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ABSTRACT                                                                                                 

Article History: Let 𝑅 be a commutative ring, and 𝐼(𝑅) denote the set of all idempotent elements of 𝑅. The 

triple idempotent graph of 𝑅, denoted by 𝑇𝐼(𝑅), is defined as an undirected simple graph 

whose vertex set 𝑅 − {0,1}. Two distinct vertices u and v in 𝑇𝐼(𝑅) are adjacent if and only 

if there exists 𝑤 ∈ 𝑅 − {0,1} where 𝑤 ≠ 𝑢 and 𝑤 ≠ 𝑣 such that 𝑢𝑣 ∉ 𝐼(𝑅), 𝑢𝑤 ∉
𝐼(𝑅), 𝑣𝑤 ∉ 𝐼(𝑅), and 𝑢𝑣𝑤 ∈ 𝐼(𝑅). This definition generalizes the notion of an idempotent 

divisor graph by involving a triple product, which allows deeper exploration of the 

combinatorial behavior of idempotents in rings. In this research, we investigate the 

properties of the triple idempotent graph of the ring of integers modulo n, denoted by 

𝑇𝐼(ℤ𝑛). As a results, we establish that 𝑑𝑖𝑎𝑚(𝑇𝐼(ℤ𝑛 )) = 2 and 𝑔𝑟(𝑇𝐼(ℤ𝑛  )) = 3, provided 

that the graph is connected. Furthermore, 𝑇𝐼(ℤ𝑛) is Hamiltonian if n is a prime and 𝑛 ≥
13, and Eulerian if n is a prime and 𝑛 ≥ 7. 
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1. INTRODUCTION 

Research that links graph theory and algebraic structures has a fairly long history. In 1988, Beck [1] 

introduced the concept of a zero-divisor graph, which connects ring theory with graph theory. Anderson and 

Livingston [2] subsequently modified this concept by defining the zero-divisor graph of a commutative ring 

𝑅, denoted by 𝛤(𝑅), with the vertex set 𝑍(𝑅)∗ = 𝑍(𝑅) − {0}, where 𝑍(𝑅) is the set of  zero-divisors in 𝑅. In 

this graph, two distinct vertices 𝑥 and 𝑦 in 𝑍(𝑅) are adjacent if and only if 𝑥𝑦 = 0. They showed that 𝛤(𝑅) 

is a connected graph with girth 𝛤(𝑅) in {3,4, ∞}. The graph 𝛤(𝑅) has become a valuable tool for analyzing 

the algebraic structure of commutative rings, particularly in understanding the behavior of zero-divisors. 

Akhtar and Lee [3] studied the connectivity of the zero-divisor graph associated with a finite commutative 

ring 𝑅, investigating conditions under which the ring 𝑅 ensures that the graph 𝛤(𝑅) remains connected. This 

study demonstrated that, despite its simple construction, the 𝛤(𝑅) can exhibit varied and intricate connectivity 

properties, depending on the algebraic nature of the underlying ring. For example, the presence of idempotent 

elements, the number of minimal prime ideals, or the ring’s decomposition into direct products of local rings 

can significantly influence the connectivity structure. This connection of the graph with the algebraic 

properties of zero-divisors in commutative rings remains a primary focus in understanding its fundamental 

mathematical structure. In addition to investigating the connectivity, diameter, and girth of graphs, some 

researchers also examine the conditions under which a graph associated with a ring becomes a Hamiltonian 

graph, a planar graph, or a Eulerian graph. For example, Nongsiang and Saikia [4] studied the conditions for 

the non-nilpotent graph of a finite group to become a Hamiltonian graph. Similarly, Mahmudi et al. [5] 

examined the maximal graph's diameter, girth, and Eulerian and Hamiltonian conditions from a commutative 

ring. Subsequently, many papers have investigated various kinds of graphs associated with rings, as discussed 

in [6], [7], [8], [9], and [10].  

The significance of examining graphs related to algebraic structures resides not only in their 

theoretical relevance but also in their extensive applications. At the fundamental level, these investigations 

enhance our comprehension of commutative rings by offering a visual and combinatorial framework 

for analyzing zero-divisors, idempotents, and associated algebraic characteristics. For instance, the structural 

characteristics have proven essential in revealing new relationships among ring elements and their 

interrelations [11]. This framework has also been broadened to analyze other algebraic structures, including 

groups, monoids, and semirings, demonstrating the adaptability of these graph-theoretic methods [12]. 

Beyond pure mathematics, the applications of zero-divisor and idempotent graphs are diverse and impactful. 

One significant application can be found in coding theory and cryptography, where the structural 

characteristics of these graphs have been used to design secure and efficient cryptographic schemes ([13], 

[14]). Their adjacency and connectivity properties have been leveraged to formulate robust algorithms for 

error detection and correction in coding theory. Likewise, the interaction between algebraic structures and 

graph theory has been used to study complex systems, including social, biological, and communication 

networks ([15], [16]). By modeling these systems as graphs formulated from algebraic structures, researchers 

are able to examine their connectivity, robustness, and various other essential properties, thereby 

providing significant insights into their dynamics and behavior. 

The study of graphs derived from algebraic structures also holds promise for computational 

mathematics and computer science. For instance, the algebraic properties of rings, such as idempotence, have 

inspired the development of efficient algorithms for parallel computing and optimization ([17], [18]). These 

algorithms use the structural regularities found in graphs associated with rings, like the unit graph in [14], to 

achieve improved computational performance. Moreover, the connections between graph theory and algebra 

have informed advancements in machine learning and artificial intelligence, where graph-theoretic techniques 

are used to design more effective algorithms for data analysis and decision-making ([19], [20]). Other 

significant areas of application are mathematical physics and quantum mechanics. The modeling of physical 

systems often involves a combination of algebraic and graph-theoretic techniques. For example, graph-

theoretic principles have been utilized to analyze the structure and behavior of quantum systems, providing 

new perspectives on their fundamental mathematical foundations ([21], [22]). Likewise, investigating zero-

divisor and idempotent graphs has facilitated progress in combinatorics and graph theory by establishing 

connections between these domains and abstract algebraic structures, resulting in identifying innovative 

problems and solutions [23]. 

As the interaction between graph theory and algebra progresses, the opportunity for discoveries 

persists significantly. The adaptability and applicability of these graphs render them an essential instrument 

for examining theoretical and practical issues. This research intends to enhance the current body of 
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knowledge by further examining the properties of graphs obtained from rings, emphasizing their 

algebraic and graph-theoretic traits. Recently, Mohammad and Shuker [24] introduced a graph called the 

idempotent divisor graph, denoted by 𝐽𝐼(𝑅), with the vertex set 𝑅∗ = 𝑅 − {0}, where two vertices 𝑣1 and 𝑣2 

are connected if and only if 𝑣1𝑣2 = 𝑒, for some non-unit idempotent element 𝑒 ∈ 𝑅 (i.e. , 𝑒2 = 𝑒 ≠ 1). This 

research not only expands the scope of graph theory related to algebraic structures but also provides new 

insights into the relationship between idempotents and the graphical properties of commutative rings. The 

idempotent divisor graph focuses on adjacency through multiplication resulting in an idempotent element. In 

contrast, the triple idempotent graph, introduced by Kurniawan et al. [25], examines adjacency via a more 

restrictive triple condition, offering a different perspective on the structural role of idempotents in a ring. Let 

𝐼(𝑅) be the set of idempotent elements of ring 𝑅. Kurniawan et al. [25] introduced the definition of the triple 

idempotent graph of a commutative ring 𝑅, denoted by 𝑇𝐼(𝑅), as an undirected simple graph with the vertex 

set 𝑅 − {0,1}. Two different vertices  𝑢 and 𝑣 are adjacent if there is an element 𝑤 ∈ 𝑅 − {0,1} where 𝑤 ≠ 𝑢 

and 𝑤 ≠ 𝑣 such that 𝑢𝑣 ∉ 𝐼(𝑅), 𝑢𝑤 ∉ 𝐼(𝑅), 𝑣𝑤 ∉ 𝐼(𝑅), and 𝑢𝑣𝑤 ∈ 𝐼(𝑅). In their paper, Kurniawan et al. 

[25] obtained several properties related to the connectivity of the triple idempotent graph of the ring ℤ𝑛. 

Notably, the triple idempotent graph of the ring ℤ𝑛 is connected if 𝑛 is prime and 𝑛 ≥ 7. However, beyond 

connectivity, other structural properties of 𝑇𝐼(ℤ𝑛) remain unexplored, such as its degree distribution, 

minimum degree, diameter, girth, and conditions under which it is Eulerian or Hamiltonian. This paper aims 

to fill this gap by systematically analyzing these additional graph-theoretic properties of the triple idempotent 

graph of the ring ℤ𝑛, denoted by 𝑇𝐼(ℤ𝑛). Through this investigation, we seek to deepen the understanding of 

the structural characteristics of these graphs. 

2. RESEARCH METHODS 

This study employs a theoretical approach grounded in an extensive literature review and analytical 

reasoning. The focus of the research is the triple idempotent graph of the ring of integers modulo 𝑛, denoted 

by 𝑇𝐼(ℤ𝑛). The investigation aims to explore the structural properties of this graph that have not been 

thoroughly studied in previous works. These include vertex degree, minimum degree, diameter, girth, and 

conditions for Eulerian or Hamiltonian structures. 

To support the analysis, several fundamental concepts are first introduced, including the definition and 

properties of idempotent elements in the ring ℤ𝑛 and the specific criteria used to define adjacency in the triple 

idempotent graph. The conceptual framework guiding this study is based on the interplay between algebraic 

elements in ℤ𝑛 and their graphical representation through the triple idempotent relation. This framework 

allows the investigation to bridge ring-theoretic properties with graph-theoretic structures in a meaningful 

and rigorous way. The methodology involves a detailed review of prior research related to algebraic graph 

theory, particularly studies that examine graphs associated with rings and the role of idempotents within such 

structures. This theoretical foundation is essential for identifying research gaps and situating the present work 

within the broader academic discourse. 

Analytically, the research applies algebraic techniques to determine the set of idempotent elements in 

ℤ𝑛, followed by constructing the triple idempotent graph based on defined adjacency rules. Graph-theoretical 

tools are then used to examine and prove various structural properties. Logical deduction and formal 

mathematical proof serve as the primary methods for validating the results and drawing conclusions. Through 

this approach, the study seeks not only to synthesize insights from the existing literature but also to discover 

and establish new properties of 𝑇𝐼(ℤ𝑛), contributing to the deeper understanding of algebraic structures 

through a graph-theoretic lens. 

2.1 Basic Concepts of Graphs 

Here are some basic concepts in graph theory as referenced by Chartrand et al. [26]. 

Definition 1. A graph 𝐺 consists of a finite, non-empty set of vertices 𝑉(𝐺) and a collection 𝐸(𝐺) containing 
pairs of vertices, known as edges. The total count of vertices in 𝑉(𝐺) is called the order of the graph, while 
the total count of edges in 𝐸(𝐺) is referred to as the size.   

An example of a graph 𝐺 can be seen in Figure 1.  In Figure 1, the graph 𝐺 has an order of 5, 
represented by the vertex set 𝑉(𝐺)  =  {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}, and a size of 6, represented by the edge set 𝐸(𝐺)  =
{e1, e2, e3, e4, e5, e6}. 
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Definition 2. A  𝑢 − 𝑣 walk in a graph 𝐺 is defined as a sequence of vertices starting at 𝑢 and ending at 𝑣. 
A 𝑢 − 𝑣 trail is a 𝑢 − 𝑣 walk where no edge is repeated. A circuit is a 𝑢 − 𝑣 trail of length 3 or more that 
starts and finishes at the same vertex. A cycle is a circuit that does not revisit any vertex, except the starting 
and ending vertex.   

For example, in Figure 1, graph 𝐺 contains a 𝑣1 − 𝑣3  walk: 𝑣1, 𝑒1, 𝑣2, 𝑒6, 𝑣4, 𝑒4, 𝑣3 .  A 𝑣1 − 𝑣3 trail 
example is: 𝑣1, 𝑒1, 𝑣2, 𝑒2, 𝑣5, 𝑒3, 𝑣3.  An example of a  𝑣2 − 𝑣2 circuit is: 𝑣2, 𝑒6, 𝑣4, 𝑒5, 𝑣1, 𝑒1, 𝑣2.  A cycle in 
graph 𝐺 is the 𝑣2 − 𝑣2  cycle: 𝑣2, 𝑒2, 𝑣5, 𝑒3, 𝑣3, 𝑒4, 𝑣4, 𝑒6, 𝑣2. 

 

Figure 1. Graph 𝑮 

Definition 3. A graph 𝐺 is considered connected if there exists a path connecting every pair of vertices in 𝐺.   

Figure 1 illustrates a connected graph since all pairs of vertices in 𝐺 are connected. 

Definition 4. A Hamiltonian cycle in a graph 𝐺 is a cycle that passes through every vertex of 𝐺 exactly once. 
A graph containing a Hamiltonian cycle is called a Hamiltonian graph.   

In Figure 1, graph 𝐺 is a Hamiltonian graph as it contains such a cycle. The Hamiltonian cycle is  
𝑣2, 𝑒1, 𝑣1, 𝑒5, 𝑣4, 𝑒4, 𝑣3, 𝑒3, 𝑣5, 𝑒2, 𝑣2. 

Definition 5. The girth of a graph 𝐺, denoted 𝑔𝑟(𝐺), refers to the length of its shortest cycle.   

In Figure 1, gr(𝐺) = 3, corresponding to the 𝑣2 − 𝑣2 cycle: 𝑣2, 𝑒6, 𝑣4, 𝑒5, 𝑣1, 𝑒1, 𝑣2. 

Definition 6. The diameter of a graph 𝐺 denoted 𝑑𝑖𝑎𝑚(𝐺), is the greatest distance between any pair of 
vertices in 𝐺. 

In Figure 1, diam(𝐺) = 2, as the longest shortest path between any two vertices is at most 2. 

Definition 7. The degree of a vertex 𝑣 in graph 𝐺, denoted 𝑑𝑒𝑔𝐺(𝑣) is the number of edges incident to 𝑣.   

For example, in Figure 1, degG(𝑣1) = 2, degG(𝑣2) = 3, degG(𝑣3) = 2, degG(𝑣4) = 3, and degG(𝑣5) = 2. 

Theorem 1. [26] (Dirac’s Theorem) If 𝐺 is a graph with order 𝑘 ≥ 3 and the degree of each vertex 𝑣 is at 
least 𝑘/2, then 𝐺 is a Hamiltonian graph. 

Definition 8. A circuit 𝐶 in a connected graph 𝐺 that traverses every edge exactly once is called a Eulerian 
circuit. 

Definition 9. A connected graph 𝐺 that contains a Eulerian circuit is known as a Eulerian graph. 

Theorem 2. [26] A nontrivial connected graph 𝐺 is Eulerian if and only if every vertex of 𝐺 has even degree. 

2.2 The Triple Idempotent Graph of Commutative Ring 

Here is the definition of the triple idempotent graph along with several properties obtained by 

Kurniawan et al. [25].  

Definition 10. Let 𝑅 be a commutative ring, and let 𝐼(𝑅) represent the set of idempotent elements within 𝑅. 

The triple idempotent graph of the commutative ring 𝑅, denoted as 𝑇𝐼(𝑅), is a graph whose the set of vertices 

𝑅∗ = 𝑅 − {0, 1}. Two distinct vertices  𝑢 and 𝑣 are connected by an edge if there exist an element 𝑤 ∈ 𝑅 −
{0,1} where 𝑤 ≠ 𝑢 and 𝑤 ≠ 𝑣 such that 𝑢𝑣 ∉ 𝐼(𝑅), 𝑢𝑤 ∉ 𝐼(𝑅), 𝑣𝑤 ∉ 𝐼(𝑅), and 𝑢𝑣𝑤 ∈ 𝐼(𝑅). 

Example 1. Here is an example of 𝑇𝐼(ℤ7) formed by ring 𝑅 = ℤ7 = {0, 1, 2, 3, 4, 5, 6}. Based on the 

definition of the triple idempotent graph of the commutative ring 𝑅 given in Definition 10, the vertex set of 

𝑇𝐼(ℤ7) is determined to be {2, 3, 4, 5, 6}. According to the adjacency criteria in 𝑇𝐼(𝑅), when 𝑢 = 2, 𝑣 = 3, 

we find an element 𝑤 = 6̅ such that 𝑢𝑣 ≠ 1, 𝑣𝑤 ≠ 1, 𝑢𝑤 ≠ 1, and 𝑢𝑣𝑤 = 1. Therefore, an edge exists 
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between 2 and 3. In the same way, the set of all edges in 𝑇𝐼(ℤ7) is obtained as 𝐸(𝑇𝐼(ℤ7)) =

{(2,3), (3,6), (2,6), (4,6), (4,5), (5,6)}. The 𝑇𝐼(ℤ7) is shown in Figure 2. 

Lemma 1. [25] Given ring ℤ𝑛 where 𝑛 is prime and 𝑛 ≥ 7. For every 𝑢, 𝑣 ∈ 𝑉(𝑇𝐼(ℤ𝑛)), 𝑢 is not adjacent 

to 𝑣 if 𝑢𝑣 = 1 or 𝑢𝑣 = 𝑥 ≠ 1 where 𝑥 = 𝑢−1 or 𝑥 = 𝑣−1. 

Theorem 3. [25] Let ℤ𝑛 be a ring of integers modulo 𝑛. If 𝑛 prime and 𝑛 ≥ 7, then 𝑇𝐼(ℤ𝑛) is a connected 

graph. 

 
Figure 2. Triple Idempotent Graph of  ℤ𝟕 

 

3. RESULTS AND DISCUSSION 

The first theorem indicates that if the triple idempotent graph of the ring of integers modulo 𝑛 is 

connected, then its girth is 3. 

Lemma 2. If 𝑝 is a prime, then 0 and 1 are the only two idempotent elements of ℤ𝑝. 

Proof. Suppose that there exists another idempotent element call it 𝑎 such that 𝑎2 = 𝑎. Let 𝑥 ≡ 𝑎(mod 𝑝) 

such that 𝑚𝑝 = 𝑥 − 𝑎 for some 𝑚 ∈ ℤ. On the other hand, 𝑥 ≡ 𝑎2(mod 𝑝) such that 𝑛𝑝 = 𝑥 − 𝑎2 for some 

𝑛 ∈ ℤ. It follows that  𝑚𝑝 − 𝑛𝑝 = (𝑚 − 𝑛)𝑝 = 𝑎2 − 𝑎 such that 𝑝|(𝑎2 − 𝑎) or 𝑝|𝑎(𝑎 − 1). By Euclid’s 

lemma, we get 𝑝|𝑎 and 𝑝|(𝑎 − 1), in other words 𝑎 = 0(mod 𝑝) or 𝑎 = 1(mod 𝑝). Thus 0 or 1 are the only 

two idempotent elements in ℤ𝑝.∎ 

Lemma 3. Let ℤ𝑛 be the ring of integers modulo 𝑛. If 𝑛 is a prime and 𝑛 ≥ 7, then there exists a vertex 𝑢 ∈
𝑉(𝑇𝐼(ℤ𝑛) with 𝑢 = 𝑛 − 1 that is adjacent to any vertex 𝑣 ∈ 𝑉(𝑇𝐼(ℤ𝑛). 

Proof. Given ℤ𝑛 with 𝑛 is a prime and 𝑛 ≥ 7. Take any vertex 𝑣 ∈ 𝑉(𝑇𝐼(ℤ𝑛), we will show that 𝑣 is adjacent 

to the vertex 𝑢 = 𝑛 − 1. First, it is shown that the inverse of 𝑢 = 𝑛 − 1 is itself. Consider 𝑢. 𝑢 =
(𝑛 − 1)(𝑛 − 1) = 𝑛2 − 2𝑛 + 1 = 1. With Lemma 2, it is clear that the idempotents of ℤ𝑝 are only 0 and 1. 

Since 𝑢 ≠ 𝑣 then 𝑢𝑣 ≠ 1 so 𝑢𝑣 ∉ 𝐼(ℤ𝑛). Since every non-zero element in ℤ𝑛 has an inverse, we can find 

another vertex 𝑤 = (𝑢𝑣)−1 such that 𝑢𝑣𝑤 = 𝑢𝑣(𝑢𝑣)−1 = 1. Since 𝑢𝑣 ≠ 1 and there exists 𝑤 such that 

𝑢𝑣𝑤 = 1 ∈ 𝐼(ℤ𝑛), then 𝑢 and 𝑣 are adjacent. Thus, it is proven vertex 𝑢 = 𝑛 − 1 is adjacent to any vertex 

𝑣 ∈ 𝑉(𝑇𝐼(ℤ𝑛). ∎ 

Theorem 4. If 𝑇𝐼(ℤ𝑛) is a connected graph, then 𝑑𝑖𝑎𝑚(𝑇𝐼(ℤ𝑛)) = 2.  

Proof. Based on Lemma 3, we know that the vertex 𝑢 = 𝑛 − 1 is connected to any vertex 𝑣 ∈ 𝑉(𝑇𝐼(ℤ𝑛). 

Thus, the distance between any two vertices 𝑎, 𝑏 ∈ 𝑇𝐼(ℤ𝑛) only has two possibilities, either 1 or 2. If 𝑎 and 

𝑏 are adjacent then 𝑑(𝑎, 𝑏) = 1. If 𝑎 and 𝑏 are not adjacent then we have a path 𝑎 − 𝑢 − 𝑏 such that the 

distance between 𝑎 and 𝑏 is 2. Thus, the largest distance between any two distinct vertices in 𝑇𝐼(ℤ𝑛) is 2, so 

𝑑𝑖𝑎𝑚(𝑇𝐼(ℤ𝑛)) = 2. ∎ 

Theorem 5. If 𝑇𝐼(ℤ𝑛) is a connected graph, then 𝑔𝑟(𝑇𝐼(ℤ𝑛)) = 3. 
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Proof.  Because 𝑇𝐼(ℤ𝑛) is a connected graph, there must exist at least two vertices 𝑎 and 𝑏 that are mutually 

adjacent. Therefore, there exists a vertex 𝑐 ∈ 𝑉(𝑇𝐼(ℤ𝑛)) such that  𝑎𝑏 ≠ 𝑒, 𝑎𝑐 ≠ 𝑒, 𝑏𝑐 ≠ 𝑒, and 𝑎𝑏𝑐 = 𝑒, 

for 𝑒 ∈ 𝐼(ℤ𝑛). Furthermore, it is clear that 𝑎 is adjacent to 𝑏 and 𝑐, 𝑏 is adjacent to 𝑎 and 𝑐, and 𝑐 is adjacent 

to 𝑎 and 𝑏. Thus, a cycle 𝑎 − 𝑏 − 𝑐 − 𝑎 is obtained, implying that the girth of the graph is equal to 3, i.e., 

𝑔𝑟(𝑇𝐼(ℤ𝑛)) = 3. ∎ 

To illustrate Theorem 5, here is an example regarding the girth 𝑇𝐼(ℤ7). In Figure 2, it can be seen that the 

shortest cycle in the graph 𝑇𝐼(ℤ7) has at least 3 vertices, one of which is the cycle 2 − 3 − 6 − 2. 

The following lemmas address the adjacency between vertices in 𝑇𝐼(ℤ𝑛), and will be utilized in 

proving the theorems regarding the vertex degree and the minimum degree in 𝑇𝐼(ℤ𝑛). 

Lemma 4. Let ℤ𝑛 be the ring of integers modulo 𝑛. If 𝑛 is a prime and 𝑛 ≥ 11, then the vertex 4 is always 

non-adjacent to the vertex 4−1 and 4 ≠ 4−1. 

Proof. According to Lemma 1, the vertex 4 is not adjacent to 4−1. Next, assume for contradiction 4 = 4−1, 

then 4.4 = 4(4−1) = 1. This implies that 16 = 𝑘𝑝 + 1  or 15 = 𝑘𝑝 where 𝑘 ∈ ℤ and 𝑝 is a prime number 

greater than or equal to 11. However, the only prime divisors of 15 are 3 and 5, and no such prime 𝑝 ≥ 11 

divides 15. Thus, 42 ≠ 1 and 4 ≠ 4−1. ∎ 

Lemma 5. Let ℤ𝑛 be the ring of integers modulo 𝑛. If 𝑛 is a prime and 𝑛 ≥ 11, then the vertex 4 is not 

adjacent to the vertex (42)−1. Furthermore, (42)−1 ≠ 4 and (42)−1 ≠ 4−1. 

Proof. Note that 4. (42)−1 = 4.4−2 = 4−1. According to Lemma 1, 4 and (42)−1 are not adjacent.  

Now suppose (42)−1 = 4, then 43 = 1. This implies that 64 = 𝑘𝑝 + 1 or 63 = 𝑘𝑝. But 63 has prime factors 

{3,7} and none of them satisfy 𝑝 ≥ 11, a contradiction. Therefore, 43 ≠ 1 and (42)−1 ≠ 4. Next, suppose 

(42)−1 = 4−1. By the uniqueness of inverses, it must be that 42 = 4, which implies 4 is an idempotent 

element. But the only idempotent elements in ℤ𝑃 with 𝑝 prime are 0 and 1. Thus, (42)−1 ≠ 4−1. ∎ 

Lemma 6. Given ℤ𝑛 with 𝑛 prime and 𝑛 ≥ 11, the vertex 4 is not adjacent to the vertices 2−1 and (𝑛 − 2)−1. 

Furthermore, 2−1 ≠ (𝑛 − 2)−1., and neither of them is equal to the vertices 4, 4−1, or (42)−1. 

Proof. In ℤ𝑛 with 𝑛 prime and 𝑛 ≥ 11, the element 4 always has two square roots, namely 2 and (𝑛 − 2). 

The vertices 2−1 and (𝑛 − 2)−1 are the inverses of these two vertices, respectively. We will show that 4 is 

not adjacent to the vertex 2−1. Since 2.2 = 4, we have 2−1. 4 = 2−1. 2.2 = 2. According to Lemma 1, 4 is 

not adjacent to 2−1. Similarly, 4 is also not adjacent to (𝑛 − 2)−1. Next, we will show that the vertices 2−1 

and (𝑛 − 2)−1 are distinct. Suppose (𝑛 − 2)−1 = 2−1, then by the uniqueness of inverses, (𝑛 − 2) = 2. In 

ℤ𝑛, this holds only for 𝑛 = 4. Thus, 2−1 = (𝑛 − 2)−1 in ℤ𝑛 with 𝑛 prime and 𝑛 ≥ 11. Next, it will be shown 

that neither 2−1 nor (𝑛 − 2)−1  is equal to the vertices 4, 4−1, or (42)−1. Suppose that 2−1 = 4 then 1 = 23. 

This implies 𝑘𝑝 + 1 = 8 or 𝑘𝑝 = 7. Since the only prime factor that satisfies this equation is 𝑝 = 7, this 

contradicts 𝑝 ≥ 11. Thus, 2−1 ≠ 4. Next, suppose that 2−1 = 4−1, then 2 = 4. In ℤ𝑛, this holds only in ℤ2. 

Therefore, 2−1 ≠ 4−1. Next, suppose 2−1 = (42)−1 , then 2 = 42. This implies 𝑘𝑝 + 2 = 16 0r 𝑘𝑝 = 14. 

Since the prime factors that satisfy this equation are 2 and 7, this contradicts 𝑝 ≥ 11. Thus, 2−1 ≠ (42)−1. 

Suppose that  (𝑛 − 2)−1 = 4, then  1 = (𝑛 − 2)3. This implies −8(𝑚𝑜𝑑 𝑛) = 1. In ℤ𝑛, this holds only for 

ℤ3 and ℤ9. Thus, it is proven that(𝑛 − 2)−1 ≠ 4 in ℤ𝑛 with 𝑛 prime −8(mod 𝑛) = 1 and 𝑛 ≥ 11. Next, 

suppose  (𝑛 − 2)−1 = 4−1, then  (𝑛 − 2) = 4. In ℤ𝑛, this holds only for ℤ3 and ℤ6. Thus, (𝑛 − 2)−1 ≠ 4−1. 

Next, suppose (𝑛 − 2)−1 = (42)−1, then (𝑛 − 2). 4 = 1. By the uniqueness of inverses, (𝑛 − 2)−1 = 4. This 

is a contradiction because it has already been proven that (𝑛 − 2)−1 ≠ 4. Thus, (𝑛 − 2)−1 ≠ (42)−1. ∎ 

Several of these lemmas are subsequently used to calculate the degree of vertex 4 in the graph 𝑇𝐼(ℤ𝑛). 

Lemma 7. Let  ℤ𝑛 be the ring of integers modulo 𝑛. If  𝑛 is a prime and  𝑛 ≥ 11, then  𝑑𝑒𝑔(4) = 𝑛 − 7. 

Proof. Consider the vertex 4 ∈ 𝑉(𝑇𝐼(ℤ𝑛)). We will show that the degree of vertex 4 in 𝑇𝐼(ℤ𝑛) is 𝑛 − 7. 

Since |𝑉(𝑇𝐼(ℤ𝑛))| = 𝑛 − 2, we must show that deg(4) = |𝑉(𝑇𝐼(ℤ𝑛))| − 5. We will demonstrate that there 

are 5 vertices in 𝑇𝐼(ℤ𝑛) that are not adjacent to vertex 4. The first vertex is 4 itself, as 𝑇𝐼(ℤ𝑛) is a simple 

graph, so a vertex is not adjacent to itself. Next, according to Lemma 4, Lemma 5, and Lemma 6, there are 

4 other vertices, namely {4−1, (42)−1, 2−1, (𝑛 − 2)−1}. Next, consider any vertex 𝑢 ∈ 𝑉(𝑇𝐼(ℤ𝑛)) with 𝑛 

prime and 𝑛 ≥ 11. We will show that aside from the 5 vertices mentioned above, 𝑢 is always adjacent to 

vertex 4. By Lemma 3, there exists a 𝑤 such that 𝑤 can be expressed as 𝑤 = 4𝑢. Since ℤ𝑛 with 𝑛 prime is a 
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field, there exists a 𝑤−1 such that 4𝑢𝑤−1 = 𝑤𝑤−1 = 1. Hence, it follows that 4 is adjacent to both 𝑢 and 

𝑤−1. Next, suppose 𝑢 is not adjacent to 4. Then, 𝑢 must be one of the 5 vertices mentioned earlier. By Lemma 

1, there are two cases where 𝑢 is not adjacent to 4. First, if  𝑢. 4 = 1, by the uniqueness of inverses, 𝑢 must 

be 4−1. This implies 𝑢 = 𝑣2. Second, if  𝑢. 4 = 𝑢−1or if  𝑢. 4 = 4−1, assuming if  𝑢. 4 = 𝑢−1, then if  4 =
(𝑢−1)2. This implies 𝑢 = 𝑣4 or 𝑢 = 𝑣5. Next, assuming 𝑢. 4 = 4−1, then 𝑢. 42 = 1. By the uniqueness of 

inverses, 𝑢 must be (42)−1. This implies 𝑢 = 𝑣3. Thus, if 𝑢 is not adjacent to 4, it must be one of the 5 

vertices mentioned earlier. Therefore, it is proven that for ℤ𝑛  with 𝑛 prime and 𝑛 ≥ 11, vertex 4 has a degree 

of 𝑛 − 7. ∎ 

Lemma 8. Let ℤ𝑛 be the ring of integers modulo 𝑛 where 𝑛 is a prime and 𝑛 ≥ 3. If 𝑆𝑄 is the set of elements 

that have a square root, then |𝑆𝑄| =
𝑛−1

2
. 

Proof. Let ℤ𝑛
∗  be the set of nonzero elements of ℤ𝑛, i.e., ℤ𝑛

∗ = {1,2, … , 𝑛 − 2, 𝑛 − 1}. Since 𝑛 is a prime, ℤ𝑛
∗  

form a multiplicative group of order 𝑛 − 1, which is always even for 𝑛 ≥ 3. An element 𝑎 ∈ ℤ𝑛
∗  is said to 

have a square root if there exists some 𝑥 ∈ ℤ𝑛 such that 𝑥2 = 𝑎 (mod 𝑛). These elements are called quadratic 

residues modulo 𝑛. Now, in ℤ𝑛
∗ , each nonzero square 𝑥2 has exactly two distinct square roots: 𝑥 and −𝑥, and 

𝑥2 = (−𝑥)2 (mod 𝑛), but 𝑥 = −𝑥 (mod 𝑛) unless 𝑥 = 0, which is not in ℤ𝑛
∗ . Thus, all quadratic residues 

come in distinct pairs. Therefore, the number of distinct elements in ℤ𝑛
∗  that are quadratic residues is |𝑆𝑄| =

|ℤ𝑛
∗ |

2
=

𝑛−1

2
. ∎ 

Lemma 9. Let ℤ𝑛 be the ring of integers of modulo 𝑛. If  𝑛 is a prime and  𝑛 ≥ 11, then 𝑑𝑒𝑔(𝑦) ≥ 𝑑𝑒𝑔(4) 

for any vertex 𝑦 ∈ 𝑉(𝑇𝐼(ℤ𝑛)). 

Proof. Consider any 𝑦 ∈ 𝑉(𝑇𝐼(ℤ𝑛)). We will show that deg(𝑦) ≥ deg(4). According to Lemma 8, not all 

vertices have square roots. The number of vertices with 1 square root is 
𝑛−2

2
. For vertices 𝑦 that do have 

square roots, we will show that the degree of 𝑦 will always be equal to or greater than the degree of vertex 4. 

According to Lemma 1, there are two cases for any vertex 𝑢 not to be adjacent to 𝑦. First, if 𝑢. 𝑦 = 1. By the 

uniqueness of inverses, 𝑢 must be 𝑦−1. Second, if 𝑢. 𝑦 = 𝑢−1 or 𝑢. 𝑦 = 𝑦−1. Suppose 𝑢. 𝑦 = 𝑢−1, then 𝑦 =
(𝑢−1)2. Next, suppose 𝑢. 𝑦 = 𝑦−1, then 𝑢. 𝑦2 = 1. By the uniqueness of inverses, 𝑢 must be (𝑦2)−1. So, at 

most 3 vertices that are not adjacent to 𝑦. Therefore, it is proven that for any vertex 𝑦 ∈ 𝑉(𝑇𝐼(ℤ𝑛)) with 𝑛 

prime and 𝑛 ≥ 11, we have deg(𝑦) ≥ deg(4). ∎ 

Below is a theorem regarding one of the characteristics of the triple idempotent graph of the ring ℤ𝑛 

where 𝑛 is a prime and 𝑛 ≥ 11, resulting the minimum degree in the graph 𝑇𝐼(ℤ𝑛) is 𝑛 − 7. 

Theorem 6. Given the ring ℤ𝑛. If  𝑛 is a prime and 𝑛 ≥ 11, then 𝛿(𝑇𝐼(ℤ𝑛)) = 𝑛 − 7. 

Proof. By Lemma 9, it is concluded that 4 is the vertex with the minimum degree. Furthermore, by Lemma 

7, we have deg(4) = 𝑛 − 7. Therefore, the minimum degree in 𝑇𝐼(ℤ𝑛) where 𝑛 is a prime and  𝑛 ≥ 11 is 

𝑛 − 7. ∎ 

Consider the following example to illustrate Theorem 6 on the minimal degree of 𝑇𝐼(ℤ13)  

Example 2. Given ring ℤ13, we have 𝑉(𝑇𝐼(ℤ13)) = {2,3,4, … ,12} and the set of idempotent elements 

𝐼(ℤ13) = {0,1}. We aim to show that 4 has a degree of 𝑛 − 7. Since |𝑉(𝑇𝐼(ℤ𝑛))| = 𝑛 − 2, it is equivalent 

to deg(4) = |𝑉(𝑇𝐼(ℤ13))| − 5 = 11 − 5 = 6. We identify five vertices that are not adjacent to 4, namely 

{4,6,7,9,10}. This means that every vertex 𝑢 ∈ 𝑉(𝑇𝐼(ℤ𝑛))\{4,6,7,9,10} is adjacent to 4. For example, take 

𝑢 = 2. Then 4.2 = 8 and there exists 8−1 = 5 such that 4.2.5 = 1. Thus, 4 is adjacent to both 2 and 5. 

Similarly, 4 adjacent to 3,5,8,11,12. Therefore, the neighbors of 4 are {2,3,5,8,11,12}. Hence, the degree of 

vertex 4 is 6, verifying that deg(4) = |𝑉(𝑇𝐼(ℤ13))| − 5 = 6 =  𝑛 − 7. For all other vertices (i.e., vertices 

other than 4), their degrees are at least 6, as illustrated in Figure 3. 
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Figure 3. Triple Idempotent Graph of  ℤ𝟏𝟑 

The following theorem demonstrates the sufficient condition for 𝑇𝐼(ℤ𝑛) to be a Hamiltonian graph. 

Theorem 7. Let ℤ𝑛 be the ring of integer of modulo 𝑛. If n is prime and 𝑛 ≥ 13, then 𝑇𝐼(ℤ𝑛) is a Hamiltonian 

graph.  

Proof. Based on Theorem 1, a simple graph G with 𝑘 ≥ 3 vertices is Hamiltonian if every vertex has degree 

at least 𝑘/2. From Theorem 6, the minimum degree of any vertex in 𝑇𝐼(ℤ𝑛) with 𝑛 prime and 𝑛 ≥ 13 is 

𝑛 − 7. Because the number of vertices in 𝑇𝐼(ℤ𝑛) is 𝑘 = 𝑛 − 2, the minimum degree becomes 𝑘 − 5. The 

condition 𝑘 − 5 ≥
𝑘

2
 holds when 𝑘 ≥ 10. For 𝑛 ≥ 13 we have 𝑘 = 𝑛 − 2 ≥ 11, so the condition is satisfied. 

Therefore, the graph 𝑇𝐼(ℤ𝑛) with 𝑛 prime and 𝑛 ≥ 13 meets the sufficient condition to be Hamiltonian. Thus, 

𝑇𝐼(ℤ𝑛) is a Hamiltonian graph for all prime 𝑛 ≥ 13. ∎ 

Example 3. Given the graph 𝑇𝐼(ℤ13) with its graph shown in Figure 3. In 𝑇𝐼(ℤ13), the number of vertices 

is |𝑉(𝑇𝐼(ℤ13))| = 11, and the minimum degree in 𝑇𝐼(ℤ13) is 11 − 5 = 6. Furthermore, based on Theorem 

1, a sufficient condition for a simple graph 𝐺 with at least 𝑘 ≥  3 vertices to be a Hamiltonian graph is if the 

degree of each vertex is at least 𝑘/2 for every vertex in 𝐺. We obtain 𝑘/2 in 𝑇𝐼(ℤ13) to be 11/2 < 6, then 

𝑇𝐼(ℤ13) satisfies the sufficient condition and 𝑇𝐼(ℤ13) is a Hamiltonian graph. Furthermore, a Hamiltonian 

cycle in 𝑇𝐼(ℤ13) is shown to be 2 − 3 − 4 − 5 − 6 − 7 − 8 − 9 − 10 − 12 − 11 − 2. 

The following Lemma shows that the degree of each vertex of 𝑇𝐼(ℤ𝑛) with 𝑛 prime and 𝑛 ≥ 7 is even. 

Lemma 10. Let ℤ𝑛 be the ring of integer of modulo 𝑛. If 𝑛 is a prime and 𝑛 ≥ 7, then every vertex in the 

graph 𝑇𝐼(ℤ𝑛) has even degree. 

Proof. Since 𝑛 is prime, the only idempotent element of ℤ𝑛 are 0 and 1. Therefore, the adjacency condition 

can be reduced to 𝑎𝑏 ≠ 1, 𝑏𝑐 ≠ 1, 𝑎𝑐 ≠ 1 and 𝑎𝑏𝑐 = 1 for 𝑎, 𝑏, 𝑐 ∈ 𝑉(𝑇𝐼(ℤ𝑛)).  Let 𝑢 ∈ 𝑉(𝑇𝐼(ℤ𝑛)). If 𝑢 is 

adjacent to the vertex 𝑣, then there exists 𝑤 ∈ 𝑉(𝑇𝐼(ℤ𝑛)) such that 𝑢𝑣𝑤 = 1, which implies 𝑤 = (𝑢𝑣)−1. 

By the definition of the graph, since multiplication is commutative and associative, 𝑤 is also adjacent to 𝑢 

and 𝑣. Note that ℤ𝑛 is a field (as 𝑛 is prime). By the uniqueness of inverses in a field, for any pair 𝑢 and 𝑣 

such that 𝑢𝑣𝑤 = 1, the element 𝑤 is uniquely determined. Hence, each such triplet {𝑢, 𝑣, 𝑤} forms a triangle, 

contributing degree 2 to each involved vertex. This means that adjacency always occurs in pairs, each vertex 

𝑢 is adjacent to vertices in a way that its total degree is 2𝑘 where 𝑘 is the number of such adjacency 

combinations. Hence, deg(𝑢) is even for all 𝑢. Therefore, in the graph 𝑇𝐼(ℤ𝑛) with 𝑛 prime and 𝑛 ≥ 7, the 

degree of every vertex is even. ∎ 

The following theorem shows that 𝑇𝐼(ℤ𝑛) with 𝑛 prime and 𝑛 ≥ 7 is a Eulerian graph. 

Theorem 7. Let ℤ𝑛 be the ring of integer of modulo 𝑛. If 𝑛 is a prime and 𝑛 ≥ 7, then 𝑇𝐼(ℤ𝑛) is a Eulerian 

graph. 

Proof. Based on Theorem 2, a graph is Eulerian if it is connected and all vertices have even degree. By 

Lemma 10, every vertex in the graph 𝑇𝐼(ℤ𝑛) has even degree when 𝑛 is a prime and 𝑛 ≥ 7. Therefore, 

𝑇𝐼(ℤ𝑛) is an Eulerian graph for all prime 𝑛 ≥ 7. ∎ 
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The following example is provided to help better understand Lemma 10 and Theorem 7. 

Example 4. Given the ring 𝑇𝐼(ℤ11). The visualization of 𝑇𝐼(ℤ11) can be seen in Figure 4. It can be seen that 

vertices 3, 4, 5, and 9 have a degree of 4, vertices 2, 6, 7, and 8 have a degree of 6, and vertex 10 has a degree 

of 8. Furthermore, based on Theorem 2, 𝑇𝐼(ℤ11) is an Eulerian graph. The following is an Eulerian circuit 

found in 𝑇𝐼(ℤ11): 2 − 5 − 7 − 10 − 9 − 8 − 6 − 3 − 0 − 5 − 6 − 9 − 2 − 8 − 3 − 7 − 2 − 10 − 6 − 7 −
4 − 8 − 10 − 4 − 2. 

 
Figure 4. Triple Idempotent Graph of  ℤ𝟏𝟏 

4. CONCLUSIONS 

Based on the research conducted, it can be concluded that the triple idempotent graph 𝑇𝐼(ℤ𝑛) exhibits 

several interesting structural properties. If the graph 𝑇𝐼(ℤ𝑛) is connected, it has a diameter of 2 and a girth 

of 3, indicating that any two vertices are at most two steps apart and that the smallest cycle in the graph has 

length three. These parameters highlight the graph's strong connectivity and cyclic structure. 

Furthermore, it was shown that 𝑇𝐼(ℤ𝑛) is a Eulerian graph for 𝑛 ≥ 7, implying that there exists a 

closed trail that visits every edge exactly once under this condition. In addition, for 𝑛 ≥ 7, the graph is 

Hamiltonian, meaning it contains a cycle that passes through every vertex exactly once. These findings 

emphasize the rich and intricate nature of the graph as 𝑛 increases. 

Overall, the results contribute to a deeper understanding of the interplay between algebraic structures 

in modular rings and the combinatorial properties of their associated graphs. This study opens up further 

questions related to chromatic number, planarity, and spectral properties of 𝑇𝐼(ℤ𝑛), which may be addressed 

in future research. 
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