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ABSTRACT                                                                                                 
Article History: Indonesia, situated between two continents and two oceans, experiences a complex climate 

system influenced by global warming. Climate change has disrupted weather patterns, 

making it increasingly difficult to predict the rainy and dry seasons and rainfall intensity. 

However, neighboring regions often exhibit similar weather characteristics, which can be 

leveraged for prediction. As Indonesia’s economic center, Java Island displays distinct yet 

interconnected weather patterns, making accurate rainfall prediction crucial for various 

sectors. This study utilizes 10 years of average rainfall data from NASA’s Power database, 

covering 64 observation points across Java. Ordinary point kriging is the estimation of a 

value at a given point and is often used in spatial interpolation analysis in general. Through 

ordinary point kriging analysis, this study aims to find an accurate kriging equation for 

predicting rainfall in various regions of Java Island. To achieve this, semivariogram 

modeling was performed to determine the best theoretical model for spatial interpolation. 

From 53 sampled regions, 1,378 sample pairs were used to calculate the experimental 

semivariogram obtained using the R programming language. Next, the theoretical 

semivariogram was determined using the sill parameter derived from the variance of the 

sampled data. Three theoretical semivariogram models were considered: spherical, 

exponential, and Gaussian. The results indicated that the exponential model was the most 

suitable as it had the smallest SSE value. The results of this analysis enrich our 

understanding of climate patterns in Indonesia and will contribute to developing mitigation 

and adaptation strategies related to climate change in the future. The Kriging equation 

obtained can provide highly accurate prediction results on the test data with a MAPE (Mean 

Absolute Percentage Error) error measure of 4.85% and RMSE (Root Mean Square Error) 

of 18.17, which indicates that the prediction results obtained are highly accurate 

predictions. 
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1. INTRODUCTION 

Indonesia is located between two continents, the Asian Continent and the Australian Continent, and 

between two oceans, the Indian Ocean and the Pacific Ocean [1]. Overall, Indonesia is at the center of a 

complex monsoonal system, where interactions between continents, oceans, and atmospheric and ocean 

dynamics play an essential role in determining weather and climate patterns. However, global warming has 

significantly impacted Indonesia's climate, including changes in temperature, rainfall patterns, sea level, and 

extreme weather events.  

Global warming has caused changes in rainfall patterns in Indonesia. Runtunuwu's research found that 

there was a change in rainfall patterns in 128 years, from 1879 to 2007 [2]. In Java Island, this is evident from 

the two-month reduction in wet months. This resulted in a decrease in the planting period. In 2020, rain with 

an intensity above 200 mm/day was recorded in Jakarta and surrounding areas. At Halim Perdanakusuma 

Airport, the annual rain intensity of 377 mm/day was the highest since 1866 [3]. 

Java Island is still the center of economic, social, and cultural activities in Indonesia. Indonesia's 

economic growth in the first quarter of 2023 was still dominated by growth in Java, with a contribution of 

57.17% [4]. Java Island often experiences significant variations in rainfall. Over the past 20 years, several 

regions in Java have experienced an increase in rainfall ranging from 40 to 120 mm. Additionally, many areas 

on the island have seen a rise in the frequency of extreme rainfall events. Urban areas, in particular, tend to 

experience more extreme rainfall compared to rural regions, highlighting the growing impact of changing 

weather patterns across Java [5]. This variability has a significant impact on key sectors such as agriculture, 

food security, and water resource management in the region [6], [7], [8]. The climate on Java Island is 

generally tropical, with significant rainfall and stable temperatures throughout the year. There are two seasons 

on the island: the wet season and the dry season. The wet season usually occurs between October and April, 

with the highest rainfall in January and February. 

On the other hand, the dry season usually lasts from May to September, with the lowest rainfall 

occurring in July and August. The climate is warmer and more humid along the coast compared to the cooler 

and more humid mountainous regions [9]. With global climate change becoming more pronounced, a better 

understanding of the spatial distribution of rainfall is becoming increasingly important to anticipate its impact 

on society and the environment in Java. 

Rainfall intensity information is vital in weather monitoring, disaster management, and planning in 

agriculture and development [10]. However, monitoring points often experience problems such as equipment 

damage or measurement errors. This can cause the data collected to be inaccurate or incomplete. Another 

problem is the limited number of rain intensity measuring instruments in remote areas. Not all locations in 

Java Island have observation stations. Therefore, it is necessary to analyze the prediction of rainfall intensity 

for areas where rainfall intensity data cannot be collected. The analysis can be done by utilizing the linkage 

and similarity of rainfall patterns between adjacent regions. Regarding geographical structure, there is a 

specific pattern in climate change where areas close to each other show similar weather characteristics. For 

example, Java Island, one of Indonesia's most populous regions, displays similar weather patterns despite 

significant local variations. 

One approach to overcoming data gaps is leveraging the spatial relationships and similarities in rainfall 

patterns between adjacent regions. Regarding geographical structure, climate variations follow a specific 

pattern, where neighboring areas often exhibit similar weather characteristics. For example, despite its 

significant local variations, Java Island—one of the most populous regions in Indonesia—displays relatively 

consistent weather patterns. Understanding these spatial correlations enables more effective rainfall 

estimation. 

The most fundamental method for spatial estimation is Inverse Distance Weighting (IDW), which 

predicts values at unknown locations based on their proximity to known observation points. IDW assigns 

higher weights to closer points, assuming that nearby locations have more similar rainfall patterns. However, 

a key limitation of IDW is that it does not account for spatial dependencies or variations beyond simple 

distance relationships, making it less reliable in complex geographic conditions. 

A more advanced approach, Kriging, improves upon IDW by incorporating spatial autocorrelation 

through semivariogram modeling. A semivariogram quantifies the relationship between variability and 

distance among observed locations, allowing Kriging to produce more accurate predictions, particularly in 

regions with strong spatial dependence. Unlike IDW, which solely relies on distance-based weighting, 
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Kriging optimizes interpolation by considering statistical relationships between sampled data points. Given 

Java Island’s diverse topography and microclimatic variations, Kriging is better suited for capturing spatial 

rainfall distributions, making it the preferred method for estimating rainfall intensity in unsampled locations. 

The study on the implementation of Inverse Distance Weighting (IDW) and Kriging methods for 

analyzing humidity and temperature distribution patterns due to weather changes in the Bangka Islands, based 

on data from 2019 to 2021, produced the following results: The standard error (SE) prediction for temperature 

using IDW ranges from 0.223 to 0.331, while for relative humidity, it ranges from 0.506 to 0.751. In this 

case, the Kriging method is better than the IDW method [11]. 

Research comparing IDW and Kriging model accuracy in groundwater table mapping further supports 

these findings. The study found that the best interpolation model for the IDW method was obtained using 

power (p) with a value of 3, generating an RMSE of 3.23 with a validity of 40%. Meanwhile, the best 

interpolation model for the Kriging method was obtained using the Ordinary Kriging variant, which produced 

an RMSE of 2.98 with a validity of 50%. These results indicate that the Kriging method is more accurate than 

the IDW method, yielding a lower RMSE and higher validity [12]. Based on this background, the researcher 

intends to develop a Kriging equation to estimate rainfall intensity at unsampled points on Java Island using 

rainfall intensity values from sampled points, providing a more reliable and precise prediction model. 

2. RESEARCH METHODS 

2.1 Semivariogram 

A variogram is a statistical tool used to describe autospatial modeling and exploration of regional 

variables, while a semivariogram is one-half of a variogram. Semivariograms are divided into two types, 

namely experimental semivariograms and theoretical semivariograms. The experimental semivariogram is 

obtained from the measurement of spatial data, and the experimental semivariogram formula can be seen in  

Equation (1) as follows [13]. 

𝛾(ℎ) =
1

𝑁(ℎ)
∑[𝑍(𝑠𝑖) − 𝑍(𝑠𝑖 + ℎ)]

2

𝑁(ℎ)

𝑖=1

 (1) 

where, 

𝛾(ℎ)     : semivariogram value at distance ℎ. 

𝑍(𝑠𝑖)     : value of observation at 𝑖 − 𝑡ℎ location. 

𝑍(𝑠𝑖 + ℎ) : the value of the observation at 𝑖 − 𝑡ℎ location with the addition of distance ℎ. 

𝑁(ℎ)     : many pairs of data that have a distance ℎ. 

In the experimental semivariogram there are three parameters, namely: 

a. Sill (𝐶) is the stable period in the semivariogram that has reached the range, where the Sill value 

is equal to the value of the variance. 

b. Nugget Effect (𝐶𝑜) is a jump from a value of 0 to the semivariogram value with the smallest 

distance. 

c. Range (𝑎) is the distance from the semivariogram to reach a stable state (sill). 

The value of the experimental semivariogram is used for further analysis by replacing the experimental 

semivariogram with a theoretical semivariogram. There are three commonly used theoretical semivariogram 

models, as can be seen in Equation (2), Equation (3), and Equation (4), as follows [14]. 

a. Spherical Model 

𝛾(ℎ) = {
𝑐 [
3ℎ

2𝑎
− (

ℎ

2𝑎
)
3

] , for ℎ ≤ 𝑎

𝑐,                                    for ℎ > 𝑎

 (2) 



1794 Auliyazhafira, et al.    SPATIAL INTERPOLATION OF RAINFALL INTENSITY IN JAVA ISLAND USING ORDINARY…  

 

b. Exponential Model 

 

𝛾(ℎ) = {𝑐 [1 − 𝑒𝑥𝑝 (−
ℎ

𝑎
)] , for ℎ ≤ 𝑎

𝑐,                                         for ℎ > 𝑎
 (3) 

 

c. Gaussian Model 

 

𝛾(ℎ) = {
𝑐 [1 − 𝑒𝑥𝑝 (−

ℎ2

𝑎2
)

2

] , for ℎ ≤ 𝑎

𝑐,                                              for ℎ > 𝑎

 (4) 

 

with, 

ℎ     : sample location distance 

𝑐     : sill 

𝑎     : range 

The following images of the three theoretical models are as follows:  

 
Figure 1. Comparison of Three Theoretical Models [15] 

2.2 Kriging 

The kriging method is a linear interpolation technique to predict values at unsampled locations based 

on realized values at surrounding locations. The kriging method consists of three methods, namely Simple 

Kriging (SK), Ordinary Kriging (OK), and Universal Kriging (UK). SK is used when the average is known, 

OK is used when the average is unknown and assumed to be constant, and UK is used when the average is 

unknown and not constant [16]. 

The OK method is used when the population mean is unknown and assumed to be constant. This 

assumption aligns with real-world data characteristics, where the actual population mean is often challenging 

to determine. In many practical cases, especially in geospatial data such as rainfall, the underlying mean is 

not explicitly known due to the heterogeneous and dynamic nature of spatial phenomena. Rainfall patterns, 

for instance, vary across regions and are influenced by multiple environmental factors, making it nearly 

impossible to define a single, known global mean. Therefore, assuming a locally constant but unknown mean, 

as done in Ordinary Kriging, provides a more realistic and flexible approach to spatial interpolation  [17].  

In Ordinary Kriging (OK), spatial dependence between locations can be represented using a covariance 

function or variogram as a distance function. However, this is valid only if the data satisfy second-order 
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stationarity. Second-order stationarity assumes that (1) the mean remains constant across the study domain 

and (2) the covariance between two locations depends only on the distance between them, not their absolute 

coordinates. The OK method consists of point OK and block OK, where the interpolation result with point 

OK is a point while the block OK interpolation result is an area around the interpolation point. This research 

is limited to the ordinary point kriging method [17]. 

2.3 Ordinary Point Kriging 

The underlying model of point kriging and block kriging is the generalized OK equation model as can 

be seen in Equation (5) as follows.  

 

𝑍(𝑠) = 𝜇 + 𝜀(𝑠) (5) 

 

where 𝜇 is assumed to be fixed and unknown while 𝜀(𝑠) has a mean of zero, describing the variation around 

the mean. If there are 𝑛 observations at a known location and we want to know the prediction �̂� of Z at an 

unsampled location 𝑠0, 3 basic assumptions are required that ensure the prediction �̂� can be obtained. 

a. �̂� is linear on 𝑍(𝑠1),… , 𝑍(𝑠𝑛) 

b. �̂� is unbiased predictor 

c. �̂� minimizes the mean square error of the prediction 𝐸[𝑍(𝑠0) − �̂�(𝑠0)]
2 

2.3.1 Linearity and Unbiasedness in Ordinary Point Kriging 

Ordinary point kriging is the estimation of a value at a given point and is often used in spatial 

interpolation analysis in general. Suppose Z has a measure at the sample points 𝑠𝑖 with 𝑖 =  1, 2, . . . , 𝑛. The 

information from this sample is used to estimate the value at a certain unsampled point 𝑠0 with Equation (6) 

as follows: 

 

�̂�(𝑠0) =∑𝜆𝑖𝑍(𝑠𝑖)

𝑛

𝑖=1

 (6) 

 

The equation is formed from the first assumption which states that �̂� is linear in 𝑍(𝑠1), . . . , 𝑍(𝑠𝑛). In 

the equation, 𝑛 represents the sample data points and 𝜆𝑖 represents the kriging weights. The second 

assumption states that is an unbiased estimator, so Equation (7) is obtained as follows [17]. 

 

𝐸(𝑍∗(𝑠0) − 𝑍(𝑠0)) = 𝐸 (∑𝜆𝑖𝑍(𝑠𝑖) − 𝑍(𝑠0)

𝑛

𝑖=1

)  

=∑𝜆𝑖𝐸(𝑍(𝑠𝑖)) − 𝐸(𝑍(𝑠0))

𝑛

𝑖=1

  

      = 𝜇∑𝜆𝑖 − 𝜇

𝑛

𝑖=1

= 0 ⇔∑𝜆𝑖

𝑛

𝑖=1

= 1 (7) 

 

then it is obtained that the weights become unbiased with ∑ 𝜆𝑖
𝑛
𝑖=1 = 1. 

2.3.2 Minimum Variance on Ordinary Point Kriging 

The minimum variance is obtained by minimizing the mean square value of the errors 𝐸[(𝑍(𝑠0) −
�̂�(𝑠0))

2]  [17]. To fulfill this condition, a linear constant 𝜆𝑖 and a lagrange multiplier m are required, which 

guarantees that the sum of the kriging weights will sum to 1 as shown in Equation (8) below. 

𝐿 = 𝐸 [(𝑍(𝑠0) − �̂�(𝑠0))
2
] − 𝑚(∑𝜆𝑖

𝑛

𝑖=1

− 1)  
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             𝐿 = 𝐸 [(𝑍(𝑠0) −∑𝜆𝑖𝑍(𝑠𝑖)

𝑛

𝑖=1

)

2

] − 𝑚(∑𝜆𝑖

𝑛

𝑖=1

− 1)  

𝐿 = 𝑉𝑎𝑟(𝑍(𝑠0)) − 2∑𝜆𝑖𝐶𝑜𝑣(𝑍(𝑠0), 𝑍(𝑠𝑖))

𝑛

𝑖=1

+∑∑𝜆𝑖𝜆𝑗𝐶𝑜𝑣(𝑍(𝑠𝑖), 𝑍(𝑠𝑗))

𝑛

𝑗=1

𝑛

𝑖=1

−𝑚(∑𝜆𝑖

𝑛

𝑖=1

− 1) 

(8) 

 

By performing partial derivatives of equation 𝐿 on 𝜆𝑖 and 𝛼 which are then equated to zero. This will 

result in the following system of Equation (9). 

 

𝐶𝑜𝑣(𝑍(𝑠0), 𝑍(𝑠𝑖)) =∑𝜆𝑗𝐶𝑜𝑣 (𝑍(𝑠𝑖), 𝑍(𝑠𝑗))

𝑛

𝑗=1

− 𝛼, for 𝑖 =  1, 2, . . . , 𝑛 (9) 

 

by ∑ 𝜆𝑖
𝑛
𝑖=1 = 1. 

Based on the above system, we get ∑ 𝜆𝑗𝐶𝑜𝑣(𝑍(𝑠𝑖), 𝑍(𝑠𝑗))
𝑛
𝑗=1 = 𝐶𝑜𝑣(𝑍(𝑠0), 𝑍(𝑠𝑖)) + 𝛼, so the 

minimum variance prediction under the condition of unbiasedness is as in Equation (10) below: 

 

𝜎𝑂𝐾
2 = 𝑉𝑎𝑟(𝑍(𝑠0)) − 2∑𝜆𝑖𝐶𝑜𝑣(𝑍(𝑠0), 𝑍(𝑠𝑖))

𝑛

𝑖=1

+∑𝜆𝑖𝐶𝑜𝑣(𝑍(𝑠0), 𝑍(𝑠𝑖))

𝑛

𝑖=1

+ 𝛼  

𝜎𝑂𝐾
2 = 𝑉𝑎𝑟(𝑍(𝑠0)) −∑𝜆𝑖𝐶𝑜𝑣(𝑍(𝑠0), 𝑍(𝑠𝑖))

𝑛

𝑖=1

+ 𝛼 (10) 

 

However, unknown values are still required to estimate the covariance function. The sample mean 

value estimates the covariogram. The covariogram is estimated by the sample mean value. However, in the 

case of spatial dependence, the covariogram generated from the sample is an unbiased estimator and is not of 

minimum variance. An alternative solution is to use other mean values that account for spatial dependencies. 

One of them is using semivariograms in the OK equation system, as in the following Equation (11) system 

[17]. 

 

𝛾(𝑠𝑖 , 𝑠0) =∑𝜆𝑗𝛾(𝑠𝑖 , 𝑠𝑗)

𝑛

𝑗=1

+ 𝛼 , for 𝑖 =  1, 2, . . . , 𝑛 (11) 

 

by ∑ 𝜆𝑖
𝑛
𝑖=1 = 1. 

2.3.3 Estimation on Ordinary Point Kriging 

The weight vector and lagrange multiplier can be formed from the covariance matrix or semivariogram. 

The optimal kriging weights can be obtained with the semivariogram matrix through Equation (12) below. 

 

𝚪𝜆 = 𝚪𝟎 (12) 

 

Where 𝐴 is the semivariogram matrix between the sample data points, 𝐴0 is the semivariogram vector 

between the sample data points and the target, and 𝜆 is the weight vector of kriging and lagrange multiplier. 

The system of equations can be written in matrix form as in Equation (13) as follows: 
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(

 
 
 

𝛾11 𝛾12 𝛾13 … 𝛾1𝑛 1
𝛾21 𝛾22 𝛾23 … 𝛾2𝑛 1
𝛾31 𝛾32 𝛾33 … 𝛾3𝑛 1
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝛾𝑛1 𝛾𝑛2 𝛾𝑛3 … 𝛾𝑛𝑛 1
1 1 1 … 1 0)

 
 
 

(

 
 
 

𝜆1
𝜆2
𝜆3
⋮
𝜆𝑛
𝜇 )

 
 
 
=

(

  
 

𝛾10
𝛾20
𝛾30
⋮
𝛾𝑛0
1 )

  
 

 (13) 

 

Furthermore, to get the solution of the kriging weight value and Lagrange multiplier, the following 

Equation (14) is used: 

 

𝜆 = 𝚪−𝟏𝚪𝟎 (14) 

2.3.4 Analysis Steps Using the Ordinary Point Kriging Method 

a. The spatial data location map used is the map digitized in the preparation stage. The digitized map 

contains spatial data attribute information. 

b. Identifying the fulfillment of spatial data assumptions, including the assumptions of normality, 

spatial variance homogeneity, and spatial autocorrelation. 

i. The assumption of normality was tested using the Kolmogorov Smirnov test. 

ii. The assumption of homogeneity of spatial data variance uses data plotting against altitude and 

longitude. Based on the general kriging model, which is as in Equation (15) below: 

 

𝑍(𝑠) = 𝜇 + 𝑒(𝑠), 𝑒(𝑠)𝜖 𝐷 ⊂  𝑅2 (15) 

 

Then the error variance of a constant (homogeneous) model is obtained as Equation (16) 

below: 

 

𝑉(𝜀𝑖) = 𝐸(𝜀𝑖 − 𝐸(𝜀))
2  

𝑉(𝜀𝑖) = 𝐸(𝜀𝑖)
2  

𝑉(𝜀𝑖) = 𝜎
2  (16) 

 

The tendency of the plot between spatial data and longitude indicates that there is a trend 

according to the increase in longitude, and also applies to latitude. 

iii. The assumption of spatial autocorrelation is performed using a descriptive variogram. 

c. Form various empirical semivariogram models, then select the model that produces the best 

kriging spatial interpolation based on the RMSE and MAE values. 

d. Using the Ordinary Point Kriging interpolation method to determine the prediction contour map 

at each point on the map using Equation (17) as follows: 

 

�̂�(𝑠0) = ∑ 𝜆𝑖𝑍(𝑠𝑖)
𝑛
𝑖=1  and �̂�(𝑠0) = 𝜆1𝑍(𝑠1) + 𝜆2𝑍(𝑠2)+. . . +𝜆𝑛𝑍(𝑠𝑛) (17) 

 

e. Using the Ordinary Point Kriging interpolation method to determine the prediction standard error 

contour map at each point on the map based on the root of Equation (18) below: 

𝜎2 = (𝑠0) = 𝐶(0) −∑𝜆𝑖𝛾(𝑠𝑖, 𝑠0)

𝑛

𝑖=1

+𝑚 (18) 

 

where 𝐶(0) = 𝐶0 + 𝐶1 = 𝜎
2 and 𝑚 represents the Lagrange multiplier which calculated to ensure 

that the Ordinary Kriging estimation is unbiased. 
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f. Calculate the RMSE and MAPE values for the Ordinary Point Kriging method with Equation 

(19) and Equation (20) as follows: 

 

RMSE = √
1

𝑛
∑[𝑍(𝑠𝑖) − �̂�(𝑠𝑖)]

2
𝑛

𝑖=1

 (19) 

 

where, 𝑍(𝑠𝑖) is the true value of the data at the 𝑖 − 𝑡ℎ location, �̂�(𝑠𝑖) is the expected value of the 

data at the 𝑖 − 𝑡ℎ location and 𝑛 is the amount of research data. 

 

MAPE =
1

𝑛
∑|

𝑍(𝑠𝑖) − �̂�(𝑠𝑖)

𝑍(𝑠𝑖)
|

𝑛

𝑖=1

× 100% (20) 

 

A good estimation accuracy for the kriging method is a low RMSE value and a small MAPE value. 

MAPE values are categorized into the following groups [18]. 

Table 1. MAPE Categorization 

MAPE Description 

≤ 10% Highly Accurate 

10 - 20%  Accurate 

20 - 50% Reasonable 

> 50% Inaccurate 

3. RESULTS AND DISCUSSION 

3.1 Descriptive Statistics 

The data used in this study is the average rainfall data in the Java Island region within 10 years (2013 

to 2023) obtained from the NASA POWER website https://power.larc.nasa.gov/data-access-viewer/. The 

data used consists of 64 observation locations in the Regency / City area on the island of Java [19], as shown 

in Figure 2. In this study, the data is divided into two groups, namely training and test data. Training data is 

data included in the formation of kriging equations, while test data is used to test the accuracy of kriging 

models in predicting unsampled areas. The training data consists of 53 regions, while the test data consists of 

eleven regions. In Figure 2, the blue dots represent training data locations, while the black dots indicate 

testing data points used to evaluate the kriging model. 

 
Figure 2. Distribution of Meteorological Observation Stations Across Java 

From the training data, it was found that the minimum value of rainfall was 167.2 mm/day at Sumenep 

Regency, while the maximum value reached 333 mm/day at Tasikmalaya Regency. This data has a median 
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data centering measure of 199.3 mm/day and an average of 208.6 mm/day. The data distribution was 

measured using standard deviation and variance with values of 31.7 mm/day and 1003.6 mm/day 

respectively. The rainfall data from this training data group has a non-symmetrical data distribution, as seen 

in Figure 3. 

 
Figure 3. Histogram of Training Data 

The histogram displays the frequency distribution of rainfall data, with most values concentrated 

around 200 mm, while higher rainfall values occur less frequently, indicating a right-skewed distribution. 

The red density curve represents a smoothed probability distribution, highlighting the overall trend. This 

visualization helps understand rainfall patterns, identify anomalies, and support further climatological 

analysis. 

3.2 Normality Test and Data Transformation 

The normality test is carried out to determine whether the data is normally distributed. The test is 

carried out using the Kolomogorov-Smirnov test, which calculates the absolute difference between the 

cumulative frequency distribution and the standard normal distribution. The hypothesis in the Kolmogorov-

Smirnov test is as follows: 

𝐻0 : Logarithmic transformed rainfall data follows a normal distribution. 

𝐻1 : Logarithmic transformed rainfall data does not follow a normal distribution. 

The following are the normality test results on the data after logarithmic transformation. 

Table 2. Normality Test Results Using the Kolmogorov-Smirnov Test 

D p-value Decision 

0.12327 0.04318 𝐻0 failed rejected 

Based on the results in Table 2, using a significance level of 1%, it can be concluded that the null 

hypothesis fails to be rejected, which means that the data in this study have followed a normal distribution. 

3.3 Data Distribution 

Ordinary kriging requires assuming the data is second-order stationary [20]. One way to check the 

stationarity of the data is through data visualization. The data resulting from the logarithmic transformation 

of rainfall values will then be plotted against regional coordinates (latitude and longitude) to see if there is a 

tendency to change rainfall values when latitude and longitude coordinate values occur. 
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(a) (b) 

Figure 4. Scatter Plot of Inflation Values Based on Coordinates of Districts/Cities  

in Sampled Region (a) Latitude (b) Longitude 

Figure 4 (a) shows no particular trend or pattern in the plot between the transformed data and latitude. 

However, the plot shows a downward trend between the transformed data and longitude, as shown in Figure 

4 (b). It indicates a relationship between the transformed rainfall variables and changes in longitude. In this 

case, changes in rainfall occur along with changes in longitude. The higher the longitude of an area (for 

example, East Java), the more the average rainfall tends to decrease. If there is a specific pattern in any of the 

plots, it is not enough to conclude that the average rainfall data is stationary. If the data of the sampled region 

satisfies the second-order stationary condition, the ordinary kriging system can be expressed in terms of a 

semivariogram [17]. 

3.4 Semivariogram 

The semivariogram is calculated between two points of the observation region, so out of 53 sampled 

regions, there will be C(53,2) or 1378 sample pairs. The experimental semivariogram value can be calculated 

using the equation mentioned in the previous chapter, specifically in Equation (1). With the help of the R 

programming language, using gstat package, the experimental semivariogram plot is obtained, as shown in 

Figure 5. 

 
Figure 5. Experimental Semivariogram Plot 

Next, we will look for the theoretical semivariogram that best matches the experimental semivariogram 

that has been obtained. In calculating the theoretical semivariogram, the sill parameter is required. The sill 

value can be obtained from the variance of the sampled data. The most suitable theoretical model is 

determined based on the smallest sum squared error (SSE) value. 
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This study uses three theoretical semivariogram models: the spherical, exponential, and Gaussian. 

Based on the calculation, the value of a sill obtained is 0.02009, which will be used in theoretical modeling. 

Table 3 compares each theoretical model's plot, sill value, range, and SSE. Based on these results, the 

exponential model is the most suitable because it has the smallest SSE value. 

Table 3. Comparison of Theoretical Semivariograms 

  Spherical Exponential gaussian 

psill 0.0198 0.0331 0.0103 

range 3.5412 3.4849 0.6069 

SSE 0.002194 0.002015 0.004746 

plot 

   

3.5 Control Location Prediction Results 

After obtaining the best theoretical semivariogram model, the following prediction of rainfall data at 

the control location is based on the exponential theoretical semivariogram model. Based on Table 4, it can 

be seen that the predicted rainfall results in 11 districts/cities, which are the control locations using the 

ordinary point kriging method, are close to the results of the actual data. Next, the average percentage value 

of the residual between the predicted data and the actual data (MAPE) will be used to measure the accuracy 

of the prediction results. 

The MAPE value obtained is 4.845%. The MAPE value <10% indicates a very accurate prediction 

accuracy level [18], showing that rainfall prediction with the ordinary point kriging method can be applied in 

districts/cities on the island of Java that are not sampled. 

Table 4. Rainfall Prediction Results and MAPE Values at the Control Site 

Number Regency/City Actual Data Prediction Result MAPE 
1 Bondowoso Regency 174.2182 176.9082 

4.84541% 

2 Bojonegoro Regency 186.1631 188.5542 

3 Tulungagung Regency 192.6200 194.1086 

4 Pacitan Regency 194.1487 199.2501 

5 Sragen Regency 195.2403 193.4561 

6 Sleman Regency 197.5060 215.4605 

7 Central Jakarta City 209.0427 211.4250 

8 Bogor City 221.5168 237.6515 

9 Garut Regency 245.1586 298.1771 

10 Cianjur Regency 265.0026 257.5753 

11 Bandung City 276.6233 264.9668 

The results of this study demonstrate the applicability and accuracy of the ordinary point kriging 

method for predicting rainfall at unsampled locations in Java. The low MAPE value of 4.845% signifies that 

the method provides highly accurate predictions, as supported by the criterion that MAPE values below 10% 

indicate a strong level of accuracy [18]. These results are likely influenced by the choice of semivariogram 

function and the complexity of the model used. Ordinary point kriging adopts a more straightforward 

approach, focusing on spatial relationships between points. This simplicity enables the model to produce more 

stable interpolations and better generalization, as evidenced by the lower MAPE value in this study. It is also 

important to highlight that overly simplistic interpolation methods, such as Inverse Distance Weighting 

(IDW), are often less accurate in predicting environmental data. IDW assumes that data influence depends 
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solely on distance without accounting for more complex spatial patterns, leading to biased results in areas 

with uneven data distribution[12], [13].  

4. CONCLUSIONS 

Using the ordinary point kriging method to predict rainfall on Java Island has proven effective. The 

resulting kriging equation provides rainfall predictions with a high level of accuracy, indicated by a MAPE 

value of 4.85% and an RMSE of 18.17. This research can enrich the understanding of climate patterns in Java 

Island and contribute to developing mitigation and adaptation strategies for climate change in Indonesia. 

These results show that utilizing spatial dependencies can be a helpful approach to predicting rainfall 

variability in climatically complex regions such as Indonesia. 
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