependency structure, so we considered both one-parameter and two-parameter 

copulas. One-parameter copulas, such as the Clayton, Frank, Gumbel, Joe, and Galambos copulas, are more 

straightforward in their design, relying on a single parameter to capture the dependency between variables. 

Each of these copula’s models dependency in unique ways. For example, the Clayton copula is particularly 

suited for capturing strong lower-tail dependence, while the Gumbel copula effectively describes strong 

upper-tail dependence [17]. These copulas provide a flexible framework for understanding different types of 

asymmetric dependencies that can arise in data. 

On the other hand, two-parameter copulas, including the BB1, BB6, BB7, and BB8 copulas, offer an 

additional layer of complexity by introducing a second parameter. This allows them to capture more intricate 

dependency structures, including varying levels of both tail dependencies. For instance, the BB1 copula can 

simultaneously model both upper and lower tail dependencies with different intensities, providing a more 

nuanced representation of the underlying relationships between variables. 

Utilizing one-parameter and two-parameter copulas ensured that a wide range of dependency patterns 

could be accurately captured, allowing for a more comprehensive and flexible data analysis. However, some 

copulas can only capture the positive dependencies between variables, while the dependencies between 

precipitation and hotspots used in this study are negative. Therefore, a rotated copula, which is 90°, 180°, and 

270°, is necessary [18[, [19]. 

When copula is rotated 180°, the resulting copula is often called a survival copula. If Clayton copula 

can capture lower tail dependencies, then survival Clayton copula can capture upper tail dependencies. 

Moreover, negative dependencies can be captured using 90° and 270° rotated copulas [20]. The parameter 

for 90° and 270° rotated copula is negative of the corresponding copula parameter. Figure 4 shows the 

dependency structure constructed from pairs of variables using bivariate copula. Some information is 

displayed such as the Kendall-tau correlation coefficient, the selected bivariate copula function and its 

parameters, and the contour plot of the joint probability density functions (joint PDFs) between pairs of 

variables. 
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 (a) (b) 

Figure 4. Dependency Structure Between Two Variables Using Bivariate Copula: (a) Dry and (b) Rainy 

Seasons  

Figure 4 the highest dependency is in the relationship between variables 𝑋1 and 𝑋2 in the dry season. 

The Kendall-Tau correlation coefficient for this pair-variable is -72% which indicates a negative relationship 

between the two variables. Meanwhile, the most suitable copula function is the Gaussian copula with 

parameters: 𝜌 = −0.89. Gaussian copulas are a family of elliptical copulas that able to access both positive 

and negative relationships between two or more variables. As a result, rotation on the Gaussian copula is not 

necessary. The variable relationship that applies rotation is between 𝑋1 and 𝑋4, where the selected copula 

function is the Joe copula with a rotation of 90 degrees (written Joe-90). Furthermore, some variable 

relationships are more suitable to the copula function rotated 180 degrees or the survival copula function, 

such as the relationship between variables 𝑋2–𝑋3 and 𝑋2–𝑋4. Based on Figure 4(a) and Figure 4(b), the 

dependencies between variables in the rainy season are weaker than in the dry season. 

3.4. Nested Copula Structures 

In this study, we simulate constructing 3- and 4-variate nested copulas to model the dependencies in 

climate data from Kalimantan. Using nested copulas allows us to capture complex multivariate dependencies, 

which is particularly valuable when analyzing environmental data, where interactions between variables are 

often nonlinear and exhibit varying degrees of correlation. 

For the 3-variate case, we construct a fully nested 3-copula, where each pair of variables is linked 

through a hierarchy of copulas. This structure effectively models how the dependencies between the three 

climate variables evolve and interact across multiple layers. By nesting the copulas, we can account for 

dependencies that may not be captured by a single copula, enhancing the precision of our model. In the 4-

variate case, we explore two different configurations: fully nested 4-copulas and partially nested 4-copulas. 

The fully nested 4-copula follows a similar structure to the 3-variate case but with an additional 

variable, leading to a more intricate hierarchical structure. In this setup, all four climate variables are 

interconnected through layers of nested copulas, allowing us to model how their interdependencies propagate 

across different levels. In contrast, the partially nested 4-copula provides more flexibility by allowing only a 

subset of the variables to follow a nested structure. This means that while some variables may have a 

hierarchical relationship, others are modeled using simpler or direct copula connections. This approach is 

useful when not all variables exhibit the same level of dependence, enabling the model to accommodate 

varying strengths and forms of relationships between variables. 

3.4.1. Nested 3-Copula 

We construct fully nested 3-copulas for all combinations of the four variables used in the dry season. 

The construction steps for this fully nested 3-copula are as follows. 

a. Estimate 𝐹1, 𝐹2, and 𝐹3 (marginal distribution). 

b. Select the two variables with the highest degree of dependence, for example 𝑋1 and 𝑋2, then 

transform the two variables using their respective marginal distributions (notate the results as 𝑈1 

and 𝑈2). 
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c. Estimate 𝐶1 using 𝑈1 and 𝑈2 (first bivariate copula). 

d. Transform the remaining variable 𝑋3 using its marginal distribution (notate the result as 𝑈3). 

e. Estimate 𝐶2 using 𝑈3 and 𝐶2(𝑈1, 𝑈2) (second bivariate copula). 

Using the selected marginal distributions and copula functions, the joint distribution and joint probability 

density functions can be calculated using Equation (9) and Equation (10). Table 2 shows the results of the 

nested 3-copula structures and selected copula functions for all combinations of the four variables used in the 

dry season. 

Table 2. Nested 3-Copula Structures and Selected Copula Functions for All Combinations  

of Four Variables Used in the Dry Season 

Variables Structure C1 C2 Goodness-of-fits 

1,2,3 (1-2)-3 
Gaussian 

Param1 = -0.89198 

Galambos-180 

Param1 = 0.16967 

RMSE = 0.017 

CvM = 0.036 

pVal = 0.668 

1,2,4 (1-2)-4 
Gaussian 

Param1 = -0.89198 

BB1-90 

Param1 = 0 

Param2 = -1 

RMSE = 0.015 

CvM = 0.026 

pVal = 0.710 

1,3,4 (1-3)-4 
Gaussian 

Param1 = -0.46039 

Frank 

Param1 = 0.19357 

RMSE = 0.022 

CvM = 0.059 

pVal = 0.583 

2,3,4 (2-3)-4 

BB7-180 

Param1 = 1.3906 

Param2 = 0.62636 

Clayton-180 

Param1 = 0.37842 

RMSE = 0.024 

CvM = 0.069 

pVal = 0.549 
 

The brackets in the structure notation indicate the order in which pairs of variables are selected first. 

For example, the structure (1-2)-3 shows that the fitting process chooses the pair of variables 𝑋1 and 𝑋2 

because this pair of variables has the highest level of dependence, as shown in Figure 4. After that, the copula 

results are based on 𝑋1 and 𝑋2, denoted 𝐶1 (called inner copula), then paired with variable 𝑋3 to produce 

copula 𝐶2 (called outer copula). This also applies to other cases. Based on Table 2, the copula functions 

chosen to construct the trivariate joint distribution are various. This is obtained based on different patterns 

for each pair of variables. Moreover, goodness-of-fit tests show that the model (joint distribution) obtained 

fits the original data well. The joint distribution formed with a CvM p-value of more than 5% is acceptable 

for further analysis. 

3.4.2. Nested 4-Copula 

As in the previous subsection, we simulate the construction of a 4-dimensional copula (4-copula) with 

two approaches: fully and partially nested 4-copula. The general formulation can be seen in Figures 1.b and 

1.c. Construction begins by selecting two variables with the highest degree of dependence (say 𝑥1 and 𝑥2), 

then transforming them into 𝑢1 and 𝑢2 and then the first bivariate copula 𝐶1 can be obtained from them. After 

that, for fully nested, 𝐶1 is sequentially paired with 𝑢3 then 𝑢4, i.e., the transformation results of 𝑥3 and 𝑥4 

where 𝑥3 has a dependency with 𝐶1 that is greater than 𝑥4. Meanwhile, for partially nested, 𝐶1 is paired with 

the copula produced by 𝑢3 and 𝑢4. Table 3 shows the results of the fully and partially nested 4-copula 

structures and selected copula functions of four climate variables in the dry season. 

Table 3. Fully and Partially Nested 4-Copula Structures and Selected Copula Functions for  

Climate Data in Kalimantan in the Dry Season 

Structure C1 C2 C3 Goodness-of-fits 

Fully 

((1-2)-3)-4 

Gaussian 

Param1 = -0.89198 

Galambos-180 

Param1 = 0.16967 

Galambos 

Param1 = 0.17405 

RMSE = 0.016 

CvM = 0.029 

pVal = 0.696 

Partially 

(1-2)-(3-4) 

Gaussian 

param1 = -0.8920 

Clayton-180 

param1 = 0.3732 

Gumbel 

param1 = 1.5073 

RMSE = 0.016 

CvM = 0.030 

pVal = 0.692 
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Table 4. Fully and Partially Nested 4-Copula Structures and Selected Copula Functions for  

Climate Data in Kalimantan in the Rainy Season 

Structure C1 C2 C3 Goodness-of-fits 

Fully 

((1-2)-3)-4 

BB7-270 

param1 = -1.4827 

param2 = -0.58574 

Clayton 

param1 = 0.093375 

Clayton 

param1 = 0.038512 

RMSE = 0.038 

CvM = 0.175 

pVal = 0.289 

Partially 

(1-2)-(3-4) 

BB7-270 

param1 = -1.4827 

param2 = -0.5857 

Gaussian 

param1 = 0.2769 

Gumbel 

param1 = 1.7449 

RMSE = 0.022 

CvM = 0.058 

pVal = 0.583 

 

The bracket notation in the structure indicates the sequence in which pairs of variables are selected. 

For instance, the structure ((1−2)−3)−4 signifies that the variables 𝑋1 and 𝑋2 are chosen first, as this pair 

exhibits the strongest dependence, as illustrated in Figure 4. Following this, the copula formed between 𝑋1 

and 𝑋2 , denoted as 𝐶1, is then paired with the variable 𝑋3, which has the highest dependence with 𝐶1, resulting 

in the second copula 𝐶2. Finally, 𝐶2 is combined with the remaining variable 𝑋4, producing the third copula, 

𝐶3. This process is similarly applied to other cases. As presented in Table 3 and Table 4, it is evident that 

different copula functions are selected to construct the 4-variate joint distribution, reflecting the varying 

dependence structures among the pairs of variables. The selection of these copula functions is based on 

distinct dependence patterns observed for each pair of variables. 

Moreover, goodness-of-fit tests reveal that the resulting joint distribution model competes strongly 

with the original data. The joint distribution is deemed acceptable for further analysis with a Cramér-von 

Mises (CvM) p-value well above the 5% threshold. This indicates that the constructed copula model 

accurately represents the multivariate dependence structure, allowing for reliable inferences in subsequent 

stages of the analysis. Copulas provide an effective and efficient way to build multivariate joint distributions. 

3.5. Discussion 

In this study, we have employed the copula methodology to analyze the joint distribution of local 

climate factors (total precipitation and number of dry days) and global climate indices (ENSO and IOD) in 

Kalimantan. We captured the complex dependence structure between these variables in dry and rainy seasons 

using fully and partially nested copula models. The results from bivariate copula analysis reveal significant 

negative dependencies between the local climate factors, particularly in the dry season. For instance, the 

strong negative relationship between total precipitation and the number of dry days indicates that as dry days 

increase, precipitation decreases. This is consistent with the overall dry conditions experienced in Kalimantan 

during the dry season. Interestingly, the dependencies involving global climate indices (ENSO and IOD) were 

weaker in the rainy season compared to the dry season. This suggests that the influence of global phenomena 

like ENSO and IOD on local climate conditions in Kalimantan is more pronounced during periods of drought. 

The nested copula structures provided further insights into the multivariate dependencies. The fully 

nested 3- and 4-copula models were effective in capturing the joint behavior of the local and global climate 

factors. The selection of various copula functions (e.g., Gaussian, Clayton, Frank) for different pairs of 

variables reflects the diverse dependence structures present in the data. Additionally, the goodness-of-fit tests 

confirmed that the copula models provide an acceptable fit to the data, making them suitable for further 

analysis, such as predicting drought events or forest fires. 

4. CONCLUSION 

This study demonstrates the effectiveness of copula methods to model the complex dependencies 

between local and global climate factors in Kalimantan. By employing both fully and partially nested copula 

structures, we successfully captured the intricate relationships between precipitation, the number of dry days, 

and global climate indices such as ENSO and IOD. The results highlight the global phenomena, particularly 

ENSO and IOD, have a more substantial impact during the dry season, influencing drought conditions in 

Kalimantan. Additionally, the copula method offers simplicity and flexibility in constructing multivariate 

joint distributions, allowing for a more detailed and accurate representation of dependencies than traditional 

linear models. This provides a significant advantage in modeling complex climate interactions and predicting 

extreme events, such as droughts or forest fires, based on the interplay between local and global climate 

factors. 
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