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ABSTRACT                                                                                                 

Article History: This study conducts a comparative analysis of various machine learning methods for 

classifying the quality of Palu shallots based on the Indonesian National Standard (SNI). 

The dataset consists of 1,500 samples of Palu shallots, each characterized by 10 key 

features, including size, color, texture, and moisture content. Five machine learning 

models—Naïve Bayes, Decision Tree, Random Forest, Support Vector Machine (SVM), and 

Logistic Regression—were evaluated using accuracy, precision, recall, and F1 score as 

performance metrics. The results indicate that Random Forest achieved the best 

performance with an accuracy of 95.4%, followed by Decision Tree (90.7%) and SVM 

(90.2%). Random Forest also excelled in precision (93.6%) and F1 Score (93.5%), making 

it the most reliable model for shallot quality classification. Meanwhile, SVM demonstrated 

a good balance between recall and precision, making it a strong alternative. Implementing 

machine learning models has the potential to enhance the efficiency and accuracy of 

agricultural product quality assurance. The findings of this study provide valuable insights 

for farmers, agribusiness practitioners, and researchers adopting artificial intelligence 

technology for more precise and efficient agricultural quality assessment. 

Received: 5th November 2024 

Revised: 7th February 2025 

Accepted: 8th April 2025 

Published: 1st July 2025    

 

 

Keywords: 

Classification; 

Machine Learning; 

Palu Shallots; 

Random Forest; 

SVM. 

  
This article is an open access article distributed under the terms and conditions of 

the Creative Commons Attribution-ShareAlike 4.0 International License. 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 
 

How to cite this article: 

D. Lusiyanti, S. Musdalifah, A. Sahari and I. Al Fajri., “COMPARATIVE ANALYSIS OF MACHINE LEARNING METHODS IN 

CLASSIFYING THE QUALITY OF PALU SHALLOTS,” BAREKENG: J. Math. & App., vol. 19, no. 3, pp. 1853-1864, September, 2025. 

 

Copyright © 2025 Author(s)  
Journal homepage: https://ojs3.unpatti.ac.id/index.php/barekeng/  

Journal e-mail: barekeng.math@yahoo.com; barekeng.journal@mail.unpatti.ac.id  

Research Article  ∙  Open Access 

 

http://creativecommons.org/licenses/by-sa/4.0/
https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:barekeng.journal@mail.unpatti.ac.id


1854 Lusiyanti, et al.    COMPARATIVE ANALYSIS OF MACHINE LEARNING METHODS IN CLASSIFYING …  

 

1. INTRODUCTION 

Shallots (Allium Ascalonium L.) are a horticultural commodity that plays an important role in the 

agricultural sector in Indonesia [1]. Shallots are not only a staple ingredient in Indonesian cuisine but also 

have high economic value due to their increasing demand. In Palu City, Central Sulawesi, shallots are one of 

the leading agricultural products that significantly contribute to the local economy [2].  

However, the quality of the shallots produced often varies. This quality variation can be attributed to 

various factors, including cultivation techniques, soil conditions, weather, and post-harvest practices. 

Inconsistent shallot quality can affect selling prices and consumer satisfaction. Therefore, classifying the 

quality of shallots is crucial to ensure that the products meet the standards desired by the market.  

In several previous studies, methods such as linear regression, artificial neural networks, and pattern 

recognition have been used to classify the quality of shallots. For instance, a Pradana (2023) study focused 

on detecting shallot quality using circularity image processing [3]. Another study by Mutia (2020) used 

regression analysis to predict shallot quality based on environmental factors [4]. Although these approaches 

are quite effective, they have some drawbacks, such as the need for large datasets and complexity in 

implementation. On the other hand, advancements in machine learning technology offer more adaptive and 

efficient solutions. Machine learning enables faster and more accurate data processing by utilizing algorithms 

that can learn from data and improve their performance over time. 

Various machine learning methods, such as k-nearest neighbors (KNN), support vector machines 

(SVM), and neural networks, have been successfully applied in various classification applications in 

agriculture [5], [6], [7]. However, each method has advantages and disadvantages depending on the data 

characteristics and classification objectives. Therefore, it is essential to conduct a comparative analysis of 

different machine learning methods to determine the most effective method for classifying the quality of Palu 

shallots. 

This research aims to fill the gap in the literature by providing a comprehensive comparative analysis 

of several machine learning methods for classifying the quality of Palu shallots. The study also seeks to 

identify key factors affecting the performance of each method and to offer practical recommendations for 

farmers and agribusiness entrepreneurs in choosing the most suitable method for their needs. 

One of the strengths of this research is the application of more advanced and adaptive machine learning 

techniques compared to traditional approaches. Additionally, the research utilizes a larger and more diverse 

dataset, which is expected to yield more accurate and representative results. Thus, this study not only 

contributes to improving the quality of Palu shallots but also provides new insights into the application of 

machine learning technology in agriculture. 

The novelty of this research lies in the in-depth analysis of the performance of various machine learning 

methods in the specific context of classifying the quality of Palu shallots. The study not only compares 

existing methods but also explores new combinations and hybrid approaches that have not been extensively 

researched before. The results of this study are expected to serve as an important reference for the 

development of quality classification technology for agricultural products in the future. 

2. RESEARCH METHODS 

2.1. Data Collection 

The data used in this research consists of Palu shallot samples collected from various locations in Sigi 

Regency, specifically from the villages of Maku, Maranata, Sidondo, Sidera, Oloboju, Soulowe, and 

Watubula. Subsequently, quality measurements of the samples were conducted in the laboratory by 

agronomists using standard measuring instruments. Each sample was tested based on the parameters 

established by the Government for shallot commodities, namely the Indonesian National Standard (SNI 01-

3159-1992), as follows:  
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Table 1. Quality Standard of Red Onions  

Characteristic 
Requirements 

Testing Method 
Quality I Quality II 

Similarity of Varieties Alike Alike Organoleptic 
Ages Old Quite Old Organoleptic 

Texture Solid Quite Solid Organoleptic 
Diameter (cm) minimum >2,5 1,5-2,5 SP-SMP-309-1981 

Damage, % weight/maximum weight 5 8 SP-SMP-310-1981 
Rotten, % weight/maximum weight 1 2 SP-SMP-311-1981 

Dirt, % weight/maximum weight No No SP-SMP-313-1981 
Dryness Dry Dry Organoleptic 

Water Content (%) 80-85 75-80 SP-SMP-313-1981 

    *Data source: Badan Standardisasi Nasional, 1992 

2.2. Data Preprocessing 

Before training the machine learning models, the dataset undergoes several preprocessing steps to 

ensure its suitability for analysis and to enhance model performance. The main preprocessing steps include 

data normalization and labeling, critical to standardizing the input data and providing meaningful target 

values for classification. 

a. Data Normalization 

Data normalization is performed to eliminate differences in scale among the features extracted 

from the samples [8]. This step ensures that features with larger numerical ranges do not dominate 

those with smaller ranges during model training [9]. For example, size or weight may have values 

in different units or magnitudes compared to colour intensity or texture metrics. Normalizing the 

data rescales all features to a standard range, typically between 0 and 1, or to a standard normal 

distribution with a mean of 0 and a standard deviation of 1. This step improves model convergence 

and ensures that algorithms sensitive to feature scales, such as Support Vector Machines (SVM) 

and Logistic Regression, perform optimally. 

b. Labeling 

After normalization, each sample is assigned a quality label based on SNI standards (Indonesian 

National Standards) and expert assessments. The labeling process involves classifying the shallot 

samples into predefined quality categories, such as "high quality," "medium quality," or "low 

quality." These categories are determined by specific criteria outlined in the SNI standards, which 

consider attributes such as size, color, texture, and overall condition of the shallots. Additionally, 

expert evaluations are incorporated to refine the labeling process and ensure accuracy. The labeled 

dataset serves as the target variable for supervised machine learning, enabling the models to learn 

the patterns and characteristics associated with each quality category. 

By performing these preprocessing steps, the dataset is transformed into a standardized and structured 

format, ensuring that the machine learning models can effectively learn from the data and produce accurate 

classifications. 

2.3. Model Training and Evaluation 

Several machine learning methods are applied and evaluated to determine the most effective method 

for classifying the quality of Palu shallots: 

2.3.1 Support Vector Machine  

Support Vector Machines (SVM) are a class of machine learning algorithms that are widely used for 

classification tasks by creating a maximal margin hyperplane to separate different classes in the data [10]. 

SVMs have gained popularity due to their ability to handle high-dimensional data and their robustness in 

dealing with complex datasets [11]. These algorithms are known for their solid mathematical foundations, 

including properties like margin maximization and the use of kernels for nonlinear classification [12].  

 Given a dataset {(𝒙𝒊, 𝒚𝒊)}  where 𝑥𝑖 represents feature vectors and 𝑦𝑖  ∈  {−1,1} represents class 

labels, the objective of SVM is to find a hyperplane that best separates the two classes. The decision function 

is given by: 
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𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏      (1) 

 

where 𝑤 is the weight vector and 𝑏 is the bias term. The optimization problem for SVM can be formulated 

as: 

 

Min 
1

2
‖𝑤‖2     (2) 

𝑦𝑖(𝑥𝑖. 𝑤 + 𝑏) ≥ 1, 𝑓𝑜𝑟 ∀𝑖 
 

To handle non-linearly separable data, SVM employs the kernel trick to map input data into a higher-

dimensional space using kernel functions [13] . Common kernels include: 

a. Linear Kernel: 𝐾(𝑥𝑖,𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 

b. Polynomial Kernel: 𝐾(𝑥𝑖,𝑥𝑗) = (𝑥𝑖
𝑇𝑥𝑗 + 𝑐)

𝑑
 

c. Radial Basis Function (RBF) Kernel: 𝐾(𝑥𝑖,𝑥𝑗) = 𝑒−𝛾‖𝑥𝑖−𝑥𝑗‖
2

 

The SVM algorithm operates as follows [14] : 

a. Kernel Selection: The user selects an appropriate kernel based on the type of data and the nature 

of the problem to be solved (e.g., linear, polynomial, RBF). 

b. Model Training: During the training process, the SVM identifies support vectors, which are the 

data points lying around the maximal margin. These are the critical points that define the position 

of the hyperplane. 

c. Prediction: After training is complete, the SVM can be used to make new predictions. New data 

are classified based on their relative position to the hyperplane learned during training. The 

distance of new data points from the hyperplane is used to determine the predicted class. 

d. Model Evaluation: The performance of the SVM model is evaluated using appropriate metrics for 

the classification task (e.g., accuracy, precision, recall). 

e. Parameter Tuning: In some cases, parameters such as the C parameter (which controls the trade-

off between margin size and classification error) and gamma (for nonlinear kernels like RBF) need 

to be adjusted to improve model performance. 

2.3.2 Decision Tree 

Decision trees are a popular classification method [15]. The Decision Tree method is a technique in 

machine learning that utilizes a tree structure where each internal node represents a test on an attribute, each 

branch signifies the result of that test, and each leaf node represents a class label or output value. A decision 

tree splits the dataset into subsets based on attributes, aiming to maximize the separation between different 

classes or outputs [16].  

The Decision Tree algorithm begins with attribute selection, where the best attribute is chosen to split 

the dataset. The selection criteria are based on measures such as Entropy and Information Gain in the ID3 

algorithm or the Gini Index in C4.5 and CART [17]. The entropy of a dataset is defined as: 

 

𝐻(𝑆) = − ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖 ,      (3) 

 

here represents the proportion of instances belonging to class (Mitchell, 1997). The Information Gain for a 

given attribute is calculated as: 

                 𝐼𝐺(𝑆, 𝐴) = 𝐻(𝑆) − ∑
|𝑆𝑣|

|𝑆|
𝐻(𝑆𝑣)     (4) 

  

where represents the subset of after splitting on attribute. A higher Information Gain indicates a better 

attribute for splitting [18]. 

The Decision Tree algorithm operates as follows: 
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a. Attribute Selection: The algorithm selects the best attribute to split the dataset. The selection 

criteria are usually based on a measure that evaluates the quality of the split, such as Entropy and 

Information Gain in ID3, or the Gini Index in C4.5 and CART. 

b. Dataset Splitting: The dataset is divided into subsets based on the values of the selected attribute. 

This process continues recursively on each subset, creating a tree structure. 

c. Node Creation: Each node of the tree represents a selected attribute, and each branch from the 

node represents the value or range of values of that attribute. 

d. Stopping: The splitting process continues until one of the stopping conditions is met:  

i. All examples in the subset have the same label. 

ii. No attributes remain for further splitting. 

iii. The tree reaches a predefined maximum depth. 

e. Pruning: After the tree is built, pruning can be performed to reduce complexity and prevent 

overfitting. Pruning removes branches that contribute little to the model's accuracy. 

2.3.3 Random Forest  

Random Forests (RF) are a combination of several decision trees that can solve classification and 

regression problems, making it an ensemble learning method that contains several basic algorithms, namely 

decision trees [19]. The algorithm used is as follows: 

a. For 𝑏 =  1 until B do bootstrap sample 𝑍∗of size 𝑁 from train data 

i. Build a random forest tree 𝑇𝑏 on the bootstrapped data, by repeating the following steps for 

each terminal node in the tree, until the minimum node size is reached. Choose 𝑚 variable 

randomly on p variable 

ii. Take the best variable/splitting point between 𝑚 

b. The output of the ensemble tree is {𝑇𝑏}1
𝐵. 

The RF algorithm operates as follows [20]: 

a. Building Decision Trees:  

i. Data Sampling: From the original dataset with 𝑁 samples, perform random sampling with 

replacement to create multiple bootstrap samples. 

ii. Feature Selection: For each node in the tree, select a random subset of the available features. 

iii. Node Splitting: From the selected subset of features, determine the feature and split point 

that provide the best separation based on metrics such as Gini impurity or information gain. 

iv. Build Trees: Continue this process until the tree is fully grown (or meets stopping conditions 

such as maximum depth or minimum number of samples in a node). 

b. Combining Results (Ensembling): 

i. Classification: For classification problems, each tree in the forest provides a class 

prediction. RF combines these predictions using majority voting. 

ii. Regression: For regression problems, the predictions from each tree are averaged to provide 

the final value. 

c. Prediction: Once the Random Forest model is built, use it to make new predictions. Input new 

samples into each tree in the forest, and combine the prediction results from each tree to provide 

the final prediction. 

2.3.4 Logistic Regression   

The logistic regression algorithm is a widely used classification algorithm in machine learning [21]. It 

is commonly applied in various fields, such as fraud detection, medical diagnosis, and recommendation 

systems [22]. Logistic regression is particularly suitable for binary classification tasks where the target 
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variable is binary, and the features are either continuous or categorical [23]. Logistic regression can be 

extended to handle multiclass classification problems using one-vs-rest (OvR) or softmax regression [24].  

The principle of logistic regression lies in transforming a linear model into a probabilistic output using 

the logistic (sigmoid) function. The logistic function is defined as: 

 

𝜎(𝑧)  =  
1

1 + 𝑒−𝑧
 (5) 

 

where 𝑧 represents the linear combination of input features and weights: 

 

𝑧 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 
 

where, 𝑤0 is the intercept (bias), 𝑤𝑖 are the weights assigned to each feature 𝑥1, and 𝑛 is the number of 

features. 

The output of the sigmoid function, 𝜎(𝑧), produces a probability value between 0 and 1, which 

represents the likelihood that a given input belongs to the positive class. A classification decision is then 

made based on a predefined threshold, typically set at 0.5. If the probability is greater than or equal to 0.5, 

the sample is classified as belonging to the positive class; otherwise, it is classified as belonging to the 

negative class. 

The principle of logistic regression: 

a. Logistic model. Logistic regression uses the logistic (sigmoid) function to transform the linear 

output of regression into probabilities. 

b. Probability output. The output of the sigmoid function is a value between 0 and 1, which is 

interpreted as the probability that a sample belongs to the positive class (e.g., class 1). 

c. Classification decision. Based on the generated probability, a sample is classified into the positive 

class if its probability is above a certain threshold (typically 0.5) and into the negative class if it 

is below the threshold. 

2.3.5 Naïve Bayes 

 Naive Bayes is a widely used algorithm in various domains, known for its simplicity and effectiveness 

in classification tasks. It is a probabilistic classifier that applies Bayes' theorem with the assumption of feature 

independence within a given category [25]. The algorithm calculates probabilities by summing frequencies 

and combinations of values from a dataset, making it straightforward and efficient for classification [26]. The 

Naïve Bayes algorithm is based on Bayes' Theorem, which is the theoretical foundation of probabilistic 

classification. Bayes' Theorem is formulated as follows: 

 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)
                                                                (6) 

 

where: 𝑃(𝐴|𝐵) is the posterior probability of the class (A, for example, the target class) given the predictor 

(B, for example, the feature), 𝑃(𝐵|𝐴) is the likelihood, which is the probability of the predictor given the 

class, 𝑃(𝐴) is the prior probability of the class, and 𝑃(𝐵) is the prior probability of the predictor. 

2.4 Performance Evaluation 

The performance measurement of the classification algorithm in this research is conducted using a 

confusion matrix. Confusion matrix is a very popular measure used while solving classification problems 

[27]. It can be applied to binary classification as well as for multi-class classification problems. An example 

of a confusion matrix for binary classification is shown in Table 2. 

Table 2. Confusion Matrix for Binary Classification           
  Predicted 

  Negative Positive 

Actual Negative TN FP 

 Positive FN TP 
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Confusion matrices represent counts from predicted and actual values. The output “TN” stands for 

True Negative, which accurately shows the number of negative examples classified. Similarly, “TP” stands 

for Predicted Actual for True Positive, which indicates the number of positive examples classified accurately. 

The term “FP” shows a False Positive value, i.e., the number of actual negative examples classified as 

positive, and “FN” means a False Negative value, which is the number of actual positive examples classified 

as negative. One of the most commonly used metrics while performing classification is accuracy. Accuracy 

is the ratio of correctly predicted performance observations from the total observation [28], using Equation 

(7): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                                                (7) 

 

Precision and recall are widely used and popular metrics for classification. Precision shows how 

accurate the model is for predicting positive values. Thus, it measures the accuracy of an expected positive 

outcome. It is also known as the Positive Predictive Value. Recall is helpful to measure the strength of a 

model to predict positive outcomes, and it is also known as the Sensitivity of a model. Both measures provide 

valuable information, but the objective is to improve recall without affecting the precision. Precision and 

Recall values can be calculated in Python using the “precision_score()” and “recall_score()” functions. Both 

of these functions can be imported from “sklearn.metrics”. The formulas for calculating precision and recall 

are given below. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                              (8) 

      𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑻𝑷

𝑻𝑷+𝑭𝑵
                                                    (9) 

3. RESULTS AND DISCUSSION 

The dataset used in this study consists of 150 samples of Palu shallots, each characterized by 10 features 

representing key attributes such as size, color, texture, and moisture content. The dataset was divided into 

training and testing sets with an 80:20 ratio to evaluate the performance of the machine learning models. The 

training set was used to train the models, while the testing set provided an unbiased evaluation of their 

performance on unseen data. To ensure robustness and minimize the potential variability caused by data 

splitting, 5-fold Cross Validation was employed. This method splits the training data into five subsets, using 

four subsets for training and the remaining one for validation, rotating the validation subset in each iteration. 

This approach ensures that all data points are used for training and validation, providing a comprehensive 

assessment of model performance. 

The study evaluated the effectiveness of five machine learning models: Naive Bayes, Decision Tree, 

Random Forest (RF), Support Vector Machine (SVM), and Logistic Regression, in classifying the quality of 

Palu shallots. These models were chosen due to their broad applicability in classification tasks and their 

differing underlying algorithms, offering diverse data handling approaches. Each model's performance was 

assessed using four critical evaluation metrics: Accuracy, Precision, Recall, and F1 Score. Accuracy measures 

the overall correctness of the model's predictions, Precision evaluates the ability to avoid false positives, 

Recall measures the ability to identify true positives, and F1 Score balances Precision and Recall, making it 

particularly useful for imbalanced datasets. 

Hyperparameter tuning was conducted to optimize the models’ effectiveness and optimize their 

performance. For example, parameters such as the number of estimators (n_estimators) and the maximum 

tree depth (max_depth) were tuned for Random Forest. In contrast, the kernel type and regularization 

parameter (C) were adjusted for SVM. This process ensured that each model operated at its optimal 

configuration, enabling fair comparisons. 

The results, summarized in Table 3, reveal that while all models performed relatively well, their 

effectiveness varied depending on the metric evaluated. Random Forest emerged as the most reliable model, 

achieving the highest scores across all metrics, reflecting its robustness in handling complex data and its 

ability to capture intricate feature interactions. SVM also demonstrated strong performance, particularly in 

Recall and Precision, making it another viable choice for this classification task. In contrast, Naive Bayes, 
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while computationally efficient, showed lower performance due to its assumption of feature independence, 

which may not hold for the dataset used in this study. 

Figure 1 illustrates the comparative performance of the models across the four evaluation metrics, 

providing a clear visualization of their strengths and weaknesses. Given their consistently high performance 

across multiple metrics, this analysis highlights the suitability of Random Forest and SVM for classifying 

Palu shallots. These findings emphasize the importance of selecting models that align with the specific 

requirements and characteristics of the dataset to achieve optimal classification outcomes. 

Table 3. Performance Metrics and Parameters of Machine Learning Models 

Model Parameter Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

Naive Bayes - 85.3 89.8 94.7 93.2 

Decision Tree      max_depth : 10 90.7 91.2 93.3 92.4 

Random Forest 
n_estimators: 100, 

max_depth: 15 
95.4 93.6 94.9 93.5 

SVM C: 1.0, kernel: RBF 90.2 91.4 92.5 91.7 

Logistic Regression solver: liblinear 90.1 91.3 92.1 91.6 

 

Performance analysis by metric: 

a. Accuracy 

Random Forest demonstrated the highest accuracy at 95.4%, outperforming all other models. This 

reflects its capability to effectively handle the complex and interdependent features of the dataset, 

such as size, texture, and color of shallots. Decision Tree and SVM followed closely with accuracy 

values of 90.7% and 90.2%, respectively, while Logistic Regression achieved 90.1%. In contrast, 

Naive Bayes had the lowest accuracy at 85.3%, indicating its limitation in datasets where feature 

independence assumptions do not hold. Figure 1 (a) illustrates the comparison of accuracy values 

across models, emphasizing the superior performance of Random Forest. 

b. Precision 

Precision measures the proportion of correctly classified positive samples among all predicted 

positives. Random Forest achieved the highest precision (93.6%), demonstrating its ability to 

minimize false positives, which is crucial in applications where misclassification of lower-quality 

shallots as high-quality could lead to economic losses. Logistic Regression and SVM followed 

closely with precision values of 91.3% and 91.4%, respectively, while Decision Tree achieved 

91.2%. Naive Bayes had the lowest precision at 89.8%, reflecting its difficulty in avoiding false 

positives in this classification task. Figure 1 (b) shows the precision values of each model, 

highlighting Random Forest's advantage in minimizing false positives. 

c. Recall 

Recall reflects the proportion of correctly identified positive samples among all actual positives. 

Both Random Forest (94.9%) and Naive Bayes (94.7%) demonstrated strong recall, indicating 

their ability to correctly identify high-quality shallots across the dataset. Logistic Regression and 

SVM exhibited recall values of 92.1% and 92.5%, respectively, while Decision Tree recorded 

93.3%. These results suggest that Random Forest and Naive Bayes are particularly effective in 

tasks where identifying true positives is critical. Figure 1 (c) provides a visual comparison of 

recall values, showing that Random Forest and Naive Bayes excel in this metric. 

d. F1 Score 

F1 Score, the harmonic mean of precision and recall, balances these two metrics to provide an 

overall measure of model performance. Random Forest achieved the highest F1 Score (93.5%), 

showcasing its balanced performance across all metrics. Naive Bayes followed closely with an F1 

Score of 93.2%, while Decision Tree, SVM, and Logistic Regression scored 92.4%, 91.7%, and 

91.6%, respectively. The high F1 Score of Random Forest highlights its robustness and reliability 

in classification tasks requiring balanced precision and recall. Figure 1 (d) depicts the F1 Score 

of each model, reinforcing Random Forest's leading performance. 
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(a)  
Comparison of Accuracy Values 

 

 

 

 

 

 

 

 

 

 

 

(b)  

Comparison of Precision Value 

 
 
 
 
 
 
 
 
 
 
 
 

(c) 
Comparison of Recall Values 

 

 

 

 

 

 

 

 

 

 

 

 
(d) 

Comparison of F1 Score Values 

Figure 1. Performance Comparison of Machine Learning Models in Classifying Shallot Quality 

(a) Comparison of Accuracy Values – Evaluates the Overall Correctness of Predictions. (b) Comparison of 

Precision Values – Measures the Proportion of Correctly Classified Positive Samples. (c) Comparison of Recall 

Values – Assesses the Model’s Ability to Identify True Positive Cases. (d) Comparison of F1 Score Values – 

Balances Precision and Recall for Overall Performance Evaluation. 

 

The varying performances of the models reflect the different underlying algorithms used. As an 

ensemble model, RF combines multiple decision trees to provide a stable and accurate classification that 

excels in all evaluated metrics. The high accuracy, precision, and F1 Score of RF underscore its ability to 

handle complex feature interactions, which benefits the nuanced task of shallot quality classification. 

Similarly, SVM demonstrates competitive performance due to its ability to create distinct margins between 

classes, making it particularly effective in scenarios with clear decision boundaries. However, Naive Bayes 

shows relatively lower performance, likely due to its simplistic assumption of feature independence; in the 

context of shallot quality, where features such as color, texture, and size may be interdependent, Naive Bayes 

struggles to capture these complexities, leading to lower accuracy and precision. 

These findings suggest that RF could be implemented to ensure high accuracy and balanced 
classification in practical settings, such as quality control within agricultural supply chains. For instance, RF's 
high F1 Score indicates its reliability in identifying high-quality shallots while minimizing the risk of 
misclassifying lower-quality products as high quality, thereby reducing sorting errors and enhancing 
consumer trust in product quality. On the other hand, SVM's high recall makes it suitable for applications 
where it is crucial to identify as many high-quality products as possible, even if it occasionally includes 
borderline cases. For future research, hybrid models or further feature engineering could be explored to 
improve classification accuracy. Techniques such as hyperparameter tuning or deep learning approaches, like 
convolutional neural networks for image-based quality assessment, may yield even better results, especially 
if visual quality features (e.g., colour and texture) are included. Additionally, expanding the dataset to 
incorporate more samples and varied environmental conditions, such as lighting and storage effects, would 
enhance the generalizability of the models. 

precision Accuracy 

Recall F1 Score 
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4. CONCLUSIONS 

This study compared five machine learning models for classifying the quality of Palu shallots. The 

results show that Random Forest (RF) and Support Vector Machine (SVM) performed best, with RF excelling 

in accuracy, precision, and F1 Score, while SVM was strong in recall. Naïve Bayes performed the weakest 

due to its assumption of feature independence. RF is recommended for reliable quality control, while SVM 

is suited for applications prioritizing recall. Future research should explore hybrid models, deep learning, and 

larger datasets to enhance performance. This study highlights the potential of machine learning for efficient 

agricultural quality classification. 
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