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ABSTRACT 

Article History: 
Bengkulu Province, situated in a subduction zone between the Indo-Australian and 

Eurasian plates, is highly susceptible to significant seismic activity, including major 

earthquakes in 2000 and 2007 with magnitudes exceeding 7. This research investigates 

the geographical distribution of earthquake magnitudes in Bengkulu Province and 

surrounding areas from 2000 to 2023. Understanding these spatial patterns is crucial for 

enhancing disaster preparedness and risk mitigation strategies in this high-risk region. 

Previous studies on earthquake distribution in Indonesia have provided valuable insights 

but often struggle with outliers and data variability, limiting their accuracy. Conventional 

Ordinary Kriging methods, though widely used, are sensitive to outliers, leading to 

potential inaccuracies. This study addresses these limitations by applying a robust 

Ordinary Kriging approach, which effectively mitigates the influence of outliers, thereby 

improving prediction reliability. The research utilizes earthquake data, including 

geographical coordinates and recorded magnitudes. It applies both classical and robust 

experimental semivariograms (Cressie-Hawkins) to model the spatial structure using 

theoretical variogram models—spherical, exponential, and Gaussian. The best-fit model 

is determined based on the lowest root mean square error (RMSE), ensuring accurate 

representation of spatial patterns. The results demonstrate that robust Ordinary Kriging 

accurately maps the spatial distribution of earthquake magnitudes, revealing clusters of 

higher magnitude events in specific regions of Bengkulu Province. These findings identify 

high-risk areas, providing essential data for disaster mitigation and risk management 

planning. This study significantly contributes to the field of seismology and geostatistics 

by enhancing the accuracy of magnitude distribution mapping. The resulting maps support 

local governments, urban planners, and disaster response organizations in developing 

more effective mitigation strategies, improving infrastructure resilience, and 

strengthening early warning systems. Ultimately, this research aims to foster safer, more 

prepared communities in Bengkulu Province and beyond. 
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1. INTRODUCTION 

Bengkulu Province and the nearby areas experience significant tectonic movements. They are situated 

in the subduction area of the Indo-Australian and Eurasian plates. The coming together of these two plates 

leads to the area often encountering earthquakes of different sizes. As one of Indonesia's areas with high 

earthquake risk, it is crucial to comprehend the spatial arrangement of earthquake magnitudes in Bengkulu 

Province and the nearby areas [1]. Thorough knowledge of these distribution patterns is beneficial for 

predicting possible risks and laying the groundwork for disaster preparedness and sustainable development 

planning.  

One of the main challenges in earthquake distribution mapping is the presence of outliers, which often 

arise due to the wide range of magnitudes recorded in seismic data. Traditional geostatistical methods, such 

as Ordinary Kriging, are highly sensitive to these outliers, potentially leading to biased predictions and 

unreliable spatial representations. To address this limitation, this study applies the Robust Ordinary Kriging 

method, which has been demonstrated to improve prediction accuracy in datasets with extreme values by 

reducing the influence of outliers on spatial interpolation results [2]. 

Early research on robust kriging can be traced back to studies on robust variogram estimation methods, 

particularly the Cressie-Hawkins estimator, which was introduced to improve the reliability of semivariogram 

modeling in the presence of outliers [2]. Unlike classical variogram estimators that are highly sensitive to 

extreme values, the Cressie-Hawkins robust estimator assigns lower weights to significant squared 

differences, reducing their influence on the variogram structure. This approach enhances the robustness of 

spatial predictions, particularly in datasets with heavy-tailed distributions or measurement errors. The main 

advantage of robust experimental semivariograms is their ability to provide more stable and resistant 

estimates, ensuring the spatial dependence structure remains unaffected by extreme values. As a result, robust 

semivariograms improve the accuracy of kriging predictions, making them particularly valuable in 

geostatistical applications where outliers are common, such as in earthquake magnitude mapping. 

Several researchers have conducted studies on mapping earthquake distribution in Indonesia. Previous 

studies [3] applied spatial analysis and time series modelling to study the frequency of earthquake events in 

Bengkulu Province, offering valuable insights into temporal patterns and recurrence intervals of seismic 

activities. Other research [4] examined the distribution of significant earthquakes based on magnitude and 

depth in the Mamuju region and surrounding areas, highlighting the correlation between seismic intensity and 

tectonic settings. Studies [5] mapped the distribution of earthquake occurrences in Papua Province, 

demonstrating the geographical spread of seismic events and providing a baseline for regional seismic risk 

assessment. Further investigations [6] explored the use of Ordinary and Robust Kriging methods to gain 

spatial insights into earthquake strength in Sulawesi, emphasizing the advantages of robust kriging in 

managing outliers and improving the accuracy of seismic hazard mapping. These studies contribute 

significantly to our understanding of earthquake distribution across different regions of Indonesia. However, 

they each exhibit limitations, particularly in managing the outliers prevalent in earthquake data due to the 

wide range of event magnitudes. 

The Ordinary Kriging method is widely used in spatial mapping because it considers spatial 

correlations among data points, leading to more precise predictions. Nevertheless, the data is vulnerable to 

outliers that may alter the prediction outcomes, leading to a less accurate distribution map. While Ordinary 

Kriging is widely used in geostatistical mapping due to its ability to model spatial correlations, it assumes 

that data follows a normal distribution and is highly sensitive to extreme values. In contrast, Robust Kriging 

introduces a weighting mechanism that reduces the influence of outliers, resulting in more stable and reliable 

spatial predictions [2]. This advantage is particularly crucial in earthquake magnitude mapping, where 

extreme values are common due to the natural variability of seismic events. By mitigating the impact of these 

outliers, Robust Kriging enhances the accuracy and trustworthiness of the generated magnitude distribution 

maps, making them more suitable for risk assessment and disaster preparedness. 

The heightened disaster risk faced by communities in Bengkulu Province and its surroundings 

emphasizes the urgency of this research. The region has experienced significant historical earthquakes, such 

as the Bengkulu earthquakes in 2000 and 2007, with magnitudes exceeding 7, highlighting the need for 

precise maps depicting the distribution of earthquake magnitudes. To address this, the study will utilize daily 

earthquake data from 2000 to 2023 to generate a distribution map using the Robust Ordinary Kriging method. 

This approach was chosen because it can produce forecast maps that are less affected by outliers, which is 

standard in earthquake data. Various stakeholders, including the government, urban planners, and disaster 
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response organizations, can leverage these distribution maps to develop more effective mitigation strategies 

and policies for addressing earthquake vulnerabilities [7][8]. Therefore, this research is expected to provide 

a broader and more accurate representation of how earthquake magnitudes are distributed in this region. 

The study's findings will add to the knowledge of seismology and geostatistics and have important 

practical implications. The magnitude distribution maps are valuable for enhancing spatial planning safety 

and resilience and improving early warning systems. In addition, obtaining a more thorough understanding 

of these earthquake distribution patterns is expected to help local communities improve their preparedness 

for possible future earthquakes. 

In general, the primary objective of this research is to respond to the pressing demand for improved 

data on earthquake vulnerability in Bengkulu Province and surrounding areas. By utilizing advanced 

geostatistical methods, specifically the Robust Ordinary Kriging approach, and analyzing extensive 

earthquake data from 2000 to 2023, this study aims to address the limitations found in previous research. 

Prior studies provided valuable insights but often fell short in accurately mapping seismic distributions due 

to the presence of outliers and varying data quality. 

By focusing on this highly seismic region, situated in the subduction zone between the Indo-Australian 

and Eurasian plates, this research aims to enhance the accuracy and reliability of earthquake magnitude 

distribution maps. These improved maps are crucial for understanding spatial patterns, identifying high-risk 

areas, and providing a solid foundation for disaster preparedness strategies. 

This study provides a novel contribution to the geostatistical modeling of earthquake magnitudes by 

integrating Robust Ordinary Kriging to improve the accuracy of magnitude distribution mapping in Bengkulu 

Province. Unlike previous studies that mainly relied on Ordinary Kriging or other spatial analysis techniques 

[2]-[5], this research specifically addresses the impact of outliers in seismic data, ensuring a more reliable 

representation of earthquake risks. Moreover, by utilizing an extensive dataset from 2000 to 2023, this study 

offers a more comprehensive temporal perspective on seismic activity patterns in the region. These 

contributions make this study the first to apply Robust Kriging for earthquake magnitude mapping in a highly 

seismic area of Indonesia, thereby advancing both geostatistical methodologies and disaster risk management 

strategies. 

This enhanced data will significantly contribute to more effective disaster prevention efforts in 

Indonesia. It will assist local governments, urban planners, and disaster response organizations in developing 

better mitigation strategies, improving infrastructure resilience, and enhancing early warning systems. 

Ultimately, this research seeks not only to advance the field of seismology and geostatistics but also to foster 

safer and more prepared communities in Bengkulu Province and beyond. 

2. RESEARCH METHODS 

2.1 Data 

 The data in this study are daily earthquake event data from 2000 to 2023, representing earthquake 

magnitude occurrences in Bengkulu Province and its surroundings. The secondary data were obtained from 

the official United States Geological Survey (USGS) website [9]. The population of this study consists of all 

earthquake events that occurred in Bengkulu Province and its surrounding areas, while the sample includes 

daily recorded earthquake events from 2000 to 2023 as documented in the USGS database. The research 

variables include magnitude (𝒁), which measures the strength of the earthquake on a specific scale, latitude 

(𝑿), representing the geographic coordinate indicating the north-south position of the earthquake event, and 

longitude (𝒀), representing the geographic coordinate indicating the east-west position of the earthquake 

event. 

2.2 Research Steps 

The following are the steps used in this study: 

1. Data Collection: Gather earthquake data (latitude, longitude, magnitude) from USGS (2000-2023) 

and clean the data by removing duplicates and handling missing values. 



1540 Swita, et al  MAPPING THE DISTRIBUTION OF EARTHQUAKE MAGNITUDE IN BENGKULU PROVINCE…  

2. Exploratory Data Analysis (EDA): Analyze basic statistics (mean, variance, skewness) and 

visualize spatial distribution using scatter plots 

3. Stationarity Testing: Check time series stationarity using visual plots and statistical tests. 

4. Semivariogram Analysis: Compute experimental semivariograms (classical & robust) and fit 

theoretical models (Spherical, Exponential, Gaussian). 

5. Robust Kriging Implementation: Estimate spatial weights using robust semivariogram models and 

perform spatial interpolation to predict magnitudes in unobserved locations. 

6. Model Validation: Compare prediction errors (RMSE) using cross-validation and assess the 

effectiveness of robust kriging vs. classical kriging. 

7. Visualization and Interpretation: Generate contour maps of predicted earthquake magnitudes and 

identify high-risk zones based on kriging results. 

2.3 The Experimental Semivariogram 

Estimating the semivariogram from sample data, such as 𝑍(𝑠1), 𝑍(𝑠2),..., where 𝑠1, 𝑠2,... represent the 
sample locations in a two-dimensional space, is the initial step in implementing theory into practice. It is 
assumed that those positions were chosen fairly. The common formula for calculating the semivariogram is 
Matheron's method of moments (MoM) estimator [10][11][12]: 

�̂�(ℎ) =
1

2|𝑁(ℎ)|
∑ [𝑍(𝑠𝑖 + ℎ) − 𝑍(𝑠𝑖)]2

𝑁(ℎ)

𝑖=1

(1) 

where 𝑍(𝑠𝑖) and 𝑍(𝑠𝑖 + ℎ) represent the observed 𝑧 values at locations 𝑠𝑖 and 𝑠𝑖 + ℎ, and 𝑁(ℎ) indicates the 
count of paired comparisons at lag ℎ. By varying ℎ, we can generate a sequential series of semivariances that 
make up the empirical or observed variogram. The manner in which Equation (1) is formulated and the 
implementation relies on whether the data is evenly distributed in one dimension, follows a regular grid, or 
is scattered irregularly in two dimensions. 

2.4 Statistical Distribution 

The geostatistical analysis does not need data to adhere to a normal distribution. However, 

semivariograms consist of a series of variances that may become unreliable in the presence of skewed data 

and outliers. If the data's distribution is not close to normal and its skewness coefficient exceeds ±1 limits, it 

may be necessary to consider changing the data. Thus, the data can be altered using a suitable method, such 

as applying logarithms and analyzing variograms calculated on both original and modified values. The 

resulting semivariograms significantly differs besides a scaling factor. The responses will be negative in some 

cases, while they will be affirmative in others[11]. 

Outliers, such as extremely high or low values outside the main distribution range, can affect the 

semivariogram. Box plots provide an effective method for detecting outliers. Every outlier must be examined 

and treated as a possibly incorrect value before deciding whether to include it in the dataset. In the case of 

contaminated sites, the highest values will be the most significant. If there are only a small number of outliers 

compared to the entire dataset, eliminating them usually decreases skewness, making it a reasonable strategy. 

If needed, the values taken out can be put back into the data for kriging. Transformation frequently does not 

enhance the distribution in the presence of outliers and may exacerbate the situation. Another option is to 

utilize robust estimators like the ones developed by Cressie-Hawkins, Dowd and Genton [13]. 

The estimator by Cressie-Hawkins [13][14][15] controls for outliers in the secondary process by taking 

the fourth root of the squared deviations. It is provided by 

2�̂�(ℎ) =
{

1
𝑁(ℎ)

∑ |𝑧(𝑠𝑖 + ℎ) − 𝑧(𝑠𝑖)|
1
2

𝑁(ℎ)
𝑖=1 }

4

0,457 +
0,494
𝑁(ℎ)

+
0,045
𝑁(ℎ)2

(2) 

The bottom part of Equation (2) is an adjustment made assuming that the underlying estimated process 

has differences that follow a normal distribution across all time intervals. 
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2.5 Kriging 

According to Moraga [16], Kriging is a technique for spatial interpolation that allows for the estimation 

of values at unsampled places using observed geostatistical data. This technique was first developed in the 

domain of mining geology and is referred to as the Krige method, in honor of South African mining engineer 

Danie G. Krige. Assuming we have collected data 𝑍(𝑠1),..., 𝑍(𝑠𝑛), our objective is to estimate the value of 

𝑍 at a specific location 𝑠0 ∈ 𝐷. The Ordinary Kriging estimator of 𝑍(𝑠0) is a linear unbiased estimate,  

�̂�(𝑠0) = ∑ 𝜆𝑖𝑍(𝑠𝑖)

𝑛

𝑖=1

(3) 

that reduces the average squared prediction error, which is defined as the expected value of  

𝐸 [(�̂�(𝑠0) − 𝑍(𝑠0))
2

] (4) 

 The Kriging weights are determined based on the estimated spatial structure of the collected data. To 

generate weights, a variogram model is fitted to the observed data. This model helps us understand how the 

correlation between observation values varies with the distance between sites. After obtaining the Kriging 

weights, they are utilized to calculate the predicted values at unsampled sites by applying them to the known 

data values at the sampled locations. The Kriging weights are determined based on the spatial correlation of 

the data, taking into consideration the geographical closeness and similarity of the data points. Therefore, 

places that are seen and have a correlation with the forecast locations, as well as being in close proximity, are 

assigned a higher weight compared to locations that are uncorrelated and located further away. The weights 

used in this analysis consider the spatial distribution of all data. Therefore, clustering of observations in 

oversampled areas are given less weight, as they provide less information compared to individual sites. 

 Assuming certain conditions, Kriging predictions are the most accurate estimators that are both linear 

and unbiased. Various forms of Kriging exist, each differing in its underlying assumptions and analytical 

objectives. Simple Kriging implies that the mean of the random field, 𝜇(𝑠), is a known value. Ordinary 

Kriging assumes that the mean, 𝜇(𝑠), is a constant value that is not known. Universal Kriging is employed 

when the data has an unknown non-stationary mean structure. 

2.6 Model Validation for Determination of Theoretical Semivariogram in Kriging Method 

In kriging, cross-validation (CV) is commonly used to assess the accuracy of the variogram model 

fitted to spatial data. The process involves dividing the data into several subsets or folds, applying the model 

to the majority of the data, and then predicting the values for the remaining subset. For each data point 𝑖, its 

prediction �̂�(𝑠𝑖), where 𝑠𝑖 is the location of that point, is made using a model trained on all other data points. 

This process ensures that the model is validated on data not used in its calibration, providing a more reliable 

measure of its performance. To quantify how well the model predicts the spatial variable, the Root Mean 

Square Error (RMSE) is often employed. RMSE measures the deviation between the predicted and actual 

values, calculated using the following formula [17][18] : 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑍(𝑠𝑖) − �̂�(𝑠𝑖))

2
𝑛

𝑖=1

(5) 

where: 

𝑛  : the total number of observations (data points). 

𝑍(𝑠𝑖)  : the true value at the location 𝑠𝑖. 

�̂�(𝑠𝑖)  : the predicted value at the location 𝑠𝑖 obtained from kriging. 

By minimizing the RMSE, one can assess how well the kriging model fits the spatial data and refine 

the semivariogram to improve prediction accuracy. 
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3. RESULTS AND DISCUSSION 

3.1 Descriptive Analysis and Stationary Test  

The secondary data was sourced from the official United States Geological Survey (USGS) website 

[9], and the following are the results of descriptive statistics of data on Earthquake Magnitude in Bengkulu 

Province and its surroundings, as shown in Table 1. 

Table 1. Descriptive Statistics  

Magnitude 

Mean 4.672010582 Kurtosis 6.8658378 

Standard Error 0.011162201 Skewness 1.7339773 

Median 4.6 Range 4.9 

Mode 4.4 Minimum 3.5 

Standard Deviation 0.485266983 Maximum 8.4 

Sample Variance 0.235484044 Count (𝑛) 1890 

 Data source: USGS[9] 

Based on Table 1 above, the distribution of earthquake magnitude data in Bengkulu Province and its 

surroundings tends to be positively skewed, with the majority of earthquakes having smaller magnitudes, but 

some earthquakes with much larger magnitudes indicate significant outliers. This is evident from the high 

kurtosis and positive skewness values. The data also shows that while most earthquakes are relatively 

moderate, there are large earthquake events that need to be considered in disaster risk analysis and mitigation 

in this region. 

 Next, a visual stationary test is performed on the Magnitude data, here a time series plot of the 

Magnitude column will be made to see if there are significant patterns, trends, or fluctuations over time. 

Because this data does not have a time column, the assumption is made that the data is sorted chronologically. 

The following visualization of the Magnitude data can be seen in Figure 1.        

 
Figure 1. Time Series Plot of Magnitude Data 

 Based on the visualization of the “Time Series Plot of Magnitude” in Figure 1, it can be observed that 

the Magnitude data is distributed fairly consistently over time. The plot shows Magnitude values from various 

locations chronologically, which are assumed to be sorted by time. 

 In this figure, there is no obvious upward or downward trend, nor is there any significant seasonal or 

cyclical pattern. Fluctuations in Magnitude values occur around a constant mean, and changes in values 

appear random with no recurring pattern. 
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 To further assess the data's stationarity, a Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test for Trend 

Stationarity was performed. The results showed a KPSS statistic of 0.087201 with a 𝑝-value of 0.1. Since the 

𝑝-value is greater than 0.05, we fail to reject the null hypothesis (𝐻0), suggesting that the data is stationary 

around a deterministic trend. This further supports the observation from the time series plot that there is no 

significant trend or pattern in the Magnitude data over time. 

 This consistency indicates that the variance and average Magnitude values are relatively stable. The 

pattern seen in the figure does not show significant changes over time, which is one of the early indications 

of stationarity. Therefore, this pattern can be used in statistical models that require stationary data, such as 

the Kriging method. 

 Overall, this “Time Series Plot of Magnitude” provides a visual representation supporting that the 

Magnitude data is stationary and ready to be used for further geostatistical analysis. 

3.2 Experimental Semivariogram Calculation and Theoretical Model Fitting 

 The calculation results of the two types of experimental semivariograms and the figure were obtained 

using RStudio software. The following are the experimental semivariograms of the two types of experimental 

semivariograms as well as the fitting results to the theoretical semivariogram model can be seen in Table 2 

and Figure 2 below: 

Table 2. Experimental Semivariogram and Theoretical Model Fitting 

No Np Distance 
Experimental Semivariogram  Theoretical Model Fitting 

Classical Robust Classical Robust 

1 40398 13.603211 0.207518565 0.152622391 0.211080533 0.154608874 

2 86751 32.418266 0.232361529 0.168647037 0.235657306 0.172848125 

3 113674 53.395190 0.243058175 0.179527009 0.242490499 0.180615481 

4 130337 74.563191 0.243024429 0.181295514 0.242811102 0.181392654 

5 144093 95.656740 0.242560222 0.180310667 0.242814164 0.181415011 

6 142535 116.64309 0.241403445 0.181756153 0.242814170 0.181415209 

7 128821 137.78360 0.253511151 0.189861833 0.242814170 0.181415210 

8 121188 159.23519 0.248616571 0.185990147 0.242814170 0.181415210 

9 117723 180.28937 0.233760820 0.174824381 0.242814170 0.181415210 

10 108369 201.59826 0.232095525 0.176912630 0.242814170 0.181415210 

11 98282 222.77428 0.239957520 0.181291234 0.242814170 0.181415210 

12 85329 243.99767 0.246053979 0.180244792 0.242814170 0.181415210 

13 75803 265.33384 0.225891587 0.168233055 0.242814170 0.181415210 

14 71208 286.36729 0.217462926 0.162777098 0.242814170 0.181415210 

15 57907 307.28862 0.224496434 0.164187266 0.242814170 0.181415210 

 The experimental semivariogram in Table 2 quantifies the spatial dependence of earthquake 

magnitudes by calculating variance between data pairs at increasing distances. In contrast, the classical 

method follows the standard calculation but is sensitive to outliers. In contrast, the robust method mitigates 

their influence for more stable estimates. The theoretical model fitting represents the mathematical function 

applied to the experimental semivariogram, which is crucial for Kriging-based spatial predictions, with the 

classical model fitting following standard techniques and the robust model fitting offering improved 

resistance to data variability. Semivariogram values rise as distance increases, indicating more significant 

variability between distant points. The robust method yields slightly lower semivariogram values than the 

classical approach, demonstrating its stability. In contrast, the theoretical model values closely align with 

experimental ones, validating the effectiveness of the fitting process in capturing spatial variation. 

 The results of the fitting calculation against the classical theoretical semivariogram and robust 

semivariogram were carried out using the Gaussian theoretical semivariogram model approach, which 

successively produced the semivariogram model (Nugget and Gaussian), sill, and range, where sill and range 

are parameters of the theoretical semivariogram model can be seen in Table 3. 
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Table 3. Theoretical Semivariogram Model Nugget and Gaussian and Parameter Values 

Parameter 
Theoretical Semivariogram 

Classical Robust 

Nugget Model 

Sill 0.19918828 0.14720873 

Range 0.00000 0.00000 

Gaussian Model 

Sill 0.04362589 0.03420648 

Range 24.11244 27.5515 

In general, the function for both theoretical Gaussian semivariogram models is as follows:   

𝛾(ℎ)𝐺𝑎𝑢−𝐶 = {
 0.19918828 + 0.04362589 (1 − 𝑒𝑥𝑝 (−

ℎ2

24.112442)) ,    ℎ ≤ 24.11244 

 0.24281417                                                                               , ℎ > 24.11244

 

and 

𝛾(ℎ)𝐺𝑎𝑢−𝑅 = {
   0.14720873 + 0.03420648 (1 − 𝑒𝑥𝑝 (−

ℎ2

27.55152)) ,     ℎ ≤ 27.5515     

0.19083462                                                                         , ℎ > 27.5515

 

Both semivariogram models can later be used in kriging interpolation to determine the mapping of 

earthquake magnitude distribution in Bengkulu Province and its surroundings. Visually, both the 

experimental semivariogram model and its theoretical Gaussian semivariogram model can be seen in 

Figure 2. 

 

 
Figure 2. Classical & Robust Experimental Semivariogram and Fitting Results to Theoretical Semivariogram 
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Figure 2 compares classical and robust semivariograms, illustrating both their experimental values and 

fitted theoretical models. The classical experimental semivariogram (blue dots) fluctuates more, especially at 

more considerable distances, while the robust experimental semivariogram (red dots) appears smoother, 

indicating reduced sensitivity to outliers. Theoretical model fitting is represented by the green (classical) and 

purple (robust) curves, showing that the robust model maintains a more stable trend. The robust 

semivariogram reaches a slightly lower sill, suggesting better resistance to extreme values, while its lower 

nugget effect indicates reduced short-range noise. These differences imply that robust semivariograms 

provide a more reliable spatial dependence structure, making them preferable for kriging predictions by 

minimizing the influence of outliers and improving interpolation accuracy. 

3.3 Model Validation for Determining Theoretical Semivariogram  

After using Equation (5) in the context of classical and robust semivariograms, the RMSE values for 

the three theoretical semivariogram models are obtained, namely: 

Table 4.  RMSE Values for Three Theoretical Semivariogram Models 

Semivariogram Model 
RMSE 

Classical Robust 

Spherical 0.4752728 0.4761317 

Exponential 0.4781665 0.4782262 

Gaussian 0.4752569 0.4733682 

Based on Table 4 above, it can be seen that the RMSE values of the three theoretical semivariogram 

models are not significantly different. All six theoretical semivariogram models can be used to predict the 

magnitude at the location point of 1890 data and make contour maps of earthquake magnitude distribution in 

Bengkulu Province and its surroundings using ordinary kriging. However, researchers are more likely to 

choose the Gaussian theoretical semivariogram model because its robust RMSE value is the smallest among 

the others: 0.4733682. 

3.4 Contour Map of Earthquake Magnitude Distribution in Bengkulu Province and its Surroundings 

using Robust Ordinary Kriging  

Before creating the contour map of earthquake magnitude distribution in Bengkulu Province and its 

surroundings using robust ordinary kriging, a magnitude prediction was first conducted at 1890 data points. 

The results of the predictions can be seen in Figure 3. 
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Figure 3. Robust Kriging Prediction for Magnitude 

Figure 3 above is the result of robust kriging to predict the distribution of earthquake magnitudes in 

the Bengkulu Province and its surroundings. Here is a detailed analysis of the image: 

1. Color Interpretation: 

a. Color Palette: The image shows the use of a color palette to represent predicted magnitude 

values. Dark colors (dark blue) indicate lower magnitude values, while light colors (yellow) 

indicate higher magnitude values. 

b. Color Scale: The color scale is divided into five intervals that indicate the range of predicted 

magnitude values: 

i. Dark blue: [3.5, 4.48] 

ii. Light blue: [4.48, 5.46] 

iii. Purple: [5.46, 6.44] 

iv. Pink: [6.44, 7.42] 

v. Yellow: [7.42, 8.4] 

2. Distribution Pattern: 

a. Spatial Pole: The image shows that the magnitude of the earthquake varies across the mapped 

area. Areas with lighter colors (pink to yellow) indicate that the predicted earthquake 

magnitude in those areas is higher. 

b. Distribution of Points: The points in the image are evenly distributed across the study area, 

indicating that predictions have been made for many locations within the studied region. 

3. Robust Kriging: 

a. Robust Kriging Method: The robust kriging method used in this prediction is designed to 

reduce the influence of outliers or deviating data that may exist in the dataset. This results in 

predictions that are more stable and resilient to anomalies in the data. 

b. The Influence of Outliers: With the robust kriging method, the predictions generated tend to 

be more accurate for data that has a non-normal distribution or significant outliers. This is 
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evident from the more even spread of predicted values, without any extreme predictions that 

do not align with the overall pattern. 

4. Interpretation of the Magnitude Scale: 

a. Magnitude Value: A scale used to indicate the predicted earthquake magnitude ranging from 

3.5 to 8.4. These values represent the severity levels of the predicted earthquakes at various 

locations within the study area. 

b. High-Value Distribution: Areas with high magnitude values (from pink to yellow) need 

special attention as they indicate regions predicted to have the potential for large earthquakes, 

which could have significant impacts. 

5. Uses of Prediction: 

a. Mitigation Planning: The results of this prediction are very useful for disaster mitigation 

planning. Areas marked in bright colors (indicating high magnitude) may require special 

attention regarding building reinforcement, emergency preparedness, and evacuation 

strategies. 

b. Increased Awareness: Prediction maps like this can also be used to raise awareness among 

communities in earthquake-prone areas. 

Next, after obtaining the magnitude prediction results using robust kriging as shown in Figure 3, we 

will now discuss the contour map of earthquake magnitude distribution in Bengkulu Province and its 

surroundings using ordinary kriging. The contour results can be seen in Figure 4. 

 
Figure 4. Contour Plot with the Best Robust Semivariogram Model 

Figure 4 above illustrates the kriging contour plots result on the distribution of earthquake magnitudes 

surrounding Bengkulu Province. The result is generated by using the best robust semivarious model: Cressie-

Hawkins. This kriging contour map describes the variation of predicted earthquake magnitudes area 

habituating in the area, and it spans from a longitude of about 100.0 to 104.0 and a latitude of -5.0 to -2.0. 

This approach presented heterogeneity in term of earthquake magnitudes in each location using the ordinary 

kriging method, which turns to be robust against the outlier, hence offering more robust estimates in the area 

where the data are heterogeneity in an extreme form. As illustrated in the map, a closed contour line represents 

the location with a similar value of magnitude. The closes the contour is, the sharper is the change in 
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magnitude as it indicates the magnitude of local earthquake activity. For example, Bengkulu area presented 

by a red line, the sharp differencing of the controlling curve shows a significantly varying magnitude in the 

region. Variation of colour degradation from a bright green to a dark brown shows an idea of earthquake 

intensity. Green colors indicate the lowest magnitudes approximate 4.0 to 4.2 while yellow coloration is the 

medium magnitude with 4.4 to 4.9. The dark brown indicated the most significant magnitude with an 

approximate 5.0 to 5.4. With this concept, the gradual variation in the magnitude of earthquake is shown on 

the region as light colors indicate a low intensity while darkening indicates the most intensity due to active 

tectonic. 

 This map additionally shows the marked differences which exist across the west coast of Sumatra, 

specifically in Bengkulu, where more frequent earthquake events are represented by closer contour lines and 

darker colours. The fading of this color shows us the magnitude and the spatial distribution of earthquake 

sizes which is an important piece in understanding where earthquakes are more likely to strike! The darker 

red colour on the map represents the highest risk of high impact, and may be considered in disaster mitigation 

efforts or policy planning in areas that are vulnerable to seismic influences. 

 The study aims to answer important research questions such as the distribution patterns of earthquake 

magnitudes and modelling techniques in Bengkulu Province and its surrounding area. Descriptive Statistics 

of the Dataset The descriptive statistics (Table 1), used as clarification and validation here, show a positively− 

sketched nature of distribution of earthquake magnitudes with a mean close to 4.67 according to analyses 

conducted in different parts of this research work. The vast majority of recorded earthquakes have 

intermediate magnitudes, but there are significant outliers with high kurtosis and skewness values that 

illustrate unusually frequent occurrence of the extreme events. Furthermore, the magnitude appears stationary 

in time as evidenced by the time series plot (Figure 1) showing that the distribution is nearly consistent over 

time without dominant trends or patterns. 

 The contour map of the distribution of earthquake magnitudes was estimated on this robust 

semivariogram model (specifically with the Cressie-Hawkins model, shown in Figure 4). Stable estimates 

for areas defined by large premiums or penetrations, observed in both risk maps with and without aggregation 

(Figure 3) indicates how effective this was at addressing outliers where robust ordinary kriging was applied. 

Evaluating the aggregation or fusion using prediction and contour mapping results has shown that robust 

kriging significantly improves predictive efficiency, especially in non-normal distributions. 

 Descriptive analysis (Table 1) indicates that most earthquake magnitudes are concentrated in the lower 

range. However, the presence of numerous outliers—values significantly higher than the mean—has 

important implications for disaster risk assessment. Skewness and kurtosis metrics further highlight the 

impact of these extreme events, emphasizing their importance in seismic risk planning. 

 To ensure that the dataset meets the assumptions required for geostatistical modeling, a stationarity test 

was conducted. The visual stationarity test (Figure 1) confirms that the magnitude data remains stable over 

time. This stability is crucial for models such as Kriging, which rely on stationary data to produce reliable 

spatial predictions. 

 Further geostatistical analysis was carried out using robust semivariogram fitting (Table 3), which 

verifies the stationarity of the data and provides essential parameters for spatial interpolation. To assess the 

accuracy of different theoretical semivariogram models, their root mean square error (RMSE) values were 

compared (Table 4). The results indicate that the Gaussian model yields the lowest RMSE, suggesting its 

suitability for accurate magnitude prediction. 

 The effectiveness of the selected geostatistical model is further evaluated through a scatter plot (Figure 

5), which compares observed earthquake magnitudes (𝑥-axis) with their predicted values (𝑦-axis) obtained 

using Robust Ordinary Kriging. Each blue dot represents an individual data point, illustrating the relationship 

between actual and estimated magnitudes. The trend line (dotted) and the R² value of 0.6196 indicate a 

moderate correlation, meaning that the model captures some variability in earthquake magnitudes but has 

room for improvement. Clusters of predicted values are more consistent in the mid-range magnitudes (5.0–

6.5), whereas for higher magnitudes (>7.0), predictions exhibit greater variability, suggesting challenges in 

accurately estimating extreme earthquake magnitudes. 
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Figure 5. Scatter Plot Comparing Observed Earthquake Magnitudes (𝒙-axis) 

with their Predicted Values (𝒚-axis) using Robust Ordinary Kriging 

 These findings align with previous studies on seismic data analysis, which emphasize the importance 

of handling outliers and ensuring dataset stability. Robust statistical methods have been demonstrated to 

significantly enhance geostatistical predictive performance. Prior research on earthquake magnitude 

forecasting has shown that classical methods are highly sensitive to outliers [19][20][21]. The use of robust 

Kriging techniques in this study is consistent with recommendations from other researchers advocating robust 

methodologies for spatially correlated data. By employing robust geostatistical modeling, this study provides 

a more reliable approach for mapping earthquake magnitudes while mitigating the influence of extreme 

values. 

 This study encountered several limitations. The complete earthquake catalogue used in this paper for 

each zone was sourced from probability estimations made by the USGS Earthquake Hazards Program and 

regional seismic models, although not all zones may have a complete earthquake catalogue as source because 

of recent tectonical observation data limitations from instrumental measurements (including all-magnitude 

earthquakes) or ground observations. The time series plot clearly shows stationarity, but trends or seasonality 

would not come out because those must appear in a much longer term of the dataset similar to what we have. 

The efficiency of kriging significantly depends on the spread of data points in space; when instances are rare 

in a place, predictions will generally be less accurate. 

 This study specifically explores this novelty by using semivariogram modeling and kriging methods 

which are considered robust for the issue of earthquake magnitude prediction in Bengkulu Province, an area 

often hit by earthquakes events. We focus on the impact of outliers in our spatial risk estimate, thereby 

extending the scope of the ever-growing field of spatial statistics for disaster risk modeling through more 

robust approaches to geostatistics. Additionally, resilient methods integrated with geostatistical approach in 

earthquake research offers a strong platform for forthcoming studies to increase the predictive accuracy and 

policy implications pertaining to disaster preparedness can be formulated equally. 

4. CONCLUSIONS 

Through this research it was also successfully determined distribution of earthquake magnitudes in 

Bengkulu Province and surrounding area, showing that the data tends positively skewed, with most 

earthquakes characterized by medium magnitude level, but there is some outlier having very huge magnitude. 

During descriptive analysis, high kurtosis-Skewness values were found as output of results which has strong 

impression about the consideration of extreme scenario earthquake events for disaster risk analysis. 
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The chart above is a test of stationarity with data visualization; you can see that the magnitude over 

time does not have any significant trends or patterns and it becomes quite stable which qualify this attribute 

for further statistical analysis. The adoption of the powerful semivariogram model, especially the Cressie-

Hawkins model, in ordinary kriging approaches results in higher-confidence and magnitude distribution 

predictions respecting spatial diversity that is significantly expressed in regions of considerable variation, so 

strengthening earthquake magnitudes forecast. 

This study confirms that the choice of using a Gaussian model for semivariogram should be wise to 

realize accurate prediction outcomes. Nevertheless, this research has some limitations because it relies on a 

small data set and assumes stationarity which may not be entirely valid. 

This research enhances the robustness of semivariogram and kriging approaches for predicting 

earthquake magnitudes in seismically sensitive zones, which is crucial for disaster risk management and 

mitigation measures. Findings of this study can be used as a guide for future research and the implementation 

of logging reduction and restoration approaches in high-risk zones. 
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