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ABSTRACT 

Article History: In 2017, Tran et al. proposed a multilinear map based on Weil pairings to realize the 

Boneh-Silverberg scheme. They proposed an algorithm to evaluate the Boneh-Silverberg 

multilinear map and showed that it could be used to establish a shared key in multipartite 

key exchange for five users. They claimed their scheme was secure and computable in 

establishing a shared key between 5 users. Unfortunately, they did not prove that their 

scheme meets three additional computational assumptions proposed by Boneh and 

Silverberg. In this paper, with some computational modifications, we show that the 

algorithm proposed by Tran et al. does not satisfy three security assumptions proposed by 

Boneh and Silverberg. Therefore, every user involved in this multipartite key exchange 

can obtain the shared key and other users' secret values. We also show that the 

computation to obtain a shared key is inefficient because it requires a lot of computation 

and time. 
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1. INTRODUCTION 

Bilinear maps have emerged as an exciting area in cryptography, enabling many new protocols that 

were previously impossible [1]. It has unique properties allow it to be implemented in many new 

cryptographic protocols. One interesting application of bilinear maps in cryptography is Boneh and Franklin's 

identity-based encryption [2]. Boneh and Franklin used bilinear maps as building blocks to build an 

encryption scheme using user identities. Bilinear maps can also be used to construct short signature schemes, 

which were first proposed by Boneh, Lynn, and Sacham [3], and to exchange a shared key between three 

parties, which was proposed by Joux [4]. 

There are many kinds of bilinear maps used in cryptography. Two practical bilinear maps in 

cryptography are the Weil pairing and the Tate pairing. They map a pair of points on an elliptic curve into 

the multiplicative group of finite fields. The Weil pairing has an alternating property, which will map any 

two dependent points on the elliptic curve into a fixed value 1 [5]. Due to this alternating property, the Weil 

pairing cannot be used directly in cryptography. Therefore, we should use an additional map that can remove 

this property but retain the other properties of the Weil pairing. The Weil pairing with such an additional map 

is called the modified Weil pairing. 

In 2002, Boneh and Silverberg showed that a multilinear map from the generalization of the Weil or 

Tate pairing would broadly impact on cryptography [6]. Multilinear maps can build secure broadcast 

encryption, a unique signature scheme, and a one-round multiparty key exchange. Another application of 

multilinear maps is group key exchange, witness encryption [7], and indistinguishability obfuscation [8]. For 

some cryptographic applications, the multilinear map should satisfy three security assumptions: the 

multilinear Diffie-Hellman assumption, the Diffie-Hellman inversion assumption, and the generalized Diffie-

Hellman assumption. Unfortunately, their paper stated that it is not easy to construct a multilinear map that 

meets these three security assumptions, and this is still an open problem. 

Garg, Gentry, and Halevi proposed the first interesting candidate for a multilinear map [9]. They 

introduced the concept of a graded encoding scheme applied to ideal lattices. However, Hu and Jia attacked 

this scheme [10]. Another candidate multilinear map construction was proposed by Coron, Lepoint, and 

Tibouchi [11] using the Chinese Remainder Theorem over the integers. Unfortunately, this scheme had also 

been attacked by Cheon et al. [12]. Other candidate multilinear maps have been proposed based on Weil 

pairing over elliptic curve [13], cohomology group [14], and nilpotent group [15].  

In this paper, we show the usage of a multilinear map in simplifying the multipartite key exchange 

compared to a multipartite key exchange using an ordinary Diffie-Hellman key exchange. We also explore 

the multilinear maps proposed by Tran et al. [13]. They constructed a multilinear map based on Weil pairing 

over an elliptic curve. They showed that multilinear maps, especially 4-linear maps, can be built using Weil 

pairing and tensor products. They also proposed an algorithm to compute the exponentiation 𝑖 of 𝜁, the 

generator of a multiplicative group of finite fields as a codomain group of Weil pairing. Finally, we show that 

the algorithm proposed by Tran et al. allows users not only to compute a shared key but also secret values 

from other users. 

2. RESEARCH METHODS 

This research focuses on multilinear maps using Weil pairing over elliptic curves and their application 

to establish the shared key between five users. This study consists of three stages. 

a. Stage 1: Exploration of the definition of bilinear and multilinear maps (𝒌 = 𝟐), as well as the 

concept of Diffie-Hellman key exchange for two users. 

b. Stage 2: Analyze algorithm 1 proposed by Tran et al. and evaluate whether the algorithm can be 

used to obtain the secret value of each user. 

c. Stage 3: Formulation of claims and substantiation of research results. 

Below, we provide some mathematical background related to the bilinear map, multilinear map, and 

the Diffie-Hellman key exchange as the result of the first step of our research. 
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Definition 1. Let 𝐺1 and 𝐺2 be two cyclic groups of order 𝑞 for some large prime 𝑞. The group 𝐺1 can be 

viewed as an additive group and 𝐺2 as a multiplicative group. The map 𝑒: 𝐺1 × 𝐺1 → 𝐺2 is said bilinear if 

satisfy 𝑒(𝑎𝑃, 𝑏𝑄) = 𝑒(𝑃, 𝑄)𝑎𝑏 for all 𝑃, 𝑄 ∈ 𝐺1 and all 𝑎, 𝑏 ∈ 𝑍. 

A bilinear map used in cryptography should also satisfy these additional properties [16]: 

a. Non-degenerate: the map does not send all pairs in 𝐺1 × 𝐺1 to the identity in 𝐺2. 

b. Computable: there is an efficient algorithm to compute 𝑒(𝑃, 𝑄) for any 𝑃, 𝑄 ∈ 𝐺1. 

Definition 2. An elliptic curve over 𝐹𝑞 is the set of solutions to an equation of the form: 

 

𝐸: 𝑌2 = 𝑋3 + 𝐴𝑋 + 𝐵,  with 𝐴, 𝐵 ∈ 𝐹𝑞 satisfying 4𝐴3 + 27𝐵2 ≠ 0 

 

which is denoted by [5]: 

 

𝐸(𝐹𝑞) = {(𝑥, 𝑦): 𝑥, 𝑦 ∈ 𝐹𝑞   𝑠𝑎𝑡𝑖𝑠𝑓𝑦   𝑦2 + 𝑥3 + 𝐴𝑥 + 𝐵} ∪ {𝒪} 

 

The set of points of an elliptic curve forms a group under addition operation. This group can be used 

as a building block of a key exchange scheme, ElGamal encryption [17], and many cryptographic schemes 

and algorithms. 

Definition 3. Let 𝑃, 𝑄 ∈ 𝐸[𝑚] i.e., 𝑃, 𝑄 are points of order 𝑚 in the group 𝐸. Let 𝑓𝑃 and 𝑓𝑄 be rational 

functions on 𝐸 satisfying: 

 

𝑑𝑖𝑣(𝑓𝑃) = 𝑚[𝑃] − 𝑚[𝒪]      𝑑𝑎𝑛     𝑑𝑖𝑣(𝑓𝑄) = 𝑚[𝑄] − 𝑚[𝑃] 

 

where 𝑑𝑖𝑣(𝑓𝑃) and 𝑑𝑖𝑣(𝑓𝑄) are divisors on rational function 𝑓𝑃 and 𝑓𝑄 respectively. The Weil pairing of 𝑃 

and 𝑄 is the quantity  

 

𝑒𝑚(𝑃, 𝑄) =
𝑓𝑃(𝑄 + 𝑆)

𝑓𝑃(𝑆)

𝑓𝑄(𝑃 − 𝑆)

𝑓𝑄(−𝑆)
⁄  

 

where 𝑆 ∈ 𝐸 is any point satisfying 𝑆 ≠ {𝒪, 𝑃, −𝑄, 𝑃 − 𝑄} [5]. 

The values of the Weil pairing satisfy 𝑒𝑚(𝑃, 𝑄)𝑚 = 1 for all 𝑃, 𝑄 ∈ 𝐸[𝑚]. In other words, the output 

of Weil pairing is an 𝑚𝑡ℎ root of unity. The Weil pairing is also alternating, which means that  

 

𝑒𝑚(𝑃, 𝑃) = 1 for all 𝑃 ∈ 𝐸[𝑚] 

 

With this alternating property, if we want to evaluate the pairing at points 𝑃1 = 𝑎𝑃 and 𝑃2 = 𝑏𝑃 using 

the Weil pairing, it will output 1 as a fixed value for any random values 𝑎, 𝑏 ∈ 𝑍. 

 

𝑒(𝑃1, 𝑃2) = 𝑒(𝑎𝑃, 𝑏𝑃) = 𝑒(𝑃, 𝑃)𝑎𝑏 = 1𝑎𝑏 = 1 

 

The Weil pairing with this alternating property cannot be used directly in cryptography, because it will 

map any two dependent inputs into a fixed value 1. To overcome this drawback, we can choose an elliptic 

curve that has a “special” map 𝜙: 𝐸 → 𝐸 with the property that 𝑃 and 𝜙(𝑃) are independent in 𝐸[𝑚]. Then 

we can evaluate a pair of 𝑃 and 𝜙(𝑃) and the output will not map into a fixed value. 

𝑒𝑚(𝑃1, 𝜙(𝑃2)) = 𝑒𝑚(𝑎𝑃, 𝜙(𝑏𝑃)) = 𝑒𝑚(𝑎𝑃, 𝑏𝜙(𝑃)) = 𝑒𝑚(𝑃, 𝜙(𝑃))
𝑎𝑏
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Definition 4. Let ℓ ≥ 3 be a prime, let 𝐸 be an elliptic curve, let 𝑃 ∈ 𝐸[ℓ] be a point of order ℓ, and let 

𝜙: 𝐸 → 𝐸 be a map from 𝐸 to itself. We say that 𝜙 is an ℓ-distorsion map for 𝑃 if it has the following two 

properties: 

(i) 𝜙(𝑛𝑃) = 𝑛𝜙(𝑃) for all 𝑛 ≥ 1. 

(ii) The number 𝑒ℓ(𝑃, 𝜙(𝑃)) is a primitive ℓ𝑡ℎ root of unity. This means that 𝑒ℓ(𝑃, 𝜙(𝑃))
𝑟

= 1 if and 

only if 𝑟 is a multiple of ℓ. 

The Weil pairing with this distortion map is called the modified Weil pairing, denoted by �̂� [5]. 

Multilinear maps are a generalized form of bilinear maps. The bilinear map takes two elements in 𝐺1 

as its input while the multilinear map takes 𝑘-elements as its input. If the number of inputs is 𝑘 = 3, it is 

called trilinear map otherwise if 𝑘 > 3, it is called an 𝑘-linear map. 

Definition 5. A map 𝑒: (𝐺1
𝑘 → 𝐺1) is an 𝑘-linear map if it satisfies the following properties [6]: 

(i) 𝐺1 and 𝐺2 are groups of the same prime order. 

(ii) If 𝑎1, ⋯ , 𝑎𝑘 ∈ 𝑍 and 𝑃1, ⋯ , 𝑃𝑘 ∈ 𝐺1, then  𝑒(𝑃1
𝑎1 , ⋯ , 𝑃𝑘

𝑎𝑘) = 𝑒(𝑃1, ⋯ , 𝑃𝑘)𝑎1⋯𝑎𝑘 

(iii) The map 𝑒 is non-degenerate in the following sense: if 𝑃 ∈ 𝐺1 is a generator of 𝐺1 then 𝑒(𝑃, ⋯ , 𝑃) is a 

generator of 𝐺2. 

Definition 6. Cryptographic 𝑘-linear map 𝑒: 𝐺1
𝑘 → 𝐺2 is a multilinear map such that [6]: 

(i) The group action in 𝐺1 and 𝐺2 is efficiently computable. 

(ii) The map 𝑒 is efficiently computable. 

(iii) There is no efficient algorithm to compute discrete log in 𝐺1. 

For some cryptographic applications, Boneh and Silverberg stated that multilinear maps must satisfy 

three additional computational assumptions [6]. They are the multilinear Diffie-Hellman assumption, the 

Diffie-Hellman inversion assumption, and the generalized Diffie-Hellman assumption. 

Definition 7. The multilinear Diffie-Hellman assumption. This assumption says that given 

𝑔, 𝑔𝑎1 , ⋯ , 𝑔𝑎𝑘+1 in 𝐺1, it is hard to compute 𝑒(𝑔, ⋯ , 𝑔)𝑎1⋯𝑎𝑘+1 in 𝐺2. 

Definition 8. The Diffie-Hellman inversion assumption. The assumption says that given 𝑔, 𝑔𝑏 ∈ 𝐺1 it is 

hard to compute 𝑒(𝑔, ⋯ , 𝑔)1 𝑏⁄ ∈ 𝐺2. 

Definition 9. The generalized Diffie-Hellman assumption. The assumption says that given 𝑔𝑎1 , ⋯ , 𝑔𝑎𝑘 in 

𝐺1 and given all the subset products 𝑔∏ 𝑎𝑖𝑖∈𝑆 ∈ 𝐺1 for any strict subset 𝑆 ⊂ {1, ⋯ , 𝑘}, it is hard to compute 

𝑔𝑎1⋯𝑎𝑘 ∈ 𝐺1. 

Diffie-Hellman key exchange [5] is a scheme that allows two parties to establish a shared key over 

insecure communication. Let Alice and Bob want to communicate securely using symmetric cryptography. 

They need to have a shared key as the input of their agreed symmetric algorithm. Diffie-Hellman key 

exchange allows Alice and Bob to establish a shared key securely, as depicted in Figure 1. 
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Figure 1. Diffie-Hellman Key Exchange 

 

Alice and Bob agreed on some large prime 𝒑 and 𝒈, a generator of 𝒁𝒑. Alice and Bob choose a random 

secret value 𝒂 and 𝒃 respectively, with 𝒂, 𝒃 ∈ 𝒁𝒑. Alice then computes 𝑨 = 𝒈𝒂 𝐦𝐨𝐝 𝒑, and Bob computes 

𝑩 = 𝒈𝒃 𝐦𝐨𝐝 𝒑. Alice and Bob exchange 𝑨 and 𝑩 over public communication. To derive a shared key, Alice 

computes the received value from Bob with her secret value and Bob do the same thing. Alice computes the 

𝑲𝑩𝑨 = 𝒈𝒃𝒂 𝐦𝐨𝐝 𝒑 and Bob computes 𝑲𝑨𝑩 = 𝒈𝒂𝒃 𝐦𝐨𝐝 𝒑. Now, Alice and Bob have the shared key. 

 

 

𝑲𝑩𝑨 = 𝒈𝒃𝒂 𝐦𝐨𝐝 𝒑 = 𝒈𝒂𝒃 𝐦𝐨𝐝 𝒑 = 𝑲𝑨𝑩 

3. RESULTS AND DISCUSSION 

This section describes the results of this research, including the description of multipartite key 

exchange using a multilinear map, particularly for a bilinear map. We also review Tran et al.’s scheme using 

4-linear maps, including how to compute the shared key among the users. At the end of this section, we make 

some claims, proving that Tran et al.’s scheme is not secure under security assumptions and is inefficient in 

computation. 

3.1 Multilinear Map in Multipartite Key Exchange 

The 𝑘-linear map in cryptography can establish a shared key between 𝑘 + 1 users more efficiently than 

using an ordinary Diffie-Hellman key exchange. We will show how the 𝑛-linear map can simplify a 

multipartite key exchange scheme compared to the ordinary Diffie-Hellman key exchange. First, we will 

show how the original Diffie-Hellman can establish a shared key between three users. It is followed by how 

the bilinear map (2-linear map) can establish a share key more efficiently than the previous one. 

There are many proposed schemes to establish a shared key between 𝑘 users, with 𝑘 > 2, using 

generalized Diffie-Hellman key exchange. In this paper, we will describe a scheme proposed by Ingemarsson 

et al. [18]. Let Alice, Bob, and Carol wish to establish a shared key using Diffie-Hellman key exchange. They 

should choose the same large prime 𝑝 and 𝑔, the generator of 𝑍𝑝. To get a shared key, they should compute 

and exchange the public value in two rounds, as depicted in Figure 2. 
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Figure 2. Diffie-Hellman Key Exchange between 3 Users. 

 

The blue line in Figure 2 describes the first round of computation. In this round, Alice, Bob, and Carol 

send 𝐴, 𝐵, and 𝐶 respectively to their neighbors. The second round is described by the orange line. In this 

round, each user computes their received value with their secret value and sends the result to the neighbors. 

After the second round, each user can compute a shared key. In the end of this scheme, Alice Bob, and Carol 

have a shared key. 

𝐾𝐴𝐵𝐶 = 𝐾𝐵𝐶𝐴 = 𝐾𝐶𝐴𝐵 

 

If we want to establish a shared key between 𝑘 users with this scheme, it will need 𝑘 − 1 rounds to get 

a shared key. So, if there are 1 million users, it will need 999.999 rounds to get a shared key. 

Next, we will show how to establish a shared key between three users using the bilinear map, as 

depicted in Figure 3. 

 
Figure 3. Establish a Shared Key Between 3 Users Using Bilinear Map. 

 

When we want to use bilinear map to establish a shared key, we need to set the public parameter first. 

The public parameter consists of a large prime number 𝑞, two cyclic groups 𝐺1 and 𝐺𝑇, an element 𝑃 ∈ 𝐺1 

(a generator of 𝐺1), and a bilinear map �̂�: 𝐺1 × 𝐺1 → 𝐺𝑇. Then each user chooses a random secret number 

𝑎, 𝑏, 𝑐 ∈ 𝑍𝑞 for Alice, Bob, and Carol respectively. With this scheme, each user does not need to carry out 

the computation in 𝑘 − 1 rounds. They just broadcast their public value to other users. After received others 

public valued, each user can derive a shared key by computing �̂�(𝐵, 𝐶)𝑎 for Alice, �̂�(𝐴, 𝐶)𝑏 for Bob, and 

�̂�(𝐴, 𝐵)𝑐 for Carol. The result computed by Alice, Bob, and Carol, will have the same value. 

 

�̂�(𝐴, 𝐵)𝑐 = �̂�(𝐵, 𝐶)𝑎 = �̂�(𝐴, 𝐶)𝑏 = �̂�(𝑃, 𝑃)𝑎𝑏𝑐 
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3.2 Review of Tran et al.’s 𝟒-linear Map Scheme 

Now, we describe 4-linear map scheme proposed by Tran et al. [13] followed by its application on key 

exchange for 5-users.  

Tran et al. used the fact that tensor product can be used to generalize a bilinear map to multilinear map, 

as stated by the following remark: 

Remark 1. If 𝑉1, ⋯ , 𝑉𝑘 is finite-dimensional 𝐹𝑚-vector spaces, there exists a natural one-to-correspondence 

between multilinear homomorphisms: 

 

ℎ: 𝑉1 × ⋯ × 𝑉𝑘 → 𝜇𝑚 

 

and linear homomorphisms: 

 

ℎ̃: 𝑉1 ⊗ ⋯ ⊗ 𝑉𝑘 → 𝜇𝑚 

 

with ℎ(𝑥1, ⋯ , 𝑥𝑘) = ℎ̃(𝑥1 ⊗ ⋯ ⊗ 𝑥𝑘). 

In their paper, Tran et al. proposed a theorem that stated the existence of 4-linear map on an elliptic curve. 

Theorem 1. Let 𝐸 be an elliptic curve defined over 𝐾. A map 𝑒2,𝑚: 𝐸[𝑚] × 𝐸[𝑚] × 𝐸[𝑚] × 𝐸[𝑚] → 𝜇𝑚 ⊗
𝜇𝑚 given by 𝑒2,𝑚(𝑃1, 𝑃2, 𝑄1, 𝑄2) = 𝑒𝑚(𝑃1, 𝑄1) ⊗ 𝑒𝑚(𝑃2, 𝑄2). Then, 

(i) 𝑒2,𝑚 is a 4-linear mapping. 

(ii) 𝑒2,𝑚 is non-degenerate. 

(iii) 𝑒2,𝑚(𝑃, 𝑃, 𝑃, 𝑃) = 1, for all 𝑃 ∈ 𝐸[𝑚]. 

Based on Remarks 1 and Theorem 1, we can fix an element 𝜁 ∈ 𝜇𝑚, the generator of 𝜇𝑚, then there is an 

isomorphism ℎ2,𝑚: 𝜇𝑚 ⊗ 𝜇𝑚 → 𝜇𝑚 given by ℎ2,𝑚(𝜁𝑎1 ⊗ 𝜁𝑎2) = 𝜁𝑎1𝑎2. So, we can use this isomorphism to 

construct a 4-linear map as depicted in Figure 4. 

 
Figure 4. Isomorphism 𝒉𝟐,𝒎 

 

A 4-linear map 𝑒2𝑚: 𝐸[𝑚] × 𝐸[𝑚] × 𝐸[𝑚] × 𝐸[𝑚] → 𝜇𝑚 is defined as follows: 

𝑒2𝑚(𝑃1, 𝑃2, 𝑄1, 𝑄2) = ℎ2,𝑚 ∘ 𝑒2,𝑚(𝑃1, 𝑃2, 𝑄1, 𝑄2)  

= ℎ2,𝑚(𝑒𝑚(𝑃1, 𝑄1) ⊗ 𝑒𝑚(𝑃2, 𝑄2))  

= 𝜁𝑎1𝑎2  

where 𝜁𝑎1 = 𝑒𝑚(𝑃1, 𝑄1) and 𝜁𝑎2 = (𝑃2, 𝑄2). 

To evaluate 4-linear Weil pairing, Tran et al. proposed Algorithm 1 to compute exponentiation 𝑖 of a 

Weil pairing. With the fact that 𝜇𝑚 is a cyclic group generated by 𝜁, then the Weil pairing is a power of 𝜁 

form. This algorithm also uses the fact that the Weil pairing has alternating property to find exponentiation 

𝑖 when 𝑒𝑚 has no clear power of 𝜁. 

Algorithm 1 

Input: 𝑃, 𝑄, 𝑚 

Output: The exponentiation 𝑖 of the 𝑒𝑚(𝑃, 𝑄) = 𝜁𝑖. 
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1. 𝑒𝑚 = 𝑒𝑚(𝑃, 𝑄) 

2. if 𝑒𝑚 == 1 then 

3. return 0 

4. end if 

5. for 𝑖 = 1 to 𝑚 − 1 do 

6. if 𝜁𝑖 == 𝑒𝑚 then  

7. return 𝑖 

8. else {𝜁𝑖 ∗ 𝑒𝑚 == 1} 

9. return −𝑖  mod 𝑚 

10. end if 

11. end for 

The 4-linear Weil pairing along with Algorithm 1 can be used to establish a shared key between five 

users, as depicted in Figure 5. 

 
 

Figure 5. Key Exchange Between 5 Users 

 

To compute a shared key, each user broadcasts their public values to other users. After receiving the 

public values from others, each user can compute a shared key using all received public values and their 

respective secret values. From user A’s point of view, he can compute a shared key as follows: 

Public parameter: 𝐺1 = 𝐸[𝑚], 𝐺2 = 𝜇𝑚, 𝑃, �̂�2,𝑚, �̂�2𝑚, 𝜙 

Received values: 𝑄𝐵, 𝑄𝐶 , 𝑄𝐷 , 𝑄𝐺 

�̂�2𝑚(𝑄𝐵, 𝑄𝐶 , 𝜙(𝑄𝐷), 𝜙(𝑄𝐺))
𝑛𝐴 = (ℎ2,𝑚 ∘ �̂�2,𝑚(𝑄𝐵, 𝑄𝐶 , 𝜙(𝑄𝐷), 𝜙(𝑄𝐺)))

𝑛𝐴
  

= (ℎ2,𝑚 (�̂�𝑚(𝑄𝐵, 𝜙(𝑄𝐷)) ⊗ �̂�𝑚(𝑄𝐶 , 𝜙(𝑄𝐷))))
𝑛𝐴

  

= (ℎ2,𝑚 (�̂�𝑚([𝑛𝐵]𝑃, 𝜙([𝑛𝐷]𝑃)) ⊗ �̂�𝑚([𝑛𝐶]𝑃, 𝜙([𝑛𝐺]𝑃))))
𝑛𝐴

  

= (ℎ2,𝑚 (�̂�𝑚([𝑛𝐵]𝑃, [𝑛𝐷] 𝜙(𝑃)) ⊗ �̂�𝑚([𝑛𝐶]𝑃, [𝑛𝐺]𝜙(𝑃))))
𝑛𝐴

  

= (ℎ2,𝑚(�̂�𝑚(𝑃, 𝜙(𝑃))
𝑛𝐵𝑛𝐷

⊗ �̂�𝑚(𝑃, 𝜙(𝑃))
𝑛𝐶𝑛𝐺

))
𝑛𝐴

  

= (𝜁𝑛𝐵𝑛𝐷 ⊗ 𝜁𝑛𝐶𝑛𝐺)𝑛𝐴   (computed using Algorithm 1) 
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= (𝜁𝑛𝐵𝑛𝐷𝑛𝐶𝑛𝐺)𝑛𝐴   

= 𝜁𝑛𝐴𝑛𝐵𝑛𝐶𝑛𝐷𝑛𝐺  

To compute the shared key, 𝜁𝑛𝐴𝑛𝐵𝑛𝐶𝑛𝐷𝑛𝐺, user 𝐴 must compute the value of 𝑛𝐵𝑛𝐷 and 𝑛𝐶𝑛𝐺 using 

Algorithm 1. It means that each user must have Algorithm 1 and be able to run this Algorithm efficiently. 

3.3 Security Analysis 

In this section, we will describe that the 4-linear Weil pairing proposed by Tran et al. does not satisfy 

the security assumption of multilinear map proposed by Boneh and Silverberg. 

Claim 1. If Algorithm 1 can be run efficiently by each user, then the 4-linear Weil pairing proposed by Tran 

et al. does not satisfy the multilinear Diffie-Hellman assumption. 

Proof. 

Algorithm 1 can be run efficiently by each user, it means that every user can compute the exponentiation 𝑖 of 

𝜁, such that 𝑒𝑚(𝑃, 𝑄) = 𝜁𝑖. In other words, Algorithm 1 can solve discrete logarithm problem in 𝐺2. It implies 

that each user can compute other’s secret value. It will be shown how user 𝐴 can compute 𝑛𝐵, 𝑛𝐶 , 𝑛𝐷 , and 𝑛𝐺, 

the secret value of user 𝐵, 𝐶, 𝐷, and 𝐺 respectively, using public value received from another user. 

User 𝐴 can find 𝑛𝐵 using Algorithm 1. By setting the input to Algorithm 1 as follows: 𝑃, 𝑄 = 𝜙(𝑄𝐵), and 𝑚, 

Algorithm 1 will yield the exponentiation 𝑖 of 𝜁, with 𝑖 = 𝑛𝐵 and 𝜁 = �̂�𝑚(𝑃, 𝜙(𝑃)), such that �̂�𝑚(𝑃, 𝑄) =

�̂�𝑚(𝑃, 𝜙(𝑄𝐵)) = 𝜁𝑛𝐵.  The same computation can be carried out by user 𝐴 to derive 𝑛𝐶 , 𝑛𝐷 , 𝑛𝐺 by setting the 

input to Algorithm 1 (𝑃, 𝜙(𝑄𝐶), 𝑚), (𝑃, 𝜙(𝑄𝐷), 𝑚), and (𝑃, 𝜙(𝑄𝐺), 𝑚) respectively. 

Claim 2. If Algorithm 1 can be run efficiently by each user, then the 4-linear Weil pairing proposed by Tran 

et al. does not satisfy the Diffie-Hellman inversion assumption. 

Proof. 

If Algorithm 1 can be run efficiently, every user can compute the exponentiation 𝑖 of 𝜁. After getting the 

value of exponentiation 𝑖 of 𝜁, one can compute the invers of 𝑖 easily. 

Assuming user 𝐴 has 𝑃 and 𝑄𝐵 = [𝑛𝐵]𝑃, the user B’s public value. With Algorithm 1, user 𝐴 can find 𝑛𝐵 

and compute the invers of 𝑛𝐵, say 𝑛𝐵
−1. Then Alice can easily compute  𝑒𝑚(𝑃, ⋯ , 𝑃)𝑛𝐵

−1
∈ 𝐺2. ∎ 

Claim 3. Assuming each user can run Algorithm 1 efficiently, then the 4-linear Weil pairing proposed by 

Tran et al. does not satisfy the generalized Diffie-Hellman assumption. 

Proof. 

Given all the public values of the users and all subset products 𝑔∏ 𝑎𝑖𝑖∈𝑆 ∈ 𝐺1 for any strict subset 𝑆 ⊂
{1, ⋯ , 𝑛}. Algorithm 1 can efficiently find all the exponentiation 𝑎𝑖 (for 𝑖 = 1, ⋯ , 𝑛) or ∏ 𝑎𝑖𝑖∈𝑆 . Then we can 

compute the product of all 𝑎𝑖 or any ∏ 𝑎𝑖𝑖∈𝑆 , such that their product equal to 𝑎1𝑎2 ⋯ 𝑎𝑛. After getting the 

value of 𝑎1𝑎2 ⋯ 𝑎𝑛, one can compute 𝑔𝑎1𝑎2⋯𝑎𝑛 ∈ 𝐺1 easily. ∎ 

Claim 4. Algorithm 1 is not efficient in practice. 

Proof. 

If this 4-linear pairing will be implemented in practice, it should use an elliptic curve equation with 𝑞 ≥
256 bits to gain 128-bit security strength.  The 4-linear pairing uses a subgroup of elliptic curves with order 

𝑚. To gain security strength close to 128-bit, then we should choose 𝑚 ≈ 256 bit. Note that Algorithm 1 will 

try any possible values of 𝑚 to find the correct value of 𝑖. It means that if we use 𝑚 ≥ 256 bit, Algorithm 1 

will try 2256 possible values of 𝑚 and it will take a very long time to get the correct value of 𝑖. If we have a 

supercomputer that can test 109 keys per second, we required ≈ 3.6734 × 1060 years to try all possibilities. 

Hence, try all possible values of 2256 is effectively impossible with current technology. ∎ 
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4. CONCLUSIONS 

We demonstrated that Tran et al.’s multilinear map construction fails to meet critical security 

assumptions and is inefficient for practical implementation. These findings emphasize the need for more 

robust and efficient multilinear map constructions. Many multilinear maps are proposed with various 

mathematical functions as their building blocks. Meanwhile, it still needs to be analyzed whether these 

multilinear maps are still secure and efficiently computed if they are applied in a cryptographic scheme, 

particularly in multiparty key exchange. 
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