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ABSTRACT 

Article History: Numerical methods are crucial for solving ordinary differential equations (ODEs) that 

frequently arise in various fields of science and engineering. This study compares three 

numerical methods: the fourth-order Runge-Kutta method (RK4), the fourth-order Runge-

Kutta Contra-harmonic Mean method (CoM4), and the fourth-order Adam-Bashforth-

Moulton method (ABM4) in solving initial value problems of ODEs. Three IVPs of ODEs 

have been solved with varying step sizes using the three methods that have been proposed, 

and the solutions for each step size are examined. Numerical comparisons between RK4, 

CoM4, and ABM4 methods have been presented to solve three initial problems of ODE. 

Simulation results show that each method has advantages and limitations depending on 

the type of ODE being solved. We find that for very small step sizes, the numerical solutions 

agree the best with the exact solution. As such, all three proposed approaches are 

sufficient to solve the IVP ODE accurately and efficiently. Among the three proposed 

methods, we observe that the mean absolute error for the RK4 method is the smallest, 

followed by the ABM4 method. 
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1. INTRODUCTION 

Differential equations play an essential role in solving complex mathematical problems in almost every 

area of science and engineering. Many real-world issues arise in ordinary differential equations (ODEs) or 

systems of ODEs. Differential equations are commonly used for mathematical modeling in science and 

engineering. In most real-world situations, the differential equations that model the problem are too complex 

to be solved accurately, so one of two approaches is taken to approximate a solution. The first approach is to 

simplify the differential equations to equations that can be solved exactly. The second approach uses 

numerical approximation methods to solve the initial value problems (IVP) in ODEs. There are a few methods 

for solving IVP, and all numerical methods are not equally accurate and effective [1]. 

Many studies have been conducted to find solutions to ordinary differential equations and systems of 

ordinary differential equations. Unfortunately, most of the differential equations obtained after modeling real-

world problems are non-linear, and this causes significant problems to be solved by analytical methods. 

Therefore, numerical methods have been developed and have proven to be very helpful in solving such 

ordinary differential equations. In addition, many computer programs have been developed to assist users in 

solving such equations. From the literature review, many authors have determined the IVP solution of the 

ODE using various numerical methods, namely the Euler method, the modified Euler method, and the 4th-

order Runge-Kutta method (RK-4), among others. For example, [2]  presents the analysis of the accuracy of 

IVPs for ODE using the Euler Method, and in [3], the author tries to find an accurate solution using the RK-

4 method for IVPs ODE. Various numerical methods are discussed and given their accuracy order in [4], 

solving the IVP. Then, [5] conducted a comparative study on the numerical solution of the initial value 

problem by using Euler’s method, modified Euler’s method, and the Runge-Kutta method. From the results 

of this study, we concluded that the Runge-Kutta method is more powerful and efficient in finding numerical 

solutions to the initial value problem of an ODE. In [6], the authors compare fourth-order and butcher’s fifth-

order RK methods. Next, the author in [7] uses the RK4 approach to solve a mathematical model constructed 

using the SEIR framework. This study models the spread of hepatitis B in Ambon City over 20 years using 

data from the Central Statistics Agency and the Maluku Provincial Health Office. A compression study of 

multistep iterative methods for solving ordinary differential equations is discussed in [8]. Implicit methods 

for numerical solutions of singular initial value problems are a topic discussed by [9]. Furthermore, to solve 

the IVPs ODEs can be solved numerically using the predictor-corrector approach. This method is essentially 

two steps: first, it predicts an initial estimate (predictor), and then it refines this estimate (corrector). The 

fourth-order Adams-Bashforth method gives a better approximation result among the others mentioned 

methods (Euler, RK-4, RK-6) for solving initial value problems in ordinary differential equation Furthermore, 

ODEs can be solved numerically using the predictor-corrector approach to solve the IVP. This method is 

essentially two steps: first, it predicts an initial estimate (predictor) and then refines this estimate (corrector). 

The fourth-order Adams-Bashforth method gives a better approximation than the others mentioned methods 

(Euler, RK-4, RK-6) for solving initial value problems in ordinary differential equations [10]. [11] presents 

an efficient implementation of the fourth-order Adams-Bashforth-Moulton method for solving initial value 

problems in engineering applications. The study illustrates the accuracy and stability of the method through 

various test cases, highlighting its potential for improving computational efficiency in complex simulations. 

In real-world applications, a numerical method that uses a predictor and corrector scheme is the MacCormack 

Method. The MacCormack Method performs numerical simulations of pool and tsunami models for one-

dimensional (1D) shallow water wave equations with flat and non-flat topography [12]. People can read the 

excellent and comprehensive texts on this subject in [13], [14], [15], [16], [17], [18], [19]. 

New Runge-Kutta formulations using methods other than the conventional arithmetic mean have 

introduced a few new formulas for the numerical solution of IVP ODEs. In [20], the author presents a new 

modification of Heun’s method based on a contra-harmonic mean for solving high-efficiency initial value 

problems. A new fourth-order Runge-Kutta formula based on the Contra-Harmonic Mean (CoM) is discussed 

in [21]. [22] discussed the derivation of the fourth-order Runge-Kutta method based on functional values' 

harmonic mean (HM).   This paper shows that an alternative formulation of the Runge-Kutta formula can be 

constructed using the harmonic mean scheme of functional values to conform to the classical fourth-order 

formula. The harmonic mean formula performs slightly better than the standard Runge-Kutta (Arithmetic 

Mean or AM) formula in terms of accuracy for the problem in the paper. In [23], the author constructs new 

numerical methods for solving the initial value problem (IVP) in ordinary differential equations based on a 

symmetrical quadrature integration formula using hybrid functions. These methods will provide a new 
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computational tool for solving IVPs in ordinary differential equations and can be applied in various fields of 

science and engineering.  

Motivated by the above work, this study aims to analyze the calculation of numerical solutions for the 

initial value problems of ordinary differential equations. The novelty of this paper lies in the introduction of 

the 4th-order Contra-Harmonic Mean Runge-Kutta method. It compares it to established methods (4th-order 

Runge-Kutta and Adam-Bashforth-Moulton) for solving the initial of 1st-order differential equations. These 

contributions collectively advance the field of numerical methods for solving IVPs in ODEs, providing new 

tools and insights for researchers and practitioners to deal with complex differential equations. 

The paper is organized as follows: Section 2 presents research methods. Furthermore, results and 

discussion are given in Section 3. Finally, concluding remarks are provided in Section 4.  

2. RESEARCH METHODS 

The study of the comparison of the 4th-order Runge-Kutta method, 4th-order Runge-Kutta, Adam-

Bashforth-Moulton, and Contra-Harmonic Mean were used to solve the initial value problem of ordinary 

differential equations through four stages of research as shown in Figure 1 below. 

 
Figure 1. The Flowchart of Research Stages 

 

Let us consider the first-order differential equation with initial value problem (IVP): 

 
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0.                                                                    (1) 

 

where 𝑓 is a given function on two real variables, 𝑦 is an unknown function of the independent variable 𝑡, 𝑡0                        

is the initial time, and  𝑦0 is the initial value. 

Although analytical methods are available to solve differential equations, their applicability is limited 

to certain special types, which rarely include those arising in practical problems. Continuous approximations 

of the solutions 𝑦(𝑡) and 𝑦𝑖(𝑡), 𝑖 = 1, 2, 3, … , 𝑚  may not be found. Instead, approximations to  𝑦  and 𝑦𝑖 , 𝑖 =

1, 2, 3, … , 𝑚   will be produced at different values, in the interval [𝑎, 𝑏]. The numerical method to obtain 

approximate solutions to the corresponding solution values for various chosen values of 𝑡 = 𝑡𝑛 = 𝑎 +

𝑛ℎ, 𝑛 = 1, 2, 3, … and ℎ is the step size. The solutions to Equation (1) are given by the set of points 
{(𝑡𝑛, 𝑦𝑛): 𝑛 = 1, 2, 3, … } and each solution (𝑡𝑛, 𝑦𝑛) is an approximation to the corresponding point 

 (𝑡𝑛, 𝑦(𝑡𝑛))  on the solution curve. 

Several ODEs with different initial conditions are used as case studies to evaluate the performance of 

the three numerical methods. The numerical techniques compared are as follows: 
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2.1 The Fourth-Order Runge-Kutta 

The Fourth-Order Runge-Kutta method (RK4) is one of the most widely used techniques for solving 

ordinary differential equations (ODEs). The RK4 method approximates the solution of an initial value 

problem by considering the slope at several points within each step and then combining these slopes to 

produce a weighted average. 

The RK4 method computes the solution at the next step  𝑦𝑛+1  using the following formulas [16]: 

 

                                 1 1 2 3 4( 2 2 )
6

n n

h
y y k k k k+ = + + + +                                                     (2) 
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2.2 The Fourth-Order Runge-Kutta Contra-Harmonic Mean 

 The fourth-order Runge-Kutta contra-harmonic mean method (CoM4) is an advanced numerical 

technique for solving ordinary differential equations (ODEs). This method combines the traditional Runge-

Kutta approach with the contra-harmonic mean to enhance accuracy and stability, particularly for problems 

with significant variations in the solution. 

In 1995, [21] introduced the fourth-order Runge-Kutta method based on the contra-harmonic mean 

(CoM4). The CoM4 computes the solution at the next step 𝑦𝑛+1 using the following steps: 
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2.3 The Fourth-Order Adam-Bashforth-Moulton 

The Fourth-Order Adams-Bashforth-Moulton method (ABM4) is a predictor-corrector approach for 

solving ordinary differential equations (ODEs). It combines the explicit Adams-Bashforth method for 

prediction and the implicit Adams-Moulton method for correction. This combination enhances the numerical 

solution's accuracy and stability [19]. 

The fourth-order ABM method involves two main steps: the predictor (Adams-Bashforth) and 

the corrector (Adams-Moulton).  

a. Predictor (Adams-Bashforth 4th order): Uses previous values to estimate the solution at the next 

step 𝑦𝑛+1 explicitly using the following steps: 
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1 1 2 3(55 59 37 9 )

24

p
n n n n n n

h
y y f f f f+ − − −= + − + −                                          (4) 

 

b. Corrector (Adams-Moulton 4th order): Refines the predictor’s estimate by using the newly 

computed     solution value 𝑦𝑛+1 implicitly using the following steps: 

 

( )
1 1 1 2(9 19 5 )

24

p
n n n n n n

h
y y f f f f+ + − −= + + − +                                         (5) 

 

The absolute error for this formula is defined by Absolute Error=|𝑦(𝑡𝑛) − 𝑦𝑛 |. A numerical 

method is said to be convergent if  

 

lim
ℎ→0

1≤𝑛≤𝑁

|𝑦(𝑡𝑛) − 𝑦𝑛| = 0 

 

In numerical methods, we can use the mean absolute error (MAE) to compare the results of 

different approaches to determine the most accurate results. For example, when solving IVP of 

differential equations, MAE helps measure how close the numerical solutions are to the exact 

solution. The smaller the MAE, the better the numerical method. The formula is defined as 

follows, where N denotes the total number of iterations. 

 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦(𝑡𝑛) − 𝑦𝑛|

𝑁

𝑛=1
 

 

Using the MATLAB software, numerical simulations are carried out to obtain approximate 

solutions for each method. Finally, the absolute error and mean absolute error (MAE) of the three 

proposed methods for different step sizes are calculated to test their superiority.  

3. RESULTS AND DISCUSSION 

In this section, the numerical solution of IVP is discussed, which is solved using the RK4 method on 

Equation (2) using the CoM4 method on Equation (2) and using the ABM4 method on Equation (4) and 

Equation (5). The convergence of IVP is calculated by 𝑒𝑛 = |𝑦(𝑡𝑛) − 𝑦𝑛|< 𝛿  where  𝑦(𝑡𝑛) denotes the 

approximate solution and 𝑦𝑛 denotes the exact solution. Parameter 𝛿 depends on the problem, which varies 

from 10−7.  

To perform numerical comparisons, RK4, CoM4, and ABM4 are applied into two examples as follows: 

Example 1: Solve the initial value problem (IVP) 

2' e 50 , (0) 0ty y y−= − =  

using RK4, CoM4, and ABM4 methods with step sizes ℎ =0.02, ℎ =0.0025, and compare the errors on [0, 1]. 

The exact solution is 
50 481

48
( ) e ( 1 e )t ty t −= − + . 

Example 2: Solve the initial value problem (IVP) 

𝑦′ = 4 ln(𝑡) +
1

𝑡
𝑦;   𝑦(1) = 1 

using RK4, CoM4, and ABM4 methods with step sizes ℎ =0.01, ℎ =0.005, and compare the errors on [1, 2].. 

The exact solution is 
2( ) 2 ln ( )y t t t t= + . 

Example 3: Solve the initial value problem (IVP) 
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𝑦′ = (1 − 𝑡)𝑦2 − 𝑦;   𝑦(0) = 1 

using RK4, CoM4, and ABM4 methods with step sizes ℎ =0.05, ℎ =0.01, and compare the errors on [0, 1]. 

The exact solution is 
1

( )
t

y t
e t

=
−

. 

3.1 Numerical Solution for Example 1 

Figure 1 shows the numerical and exact solutions of Example 1 using the RK4, CoM4, and ABM4 

methods with step lengths of h = 0.02 and h = 0.0025. The results are computed with the help of MATLAB 

software and showed that all three methods at h = 0.0025 performed significantly better than at h = 0.02. 

Table 1 and Table 3 show the numerical solutions and the absolute errors of the numerical solutions 

represented by Figure 1.  

  
(a) (b) 

Figure 1.  The RK4, CoM4, and ABM4 Methods used to Solve Example 1 for (a) h=0.02 and (b) h=0.0025. 

 

Figure 2 shows the absolute error obtained by using the RK4, CoM4, and ABM4 methods obtained 

under Table 2 and Table 4. Based on Table 2 and Table 4, the mean absolute error of the RK4, CoM4, and 

ABM4 methods for Example 1 is presented in Table 5. From Table 5, the MAE values of the RK4, CoM4, 

and ABM4 methods for Example 1 with h = 0.02 and h = 0.0025 satisfy 𝑅𝐾4 < 𝐴𝐵𝑀4 < 𝐶𝑜𝑀4. This shows 

that the RK4 method gives more accurate or better results than the ABM4 method, and the ABM4 method 

gives more accurate or better results than the CoM4 method. 

 

  
(a) (b) 

Figure 2.  The Absolute Error of RK4, CoM4, and ABM4 Methods used to Solve Example 1 for (a) h=0.02 

and (b) h=0.0025 
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Table 1.  The Numerical Solution, Exact Solution, and Absolute Error of the RK4, CoM4 and ABM4 Methods 

for Example 1 with h=0.02 

n 𝒕𝒏 
Numerical Solution and Exact Solution 

Exact RK4 CoM4 ABM4 

0 0.00 0.0000000000 0.0000000000 0.0000000000 0.0000000000 

1     0.02    0.012352291625 0.012204287075 0.013677332507 0.012204287075 

2 0.04 0.016412105482 0.016302357787 0.017488681935 0.016302357787 

3 0.06 0.017440278507 0.017379361065 0.016518860781 0.017379361065 

4 0.08 0.017371419793 0.017341492021 0.019127834405 0.017821218024 

n 𝒕𝒏 
Numerical Solution and Exact Solution 

Exact RK4 CoM4 ABM4 

4 0.08 0.017371419793 0.017341492021 0.019127834405 0.017821218024 

5 0.10 0.016916516793 0.016902866938 0.017562531996 0.017414896624 

⋮                      ⋮                      ⋮ ⋮                      ⋮                      ⋮                      

45 0.90 0.003443726838 0.003443822900 0.003444368652 0.003443737367 

46 0.92 0.003308696377 0.003308788672 0.003309313025 0.003308740381 

47 0.94 0.003178960537 0.003179049213 0.003179553006 0.003178945463 

48 0.96 0.003054311711 0.003054396910 0.003054880949 0.003054285314 

49 0.98 0.002934550436 0.002934632294 0.002935097354 0.002934564980 

50 1.00 0.002819485067 0.002819563716 0.002820010540 0.002819499655 

 

Table 2.  The Absolute Error of the RK4, CoM4, and ABM4 Methods for Example with h=0.02 

n 𝒕𝒏 
Absolute Error 

RK4 CoM4 ABM4 

0 0.00 0.000000000000    0.000000000000    0.000000000000    

1 0.02 0.000148004550    0.001325040882 0.000148004550 

2 0.04 0.000109747695    0.001076576452 0.000109747695 

3 0.06 0.000060917443    0.000921417726 0.000060917443 

4 0.08 0.000029927772    0.001756414612 0.000449798230 

5 0.10 0.000013649856    0.000646015203 0.000498379831 

4 0.08 0.000029927772    0.001756414612 0.000449798230 

5 0.10 0.000013649856    0.000646015203 0.000498379831 

⋮                      ⋮ ⋮                      ⋮ ⋮ 

45 0.90 0.000000096062    0.000000641814 0.000000010529 

46 0.92 0.000000092295    0.000000616648 0.000000044004 

47 0.94 0.000000088676    0.000000592469 0.000000015073 

48 0.96 0.000000085199    0.000000569238 0.000000026397 

49 0.98 0.000000081858    0.000000546918 0.000000014544 

50 1.00 0.000000078649    0.000000525473 0.000000014587   

    Total 0.000378784143       0.006199912376 0.001882695540 
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Table 3.  The Numerical Solution, Exact Solution, and Absolute Error of the RK4, CoM4 and ABM4 Methods 

for Example 1 with h=0.0025 

n 𝒕𝒏 
Numerical Solution and Exact Solution 

Exact RK4 CoM4 ABM4 

0 0.0000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 

1 0.0025 0.002344074513 0.002344069333 0.002344159899 0.002344069333 

2 0.0050 0.004401021889 0.004401012749 0.004401181308 0.004401012749 

3 0.0075 0.006204638767 0.006204626669 0.006204862412 0.006204626669 

4 0.0100 0.007784750283 0.007784736050 0.007785029705 0.007784759801 

5 0.0125 0.009167676740 0.009167661042 0.009168004677 0.009167702606 

⋮                      ⋮ ⋮ ⋮ ⋮ ⋮ 

395 0.9875 0.002890860672 0.002890860685 0.002890864041 0.002890860672 

396 0.9900 0.002876442444 0.002876442457 0.002876445797 0.002876442444 

397 0.9925 0.002862096127 0.002862096140 0.002862099463 0.002862096127 

398 0.9950 0.002847821363 0.002847821376 0.002847824683 0.002847821363 

399 0.9975 0.002833617795 0.002833617808 0.002833621098 0.002833617795 

400 1.0000 0.002819485067 0.002819485080 0.002819488354 0.002819485067 

 

Table 4.  The Absolute Error of the RK4, CoM4, and ABM4 Methods for Example 1 with h=0.0025 

n 𝒕𝒏 
Absolute Error 

RK4 CoM4 ABM4 

0 0.0000 0.000000000000 0.000000000000 0.000000000000 

1 0.0025 0.000000005179 0.000000085386 0.000000005179 

2 0.0050 0.000000009140 0.000000159418 0.000000009140 

3 0.0075 0.000000012098 0.000000223646 0.000000012098 

4 0.0100 0.000000014233 0.000000279422 0.000000009518 

5 0.0125 0.000000015698 0.000000327937 0.000000025867 

⋮                      ⋮ ⋮ ⋮ ⋮ 

395 0.9875 0.000000000013 0.000000003369 0.000000000000 

396 0.9900 0.000000000013 0.000000003353 0.000000000000 

397 0.9925 0.000000000013 0.000000003336 0.000000000000 

398 0.9950 0.000000000013 0.000000003319 0.000000000000 

399 0.9975 0.000000000013 0.000000003303 0.000000000000 

400 1.0000 0.000000000013 0.000000003286 0.000000000000 

  Total 0.000000380543 0.000055973348 0.0000013745 

 

Table 5. Mean Absolute Error (MAE) of the RK4,  

CoM4, and ABM4 methods for Example 1 

Method 
MAE 

h=0.02 h=0.0025 

RK4 7.5757e-06 9.5136e-10 

CoM4 1.2399e-04 1.3993e-07 

ABM4 3.7654e-05 34363e-9 



BAREKENG: J. Math. & App., vol. 19(2), pp. 1263- 1278, June, 2025.     1271 

 

 

3.2 Numerical Solution for Example 2 

Table 6 shows the numerical and exact solutions for Example 2 utilizing the RK4, CoM4, and ABM4 

methods when h = 0.01 while Table 8 when h = 0.005. According to the data, all three numerical methods 

perform noticeably better at h = 0.005 than they do at h = 0.01. Figure 3 demonstrates the numerical solutions 

of the RK4, CoM4, and ABM4 methods based on the calculation results using h = 0.01 and ℎ = 0.01. From 

Figure 3, it can be seen that the numerical solutions of the three methods are very close to the exact solution. 

  
(a) (b) 

Figure 3. The RK4, CoM4, and ABM4 methods used to solve Example 2 for (a) h=0.01 and (b) h=0.005. 

 

Table 6.  The Numerical Solution, Exact Solution, and Absolute Error of the RK4, CoM4 and ABM4 Methods 

for Example 2 with h=0.01 

n 𝒕𝒏 Numerical Solution and Exact Solution 

Exact RK4 CoM4 ABM4 

0 1.00 1.000000000000 1.000000000000 1.000000000000 1.000000000000 

1 1.01 1.010199998350 1.010199998343 1.010200483173 1.010199998343 

2 1.02 1.020799973858 1.020799973844 1.020800925327 1.020799973844 

3 1.03 1.031799868947 1.031799868927 1.031801270279 1.031799868927 

4 1.04 1.043199589828 1.043199589801 1.043201425479 1.043199589851 

5 1.05 1.054999008251 1.054999008218 1.055001263795 1.054999008316 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

95 1.95 3.689384676412 3.689384675979 3.689406028886 3.689384677895 

96 1.96 3.735188715145 3.735188714709 3.735210210390 3.735188716637 

97 1.97 3.781334171270 3.781334170831 3.781355808761 3.781334172771 

98 1.98 3.827820345022 3.827820344579 3.827842124242 3.827820346530 

99 1.99 3.874646538495 3.874646538049 3.874668458942 3.874646540012 

100 2.00 3.921812055673 3.921812055224 3.921834116853 3.921812057198 

The absolute error achieved under Table 7 and Table 9 utilizing the RK4, CoM4, and ABM4 methods 

is displayed in Figure 4. Table 10 displays the mean absolute error of the RK4, CoM4, and ABM4 methods 

for Example 2 based on Table 7 and Table 9.  From Table 10, it can be seen that the MAE values of the 

RK4, CoM4, and ABM4 methods for Example 2 with h = 0.01 and h = 0.005 satisfy 𝑅𝐾4 < 𝐴𝐵𝑀4 < 𝐶𝑜𝑀4. 
This means that the RK4 method provides more accurate results than the ABM4 method and the ABM4 

method provides more accurate results than the CoM4 method. 
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Table 7.  The Absolute Error of the RK4, CoM4, and ABM4 Methods for Example 2 with h=0.01 

n 𝒕𝒏 
Absolute Error 

RK4 CoM4 ABM4 

0 1.00 1.000000000000 1.000000000000 1.000000000000 

1 1.01 0.000000000007 0.000000484823 0.000000000007 

2 1.02 0.000000000014 0.000000951470 0.000000000014 

3 1.03 0.000000000020 0.000001401332 0.000000000020 

4 1.04 0.000000000027 0.000001835652 0.000000000023 

5 1.05 0.000000000033 0.000002255544 0.000000000065 

⋮ ⋮ ⋮ ⋮ ⋮ 

95 1.95 0.000000000433 0.000021352475 0.000000001484 

96 1.96 0.000000000436 0.000021495246 0.000000001492 

97 1.97 0.000000000439 0.000021637490 0.000000001500 

98 1.98 0.000000000443 0.000021779220 0.000000001509 

99 1.99 0.000000000446 0.000021920447 0.000000001517 

100 2.00 0.000000000449 0.000022061180 0.000000001525 

     Total 0.000000025090 0.001311199394 0.000000093755 

 

 

  
(a) (b) 

Figure 4. The Absolute Error of RK4, CoM4, and ABM4 Methods Used to Solve Example 1 for (a) h=0.01 

and (b) h=0.005. 

 

Table 8.  The Numerical Solution and Exact Solution of the RK4, CoM4 and ABM4 Methods for Example 2  

with h=0.005 

n 𝒕𝒏 
Numerical Solution and Exact Solution 

Exact RK4 CoM4 ABM4 

0 1.000 1.000000000000 1.000000000000 1.000000000000 1.000000000000 

1 1.005 1.005049999896 1.005049999896 1.005050061434 1.005049999896 

2 1.010 1.010199998350 1.010199998349 1.010200120234 1.010199998349 

3 1.015 1.015449991687 1.015449991687 1.015450172775 1.015449991687 

4 1.020 1.020799973858 1.020799973857 1.020800213051 1.020799973858 

5 1.025 1.026249936489 1.026249936488 1.026250232732 1.026249936491 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
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n 𝒕𝒏 
Numerical Solution and Exact Solution 

Exact RK4 CoM4 ABM4 

195 1.975 3.804534712106 3.804534712078 3.804540165149 3.804534712210 

196 1.980 3.827820345022 3.827820344994 3.827825815845 3.827820345126 

197 1.985 3.851190982839 3.851190982811 3.851196471410 3.851190982943 

198 1.990 3.874646538495 3.874646538467 3.874652044783 3.874646538600 

199 1.995 3.898186925048 3.898186925019 3.898192449021 3.898186925153 

200 2.000 3.921812055673 3.921812055645 3.921817597301 3.921812055778 

 

Table 9.  The Absolute Error of the RK4, CoM4, and ABM4 methods for Example 2 with h=0.005 

n 𝒕𝒏 
Absolute Error 

RK4 CoM4 ABM4 

0 1.000 0.000000000000 0.000000000000 0.000000000000 

1 1.005 0.000000000000 0.000000061538 0.000000000000 

2 1.010 0.000000000000 0.000000121884 0.000000000000 

3 1.015 0.000000000001 0.000000181088 0.000000000001 

4 1.020 0.000000000001 0.000000239193 0.000000000001 

5 1.025 0.000000000001 0.000000296243 0.000000000002 

⋮ ⋮ ⋮ ⋮ ⋮ 

195 1.975 0.000000000028 0.000005453043 0.000000000104 

196 1.980 0.000000000028 0.000005470823 0.000000000104 

197 1.985 0.000000000028 0.000005488571 0.000000000105 

198 1.990 0.000000000028 0.000005506288 0.000000000105 

199 1.995 0.000000000028 0.000005523973 0.000000000105 

200 2.000 0.000000000028 0.000005541629 0.000000000106 

     Total 0.000000003164   0.000661612872       0.000000013268 

  
Table 10. Mean Absolute Error (MAE) of the RK4, CoM4, and ABM4 methods for Example 2 

Method 
MAE 

h=0.01 h=0.005 

RK4 2.5090e-10 1.5820e-11 

CoM4 1.3112e-05 3.3081e-06 

ABM4 9.3755e-10 6.6340e-11 

 

3.3 Numerical Solution for Example 3 

The numerical and exact solutions for Example 3 utilizing the RK4, CoM4, and ABM4 methods with 

step lengths of h = 0.01 and h = 0.001 are displayed in Figure 5. From Figure 5, it can be seen that the 

numerical solutions of the three methods are very close to the exact solution.According to the data, all three 

numerical methods perform noticeably better at h = 0.001 than they do at h = 0.01. Table 11 shows the exact 

solutions and numerical solutions of the RK4, CoM4, ABM4 methods, and the exact solution based on 

calculations with a step size of h=0.01, while Table 13 is for h=0.001. 
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(a) (b) 

Figure 5. The RK4, CoM4, and ABM4 Methods Used to solve Example 3 for (a) h=0.05 and (b) h=0.01 

 

  
(a) (b) 

Figure 6. The Absolute Error of RK4, CoM4, and ABM4 Methods Used to solve Example 3 for (a) h=0.05 

and (b) h=0.01 

Table 11.  The Numerical Solution, Exact Solution, and Absolute Error of the RK4, CoM4 and ABM4 methods 

for Example 3 with h=0.01 

n 𝒕𝒏 
Numerical Solution and Exact Solution 

Exact RK4 CoM4 ABM4 

0 0.00 1.00000000000 1.00000000000 1.00000000000 1.00000000000 

1 0.01 0.999949835432 0.999949835435 0.999938755038 0.999949835435 

2 0.02 0.999798700503 0.999798700509 0.999784654265 0.999798700509 

3 0.03 0.999545672554 0.999545672562 0.999529801489 0.999545672562 

4 0.04 0.999189882630 0.999189882641 0.999172657542 0.999189882683 

5 0.05 0.998730517259 0.998730517273 0.998712196393 0.998730517356 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

95 0.95 0.611355440927 0.611355441031 0.611330559899 0.611355438914 

96 0.96 0.605438115350 0.605438115454 0.605413473237 0.605438113355 

97 0.97 0.599540347037 0.599540347141 0.599515944914 0.599540345061 

98 0.98 0.593663388284 0.593663388387 0.593639227077 0.593663386328 

99 0.99 0.587808451012 0.587808451115 0.587784531506 0.587808449079 

100 1.00 0.581976706869 0.581976706972 0.581953029711 0.581976704959 
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Table 12.  The Absolute Error of the RK4, CoM4, and ABM4 methods for Example 3 with h=0.01 

n 𝒕𝒏 
Absolute Error 

RK4 CoM4 ABM4 

0 0.00 0.000000000000 0.000000000000 0.000000000000 

1 0.01 0.000000000003 0.000011080394 0.000000000003 

2 0.02 0.000000000006 0.000014046238 0.000000000006 

3 0.03 0.000000000009 0.000015871064 0.000000000009 

4 0.04 0.000000000012 0.000017225088 0.000000000053 

5 0.05 0.000000000015 0.000018320866 0.000000000097 

⋮ ⋮ ⋮ ⋮ ⋮ 

95 0.95 0.000000000104 0.000024881028 0.000000002013 

96 0.96 0.000000000104 0.000024642113 0.000000001995 

97 0.97 0.000000000104 0.000024402124 0.000000001976 

98 0.98 0.000000000103 0.000024161207 0.000000001956 

99 0.99 0.000000000103 0.000023919506 0.000000001933 

100 1.00 0.000000000103 0.000023677159 0.000000001910 

     Total 0.000000008594 0.002759437232 0.000000100031 

The absolute error achieved under Table 12 and Table 14 utilizing the RK4, CoM4, and ABM4 methods 

is displayed in Figure 6. Table 15 displays the mean absolute error of the RK4, CoM4, and ABM4 methods 

for Example 2 based on the absolute errors of the numerical solutions in Table 12 and Table 14.  As in the 

cases in Example 1 and 2, it can be seen that the MAE values of the RK4, CoM4, and ABM4 methods for 

Example 3 with h = 0.01 and h = 0.005 also satisfy 𝑅𝐾4 < 𝐴𝐵𝑀4 < 𝐶𝑜𝑀4. This means that the RK4 method 

provides more accurate results than the ABM4 method and the ABM4 method provides more accurate results 

than the CoM4 method. 

Table 13.  The Numerical Solution, Exact Solution, and Absolute Error of the RK4, CoM4 and ABM4 methods 

for Example 3 with h=0.001 

n 𝒕𝒏 
Numerical Solution and Exact Solution 

Exact RK4 CoM4 ABM4 

0 0.000 1.0000000000000 1.0000000000000 1.0000000000000 1.0000000000000 

1 0.001 0.99999949983354 0.99999949983354 0.99999938875363 0.99999949983354 

2 0.002 0.99999799867001 0.99999799867001 0.99999785890621 0.99999799867001 

3 0.003 0.99999549551691 0.99999549551691 0.99999533876951 0.99999549551691 

4 0.004 0.99999198938683 0.99999198938683 0.99999182050526 0.99999198938683 

5 0.005 0.99998747929737 0.99998747929737 0.99998730094614 0.99998747929737 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

995 0.995 0.58488960814096 0.58488960814097 0.58488927955184 0.58488960814078 

996 0.996 0.58430654803666 0.58430654803668 0.58430621978005 0.58430654803649 

997 0.997 0.58372372673386 0.58372372673387 0.58372339880983 0.58372372673368 

998 0.998 0.58314114535803 0.58314114535804 0.58314081776665 0.58314114535785 

999 0.999 0.58255880503069 0.58255880503070 0.58255847777203 0.58255880503051 

1000 1.000 0.58197670686933 0.58197670686934 0.58197637994346 0.58197670686915 
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Table 14.  The Absolute Error of the RK4, CoM4, and ABM4 methods for Example 3 with h=0.001 

n 𝒕𝒏 
Absolute Error 

RK4 CoM4 ABM4 

0 0.000 0.00000000000000 0.00000000000000 0.00000000000000 

1 0.001 0.00000000000000 0.00000011107992 0.00000000000000 

2 0.002 0.00000000000000 0.00000013976380 0.00000000000000 

3 0.003 0.00000000000000 0.00000015674740 0.00000000000000 

4 0.004 0.00000000000000 0.00000016888157 0.00000000000000 

5 0.005 0.00000000000000 0.00000017835123 0.00000000000000 

⋮ ⋮ ⋮ ⋮ ⋮ 

995 0.995 0.00000000000001 0.00000032892155 0.00000000000018 

996 0.996 0.00000000000001 0.00000032858912 0.00000000000018 

997 0.997 0.00000000000001 0.00000032825661 0.00000000000018 

998 0.998 0.00000000000001 0.00000032792403 0.00000000000018 

999 0.999 0.00000000000001 0.00000032759138 0.00000000000018 

1000 1.000 0.00000000000001 0.00000032725866 0.00000000000018 

     Total  0.000000000009 0.000387274937 0.00000000009764 

 

Table 15. Mean Absolute Error (MAE) of the RK4, CoM4, and ABM4 methods for Example 3 

Method 
MAE 

h=0.01 h=0.001 

RK4 8.5940e-11 9.0000e-15 

CoM4 2.7594e-05 3.8728e-07 

ABM4 1.0003e-09 9.7640e-14 

 

4. CONCLUSIONS 

This research paper compares three numerical methods: 4th order Runge-Kutta, 4th order Runge-Kutta 

based contra-harmonic mean, and Adam-Bashforth-Moulton for solving ordinary differential equations 

(ODEs) with initial value problems (IVPs). The numerical results obtained by the RK4, CoM4, and ABM4 

methods agree with exact solutions. The results of each initial value problem from the three examples 

guarantee the convergence to an exact solution if the step size is reduced. Based on the MAE values, the 

accuracy for all three numerical methods in all three examples is valid; the RK4 method is better than the 

ABM4 method, and the ABM4 method is better than the CoM4 method for the two-step sizes used.  

To ensure higher accuracy, computational efficiency, solution reliability, and stability of numerical 

methods to solve the ODE's initial value problems, we recommend using a higher-order adaptive numerical 

method that can adjust the step size based on the calculated error and consider error control. 
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