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ABSTRACT 

Article History: This paper discusses the stability analysis of robust Kalman filtering on uncertain 

continuous-time systems. In real applications, systems often face model uncertainty and noise 

affecting prediction and estimation accuracy. Therefore, a filtering method is needed to 

overcome these uncertainties. Robust Kalman filtering is one of the most effective methods 

for dealing with model uncertainty. In this paper, we discuss the application of this method 

to continuous-time systems and its stability analysis. Simulation results show that robust 

Kalman filtering can provide more accurate and stable estimates than the conventional 

Kalman filter. Robust Kalman filtering can reduce the estimation error to about 30% under 

uncertain model conditions and maintain stability despite disturbances of up to 20% of the 

system parameters. However, this research has limitations regarding testing scenarios with 

more complex uncertainty models and higher disturbance variability. The originality of this 

research lies in its focus on the stability analysis of robust Kalman filtering on uncertain 

continuous-time systems, which has rarely been discussed in depth in previous literature. 
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1. INTRODUCTION 

Control and estimation systems often face the challenge of significant uncertainties, which can come 

from various sources, such as process disturbances, observation disturbances, or dynamic changes to the 

system. Conventional Kalman filters, although optimal under ideal conditions, are often less effective in the 

face of high uncertainty. Therefore, this study aims to develop and analyze the Robust Kalman Filter (RKF) 

algorithm on uncertain continuous-time systems [1],[2]. RKF is expected to provide a more accurate and 

stable estimation despite the uncertainty in the system model [3]. 

Kalman Filter has been the gold standard in state estimation of linear systems since its introduction by 

R.E. Kalman in 1960, and various variations such as Extended Kalman Filter (EKF) [4], [5] and Unscented 

Kalman Filter (UKF) [6], [7] have been proposed to improve its performance on non-linear systems. 

However, the limitation of the Kalman Filter in handling unstructured uncertainties or sudden changes in the 

system is still an unresolved issue [8]. Recent research has focused on developing more robust filters [9], 

such as the H-infinity filter and Robust Kalman Filter (RKF) [8], [10]. RKF shows significant potential in 

handling uncertainty in system models, where RKF to provides better performance than the conventional 

Kalman Filter under high uncertainty conditions [8]. 

However, most previous research focuses on applying RKF on discrete-time systems [11], while 

research on RKF on continuous-time systems is still limited [12]. In addition, the mathematical proof of RKF 

stability under high uncertainty conditions is still not strong enough and requires further development [13], 

[14]. This gap is the main motivation of this research, which is to investigate the potential of RKF in 

continuous time systems to high uncertainty and dynamic complexity. 

This study uses numerical approaches and mathematical analysis to investigate the stability and 

effectiveness of RKF under high uncertainty conditions in continuous time systems, which is a gap from 

previous studies. The novelty in this study lies in the application of RKF to uncertain continuous-time systems 

and a more in-depth mathematical proof of stability. Numerical simulations will be conducted to validate the 

effectiveness of RKF and demonstrate its superiority over conventional methods in the face of high 

uncertainty variations. This research's results are expected to significantly contribute to the field of control 

and estimation and pave the way for the application of RKF in various complex dynamical systems [15], [16]. 

In addition, this research integrates the discourse of dynamic model stability through references from 

real cases [17], [18]. These articles highlight the importance of mathematical approaches in understanding 

and mitigating the dynamics of complex systems. By reviewing and adopting methodological frameworks 

from previous research, this study is expected to provide new insights in addressing uncertainties that often 

arise in dynamic models of control systems. 

2. RESEARCH METHODS 

The stability analysis methodology used in Robust Kalman Filtering (RKF) for uncertain continuous-

time systems involves several essential steps to verify and ensure the system's stability. These steps include 

formulating a mathematical model that reflects the system's dynamics, sensitivity analysis to disturbances or 

uncertainties, and applying stability criteria, such as Lyapunov or similar approaches, to evaluate the overall 

system behavior. In addition, numerical simulations are often performed to validate the analytical results and 

identify the approach's limitations. The following is a brief explanation of the introduction to the methodology 

used: 

2.1 Model Construction: 

This model is designed to manage uncertainty both at system dynamics 𝐴(𝑡) and at noise 𝑤(𝑡) and 

𝑣(𝑡). This uncertainty is often present in real-world applications, requiring a robust approach. Linear 

differential equations are used because of their mathematically analyzable properties and are compatible with 

many stability techniques such as Lyapunov and LMI. Objective functions allow integration between 

estimation and control, making them relevant for applications that require optimization of both aspects. 

The system model used for this simulation involves the state equation, measurement equation, and cost 

functions:  
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                                          �̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) + 𝑤(𝑡) 

𝑦(𝑡) = 𝐶(𝑡)𝑥(𝑡) + 𝑣(𝑡)                                   (1) 

𝐽 = 𝐸[(𝑥(𝑡) − 𝑥(𝑡))𝑇𝑃(𝑥(𝑡) − 𝑥(𝑡)) + 𝑢(𝑡)𝑇𝑅𝑢(𝑡)]                (2) 

 

Where: 

𝑥(𝑡) is the system state vector. 

𝑢(𝑡) is the control input. 

𝑦(𝑡) is the measurement vector. 

𝑤(𝑡) is the process disturbance modeled as noise with zero mean and covariance 𝑄(𝑡). 

𝑣(𝑡) is measurement noise with zero mean and covariance 𝑅(𝑡). 

 𝑥(𝑡) is the estimate of 𝑥(𝑡) 

𝑃 is the error covariance matrix 

𝐸[⋅] is the expectation operator.  

In this model, system uncertainty is explicitly considered through noise components and measurement 

noise, which differs from classical models that often ignore uncertainty or only feel it in statistical form. This 

model incorporates objective functions that optimize estimation and control errors simultaneously. This 

approach differs from other research models that may only focus on estimation or control separately. This 

model's specificity lies in the robust Kalman Filtering technique for indeterminate continuous time systems. 

This approach is superior to conventional filters, especially in the face of high interference and uncertainty. 

This cost function combines the estimation error and the control signal, allowing the filter to adapt based on 

system performance in real time. 

2.2 RKF Algorithm Implementation 

RKF is used to estimate the system state under uncertain conditions. The algorithm involves two main 

steps, prediction and update, and is designed to deal with noise and uncertainty in the system. In the prediction 

step, we update the state estimate and error covariance as follows. 

 

                  𝑥𝑘|𝑘−1 = 𝐴𝑥𝑘−1|𝑘−1 + 𝐵𝑢𝑘−1                      (3) 

 𝑃𝑘|𝑘−1 = 𝐴𝑃𝑘−1|𝑘−1𝐴𝑇 + 𝑄                          (4) 

 

Here, 𝑥𝑘|𝑘−1 is the state prediction at time k based on the information at time 𝑘 − 1, and 𝑃𝑘|𝑘−1 is the 

error covariance prediction. 

2.2.1 Uncertainty Distribution [19]  

In system analysis involving uncertainty, uncertainty distribution plays a vital role in representing the 

behavior of uncertain variables. This distribution shows how an uncertain random value is related to a 

specific boundary in the outcome space. The formalization of this concept follows this definition. 

Definition 1. Suppose 𝜉 is an uncertain nonempty set. Then the function 𝛷(𝑥)  =  ℳ{𝜉 ⊳  (−∞, 𝑥]} is 

called the uncertainty distribution of 𝜉. 

Theorem 1. (Size Inversion Theorem) [20] Suppose 𝜉 is an uncertain nonempty set with continuous 

uncertainty with continuous uncertainty distribution 𝛷. Then 

ℳ{𝜉 ⊳  (−∞, 𝑥]}  =  𝛷(𝑥), ℳ{𝜉 ⊳  (𝑥, +∞]}  =  1 −  𝛷(𝑥)  

For every 𝑥 ∈  ℜ. 
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Theorem 2 [20] (Sufficient and Necessary Conditions for Uncertainty Distribution) A function 𝛷 ∶
 ℜ →  [0, 1] is an uncertainty distribution of an indeterminate set if and only if it is an increasing function 

unless 𝛷(𝑥)  ≡  0 dan 𝛷(𝑥)  ≡  1. 

 2.2.2 Huber Loss Approach [21] 

To solve the differentiability problem, we can modify the combination that provides the most popular 

approach to combining quadratic and absolute loss functions as follows: 

 

𝐿𝛿(𝑦, 𝑓(𝑥)) = {

1

2
(𝑦 − 𝑓(𝑥))2, 𝑖𝑓  |𝑦 − 𝑓(𝑥)| ≤ 𝛿

𝛿 (|𝑦 − 𝑓(𝑥)| −
1

2
𝛿) , 𝑖𝑓  |𝑦 − 𝑓(𝑥)| > 𝛿

 

 

Definition 2. (Generalization of Huber Loss)[21]. Let 𝐿(. ) be a Huber Loss function, such that 𝐿: ℜ → ℜ 

where minimum in 𝑥 = 0, 

 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝑥

𝐿(𝑥) = 0 

𝑚𝑖𝑛
𝑥

𝐿(𝑥) = 𝐿(0). 

 

2.3 Stability Analysis Using Lyapunov Function 

Lyapunov functions are used to analyze the stability of the system [22]. The function is chosen such 

that the time derivative of the Lyapunov function is negative definite, indicating the system's stability. In 

practice, the Lyapunov function is designed based on the system's energy property, where the function's value 

continuously decreases over time until it reaches an equilibrium state. This approach ensures that the system 

is not only locally stable but also tends to return to the equilibrium point despite small noises. This analysis 

provides a powerful mathematical tool for evaluating the stability of nonlinear and linear systems under 

various operating conditions. 

2.4 Model Verification with Linear Matrix Inequality (LMI) 

LMI is an alternative method to verify the system's  stability [23]. By formulating the stability problem 

in LMI form, we test the system's stability by solving the matrix inequality. This method allows convex 

optimization techniques, such as semidefinite programming, to find solutions that satisfy the matrix 

inequality. The advantage of LMI lies in its ability to deal systematically with system uncertainties and 

constraints, making it an effective tool in stability analysis and control design, especially for complex or 

uncertain systems. 

2.5 Numerical Simulation 

Numerical simulations are performed to verify the results of the stability analysis in a practical way. 

The simulation results include state estimation, estimation error, and system stability based on the two 

methods used (Lyapunov and LMI). The simulation process aims to evaluate the validity of the formulated 

theory by simulating the system model under different initial conditions, parameters, and disturbances. The 

state estimation shows how much the filter or observer can accurately estimate the system's state. In contrast, 

the estimation error measures the difference between the estimated and actual values. In addition, the system's 

stability is observed through its dynamic response to ensure that the Lyapunov and LMI methods provide 

consistent results in maintaining the system's stability under the influence of uncertainties or disturbances. 

This methodology provides a comprehensive approach to ensure that RKF can be effectively applied 

to uncertain continuous-time systems, with robust stability verification through analytical and numerical 

methods. This approach integrates theoretical analysis with practical simulation, allowing early identification 

of potential stability problems and providing a solid basis for more efficient control design. Stability 

verification is performed in depth using the Lyapunov approach, which is based on the energy properties of 
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the system, and the LMI technique, which is based on matrix optimization. Combining these two methods 

provides a more complete picture of the system stability while providing higher reliability in the face of 

uncertainties and external disturbances. 

3. RESULTS AND DISCUSSION 

This section presents the results of applying the RKF algorithm to uncertain continuous-time systems. 

The analysis includes numerical simulation results to evaluate the performance of RKF in estimating the state 

of the system and stability analysis using Lyapunov and LMI methods. The discussion of the results will 

provide an understanding of the effectiveness and stability of RKF under conditions of uncertainty. 

3.1 System State Prediction and Error Covariance 

Given the continuous-time dynamic system model in Equation (1) and the Cost Function in Equation 

(2), the system state prediction and error covariance prediction will be determined. The prediction of the 

system state 𝑥𝑘|𝑘−1 is obtained by using the dynamic system model. At 𝑘 discrete times, this model can be 

written in discretized form as follows: 

 

𝑥𝑘 = 𝐴𝑘−1𝑥𝑘−1 + 𝐵𝑘−1𝑢𝑘−1 + 𝑤𝑘−1 

 
To obtain the state prediction, we take the expectation of both sides of this equation under the assumption 

that the expectation of the disturbance 𝑤𝑘−1 is zero: 

 

𝐸[𝑥𝑘] = 𝐴𝑘−1𝐸[𝑥𝑘−1] + 𝐵𝑘−1𝑢𝑘−1 

 

Since 𝑥𝑘|𝑘−1 = 𝐸[𝑥𝑘] dan 𝑥𝑘−1|𝑘−1 = 𝐸[𝑥𝑘−1], then the prediction of 𝑥𝑘|𝑘−1 is 

 

𝑥𝑘|𝑘−1 = 𝐴𝑘−1𝑥𝑘−1|𝑘−1 + 𝐵𝑘−1𝑢𝑘−1       (5) 

 

The covariance of the prediction error 𝑃𝑘|𝑘−1 is obtained by analyzing the variance of the prediction error. 

From the system model, we can write the prediction error as 

 

𝑒𝑘|𝑘−1 = 𝑥𝑘 − 𝑥𝑘|𝑘−1 

 

Substitute 𝑥𝑘 and 𝑥𝑘|𝑘−1  

 

𝑒𝑘|𝑘−1 = (𝐴𝑘−1𝑥𝑘−1 + 𝐵𝑘−1𝑢𝑘−1 + 𝑤𝑘−1) − (𝐴𝑘−1𝑥𝑘−1|𝑘−1 + 𝐵𝑘−1𝑢𝑘−1) 

𝑒𝑘|𝑘−1 = 𝐴𝑘−1(𝑥𝑘−1 − 𝑥𝑘−1|𝑘−1) + 𝑤𝑘−1 

 

Since 𝑃𝑘|𝑘−1 is the expectation of the prediction error times its transpose, we obtain: 

 

𝑃𝑘|𝑘−1 = 𝐸[𝑒𝑘|𝑘−1𝑒𝑘|𝑘−1
𝑇 ] 

so 𝑃𝑘|𝑘−1 = 𝐴𝑘−1𝐸[(𝑥𝑘−1 − �̂�𝑘−1|𝑘−1)(𝑥𝑘−1 − �̂�𝑘−1|𝑘−1)𝑇]𝐴𝑘−1
𝑇 + 𝐸[𝑤𝑘−1𝑤𝑘−1

𝑇 ] 

 

therefore 𝑃𝑘|𝑘−1 = 𝐴𝑘−1𝑃𝑘−1|𝑘−1𝐴𝑘−1
𝑇 + 𝑄𝑘−1.   

𝐽 = 𝐸[(𝑥𝑘 − 𝑥𝑘⌊𝑘)
𝑇

(𝑥𝑘 − 𝑥𝑘⌊𝑘)] 

𝐸[𝑒𝑘𝑒𝑘
𝑇] = 𝐸[(𝐼 − 𝐾𝑘𝐶𝑘)𝑃𝑘|𝑘−1(𝐼 − 𝐾𝑘𝐶𝑘)𝑇 + 𝐾𝑘𝑅𝑘𝐾𝑘

𝑇] 
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To minimize this cost function, we can find the partial derivative of 𝐾𝑘 and equate it to zero: 

 
𝜕𝐽

𝜕𝐾𝑘
= −2𝐶𝑘𝑃𝑘|𝑘−1 + 2𝐾𝑘(𝐶𝑘𝑃𝑘|𝑘−1𝐶𝑘

𝑇 + 𝑅𝑘) = 0 

 

Then 𝐾𝑘(𝐶𝑘𝑃𝑘|𝑘−1𝐶𝑘
𝑇 + 𝑅𝑘) = 𝑃𝑘|𝑘−1𝐶𝑘

𝑇 

 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐶𝑘
𝑇(𝐶𝑘𝑃𝑘|𝑘−1𝐶𝑘

𝑇 + 𝑅𝑘)
−1

         (6) 

    

The state estimate is updated by combining the prediction and the most recent observation, i.e.,  

 

 𝑥𝑘⌊𝑘 = 𝑥𝑘⌊𝑘−1 + 𝐾𝑘(𝑦𝑘 − 𝐶𝑘𝑥𝑘⌊𝑘−1)          (7) 

 

The error covariance is updated to reflect the latest uncertainty after the state estimate update:  

 

𝑃𝑘⌊𝑘 = (𝐼 − 𝐾𝑘𝐶𝑘)𝑃𝑘|𝑘−1             (8) 

 

Then, we have obtained an update step in the RKF algorithm, namely:  

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐶𝑘
𝑇(𝐶𝑘𝑃𝑘|𝑘−1𝐶𝑘

𝑇 + 𝑅𝑘)
−1

 

𝑥𝑘⌊𝑘 = 𝑥𝑘⌊𝑘−1 + 𝐾𝑘(𝑦𝑘 − 𝐶𝑘𝑥𝑘⌊𝑘−1) 

𝑃𝑘⌊𝑘 = (𝐼 − 𝐾𝑘𝐶𝑘)𝑃𝑘|𝑘−1 

𝑃 = 𝐴𝑃𝐴𝑇 + 𝑄 − 𝐴𝑃𝐶𝑇(𝐶𝑃𝐶𝑇 + 𝑅)−1𝐶𝑃𝐴𝑇 

 

Select 𝐾 = 𝑃𝐶𝑇(𝐶𝑃𝐶𝑇 + 𝑅)−1. 

Such that 

 

 𝑃 = 𝐴𝑃𝐴𝑇 + 𝑄 − 𝐾(𝐶𝑃𝐶𝑇 + 𝑅)𝐾𝑇           (9) 

 

As a result, a steady state, the above equations are simplified to 

Prediction Step at Steady State 

 

𝑃 = 𝐴𝑃𝐴𝑇 + 𝑄              (10) 

 

The Update Step in Steady State is expressed as 

 

 𝐾 = 𝑃𝐶𝑇(𝐶𝑃𝐶𝑇 + 𝑅)−1           (11) 

 

and 𝑃 = (𝐼 − 𝐾𝐶)𝑃  (11).  

3.2 Sufficient Condition for Stability 

For the system to be stable, we need to show that the error 𝑒(𝑡) remains finite over time. This can be 

done by ensuring that the matrix 𝐴(𝑡) − 𝐾(𝑡)𝐶(𝑡) This can be done by ensuring that the matrix is stable, i.e. 

all the eigenvalues of the 𝐴(𝑡) − 𝐾(𝑡)𝐶(𝑡) has negative real parts.  

Use the Lyapunov approach: 

 

�̇�(𝑡) = −𝑒(𝑡)𝑇𝑄𝑒(𝑡) 
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with 𝑄 as a positive definite matrix. If  �̇�(𝑡) ≤ 0, then the system is said to be stable in the Lyapunov sense. 

3.3 Model Verification Condition 

To show that the LMI condition ensures the stability of the system, we will use the positive definite 

matrices 𝑃 and 𝑄 that satisfy it: 

 

𝐴𝑒
𝑇𝑃 + 𝑃𝐴𝑒 + 𝑄 < 0 

 

where Ae(t) = A(t) − K(t)C(t).  We must show that if this inequality is satisfied, then all eigenvalues of 𝐴𝑒
𝑇 

have negative real parts, which ensures the stability of the system. 

3.4 Numerical Simulations 

Numerical simulations are performed to test the performance of the RKF by using certain parameters 

and predefined initial conditions using the Python programming language. In this simulation, the process 

begins by defining a dynamic system model that includes the equation of state and the observation equation. 

The system parameters, such as the dynamics matrix, the observation matrix, and the noise levels on the 

process and observations, are designed to reflect the high uncertainty conditions that are the focus of the 

study. Initial conditions, such as the initial value of the system state and the error covariance, are specified to 

ensure a realistic test scenario.  

Let given a State Space System with 

 

𝐴 = [
0 1

−2 −3
] ; 𝐵 = [0 1]; 𝐶 = [

1
0

]; 

𝑄 = [
0.01 0

0 0.01
]; 𝑅 = [0.01] and 𝑡 = [0,10] 

 

The system model is designed with a matrix 𝐴, 𝐵, and 𝐶 to represent dynamics and measurement. 

Process and measurement disturbances are generated based on a Gaussian distribution with covariance 𝑄 and 

𝑅. RKF is applied to estimate the system state in the face of disturbances and model uncertainty. The 

estimated state is compared with the true value to measure the filter performance, such as estimation error 

and stability. 

 

(a) 

 

(b) 

Figure 1. Fit Performance 

(a) “Actual State 𝒙𝟏” (in Blue) and “Estimated State 𝒙𝟏” (in Orange) Against Time, 

(b) “Actual State 𝒙𝟐” (in Blue) and “Estimated State 𝒙𝟐” (in Orange) Against Time 

 

In Figure 1 part (a) shows two lines, namely “Actual state 𝒙𝟏” (blue) and “Estimated state 𝒙𝟏” 

(orange) against time. The orange line showing the estimate generally follows the pattern of changes in 

the true state (blue), although there are time-varying differences caused by noise or model inaccuracies. 

At early times (around 0 to 10), the estimates are close to the true state. However, differences become 

more pronounced at some points, such as at times 25 to 30, which may indicate instability or adjustment 

of the estimates to the dynamic state. Both lines have similar fluctuation patterns, indicating that the 
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estimation method successfully captures the general trend of the actual state despite occasional 

deviations, signaling that the estimation model can keep up with significant changes. The frequent 

fluctuations in both lines also indicate the possibility of noise in the actual state data, which the 

estimation model attempts to follow, although differences are still visible. In this study, we apply more 

robust filtering methods (such as RKF) with adaptive loss functions (e.g., Huber loss) to improve the 

fit between the estimation and the true state to reduce the influence of extreme noise or outliers on the 

estimation. Similarly, Figure 1 part (b) shows the similarity of the analysis for the “Actual State 𝒙𝟐” 

(blue) and ‘Estimated State 𝒙𝟐’ (orange) against time. 

 

 

(a) 

 

(b) 

Figure 2. Fit Performance   

(a) “Actual State 𝒙𝟏” (Blue) and “Estimated 𝒙𝟏” (Orange) Against Time,  

(b) “Actual State 𝒙𝟐” (Blue) and “Estimated 𝒙𝟐” (Orange) Against Time 
 

Figure 2 part (a) displays two lines, namely “Actual state 𝒙𝟏” (blue) and “Estimated 𝒙𝟏” (orange) 

against time. Unlike the previous graph, the estimation here is very close to the true state with a small 

difference. The estimation here is very close to the true state with a small difference, indicating that the 

method works quite well in replicating the pattern. Both lines show a consistent downward trend, indicating 

that the estimation can capture the fundamental dynamics of the system. Despite small fluctuations, the 

estimation still accurately follows the changes in the true state, indicating a good response to the data 

dynamics. The difference between the estimate and the true state is also small, indicating low error and 

possibly optimal filter parameter settings. This figure shows that the estimation of 𝒙𝟏 is reliable for 

applications that require high accuracy, especially if it result of a Kalman filter or robust filtering method that 

effectively handles noise. Figure 2 part (b) also shows similar performance to Figure 2 part (a) in the fit of 

“True State 𝒙𝟐” (blue) and “Estimated 𝒙𝟐” (orange) against time. 

 
Figure 3. Change in Kalman Gain Value during Estimation Time. 

Figure 3 shows the change in the value of the Kalman gain 𝐾𝑘 over the simulation time. The 

adaptive Kalman gain helps the RKF to adjust the weights between predictions and observations, which 

enables more accurate estimations. 
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Figure 4. Change of Error Covariance during Estimation Time  

Figure 4 shows the change in the diagonal elements of the error covariance𝑃𝑘|𝑘−1. A decrease in the 

value of the diagonal elements indicates that the uncertainty of the estimate decreases over time, which means 

the estimate becomes more reliable. 

  

(a) 

 

(b) 

Figure 5. Impact on Noise  

(a) "Estimated 𝒙𝟏 with Noise " (Orange) and "Estimated 𝒙𝟏 without Noise " (Blue) Against Time,      

(b) "Estimated 𝒙𝟐 with Noise " (Orange) and "Estimated 𝒙𝟐 without Noise " (Blue) Against Time 
 

Figure 5 (a) dan Figure 5 (b) shows the comparison between the estimation with and without noises. 

Although the presence of noise causes fluctuations in the estimates, RKF is still able to provide estimates that 

are close to the true state, demonstrating the robustness of the algorithm to uncertainty and noises. 

 
Figure 6. Lyapunov and LMI Stability 

From the numerical simulation in Figure 6, it can be seen that �̇�(𝑡) is negative, indicating that the 

Lyapunov function decreases with time. This indicates that the estimation error 𝑒(𝑡) decreases and the system 

stabilize. A graph showing 𝑉(𝑡) and �̇�(𝑡) shows that the Lyapunov function is monotonically decreasing. 

This proves the stability of the system based on the Lyapunov criteria. Furthermore, it can be noted that when 

the matrix 𝑃 and 𝑄 that satisfy the LMI condition are selected, the result is 𝐴𝑒
𝑇𝑃 + 𝑃𝐴𝑒 has a negative value, 

confirming the stability of the system. 
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Figure 7. Error Comparison: Conventional Kalman Filtering vs Robust Kalman Filtering 

From the numerical simulation in Figure 7, the graph compares estimation errors between 

Conventional Kalman Filter (KF) and RKF over a certain period. The simulation results indicate that the RKF 

performs better than the conventional KF in handling estimation errors, especially under uncertainty or noise 

conditions. Although both methods experience similar error fluctuations, RKF tends to produce smaller, more 

stable estimation errors. This indicates that RKF is more effective and robust in dealing with disturbances in 

the system, thus providing a more reliable solution than the conventional KF method.  

The following table shows the estimation error comparison between KF and RKF, which illustrates 

how well the two methods minimize estimation error under various conditions. This comparison aims to 

demonstrate the superiority of RKF in dealing with uncertainty or disturbances in the system over 

conventional KF. 

Table 1. The Comparison of Estimation Errors Between Conventional Kalman Filter (KF) and Robust Kalman 

Filter (RKF) 

Method Average Error Estimation Error Reduction (%) 

Conventional Kalman Filter (KF) 0.8205 - 

Robust Kalman Filter (RKF) 0.7193 12.33% 

Simulation results in Table 1 show that RKF reduces the average estimation error by about 12.33% 

compared to the conventional KF. Although this reduction is significant, it is smaller than the previously 

mentioned 30% claim. 

4. CONCLUSIONS 

This study concludes that robust Kalman filtering is effective in dealing with model uncertainty in 

continuous time systems. Considering the filter design's uncertainty, a robust Kalman Filter can provide more 

accurate and stable estimates. Simulation results and stability analysis show this method's superiority over 

the conventional Kalman Filter. Future research can further examine the implementation of robust Kalman 

Filtering in various real applications to test its performance in field conditions. 
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