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 ABSTRACT 

Article History: 
This study presents a mathematical model that analyzes the impact of nutrition and 

education interventions on stunting prevalence. Nutritional interventions are carried 

out on toddlers indicated to be stunted and toddlers who are healthy but susceptible to 

stunting. Meanwhile, education is given to the toddler's mother compartment. The 

model categorizes the toddler population into four compartments: susceptible, stunting-

indicated, permanently stunted, and non-stunted. Similarly, the maternal population is 

categorized into three compartments: susceptible mothers, mothers exhibiting poor 

parenting practices, and educated mothers. The model's equilibrium point comprises 

two distinct states: a stable stunting-free equilibrium point when the basic reproduction 

number (R0) is less than one and a stable stunting-endemic equilibrium point when R0 

is more significant than one. Sensitivity analysis reveals that the parameters that 

significantly influence the reduction or increase in stunting cases are the rate of 

nutritional intervention for children and the intensity of education for mothers. 

Numerical simulations demonstrate that implementing nutritional intervention 

activities and continuous education programs can effectively eliminate stunting cases 

in the population. The simulation results show a high number of stunting cases, 

reaching 161,566 cases in the population, due to poor education and poor nutritional 

interventions. In contrast, education programs and effective nutritional interventions 

eliminate stunting from the population. However, it takes longer. 
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1. INTRODUCTION  

Stunting, a condition of abnormal growth in children under five years of age, is characterized by 

physical conditions that are too short for their age. The standard used to determine the condition of young 

children who are short or too short (severely stunted) is based on WHO standards, namely comparing height 

for age with the WHO-MGRS (Multicenter Growth Reference Study) in 2006 [1][2]. The primary cause of 

stunting is inadequate nutrition received by the fetus or infant from conception until the first 1000 days of 

life, a critical window for intervention. The consequences of stunting extend beyond physical short stature. 

It also leads to impaired cognitive development, increased disease susceptibility, reduced productivity and 

performance, and imbalanced bodily functions [3]. Ultimately, stunting will reduce the economic growth of 

a region or country, increase poverty, and sharpen social inequalities. Stunting can also eliminate up to 11% 

of GDP gross domestic products (GDP), and reduce up to 20% of workers' income [1]. 

Symptoms of stunting are generally seen when the baby is over 2 years old. However, the process of 

stunting can begin while the baby is still in the womb or after the baby is born. Stunting that occurs while the 

baby is in the womb is caused by low nutritional intake of pregnant women, lack of access to prenatal health 

care, anemia of pregnant women, low maternal knowledge about nutrition, poor sanitation, and genetic 

factors, namely the father's or mother's height being below normal [4][5]. Meanwhile, the causes of stunting 

at birth are malnutrition in breastfeeding mothers, babies not exclusively breastfed, frequent infant infections, 

poor infant nutrition, poor parenting, lack of access to postnatal health, and a dirty environment [6][7]. 

Stunting can be prevented through the active role of parents and the government working together to 

prevent stunting in children. Stunting prevention is achieved through specific and sensitive nutrition 

interventions. Nutrition-specific interventions include provision of iron tablets for pregnant and lactating 

mothers, promotion of exclusive breastfeeding, provision of micronutrient supplements, provision of 

macronutrient supplements, promotion of complementary foods, promotion of iodized foods, treatment of 

malnutrition, provision of vitamin A and deworming of children [3]. Meanwhile, nutrition-sensitive 

interventions include access to clean water, access to good sanitation, access to health and family planning 

services, availability of national health insurance for the community, universal maternity insurance for 

pregnant women, education on good parenting, balanced nutrition education in the community, classes for 

pregnant women, and improving food security and nutrition [8][9]. 

Children who show symptoms of stunting can be treated. The treatment referred to here is not the 

administration of specific drugs to eliminate stunting, but the meaning of treatment here is to provide 

nutritional treatment to young children in the form of adequate nutritional intake. As with interventions to 

prevent stunting, efforts that can be made to treat young children diagnosed with stunting include initial 

treatment of young children with nutritious foods, supplementation of young children with iron, vitamins, 

zinc, calcium, and iodine (micronutrient supplements), and parental education and clean living practices [3]. 

Mathematical models can contribute significantly to efforts to control stunting. This is because 

mathematical models can explain the growth rate of a disease, provide accurate calculations of factors or 

parameters that need to be increased/decreased in order to eliminate a disease, and mathematical models can 

also play a role in efforts to design the right policies to overcome various health problems, such as stunting, 

at the lowest possible cost [10], [11]. Mathematical models used to model a disease are known as 

epidemiological models. A mathematical model of a health phenomenon can be obtained through a dynamical 

systems approach. The advantages of this approach are that changes in the system over time can be known, 

simulations can be performed for different scenarios of health problems that may occur, interactions between 

variables or groups of individuals can be described, and it is possible to model more complex systems with 

many interacting variables [12], [13]. 

Pratama and Lismayani in 2022 [14] and Winarni, et al [15] have modeled stunting using a system 

dynamics approach. Both researchers divided the under-five population into four compartments and did not 

include the mother/caregiver element in the resulting model. The groups of young children in question are 

compartments of young children at susceptible of stunting (S), compartments of young children with 

symptoms of stunting (E), permanently stunted (I), and groups of young children without stunting (R). The 

interventions modeled in the study were sanitation, parenting, and access to health services. The results 

showed that good sanitation, parenting, and health services can reduce the number of cases of stunting. 

In contrast to [14] and [15], the research in this article was conducted by including mothers in the 

model rather than focusing only on the children. In addition, the focus of this research is to construct a 
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mathematical model of stunting by incorporating nutrition and education interventions into the model. The 

mathematical model in this study was developed by dividing the toddler population into four compartments: 

(1) healthy but vulnerable toddlers, referred to as susceptible toddlers (𝑆𝑇); (2) toddlers showing early signs 

of stunting (toddlers indicated stunted), referred to as exposed toddlers (𝐸𝑇); (3) toddlers with permanent 

stunting, referred to as infected toddlers (𝐼𝑛𝑇); and (4) toddlers who are not stunted due to receiving 

nutritional interventions (𝑅𝑇). These infant compartments then become differential equation variables in the 

mathematical model constructed in this study. Toddlers at risk of stunting can become stunting-free if they 

receive adequate nutrition and proper parenting interventions. Conversely, if they experience poor nutrition 

and lack appropriate care, they may develop symptoms of stunting, which can eventually lead to permanent 

stunting. Furthermore, the population of infant caregivers (mothers) is grouped into three compartments, 

namely the compartment of mothers who are vulnerable to providing poor parenting to toddlers or called 

susceptible mother (𝑆𝑚), the compartment of mothers with poor parenting (bad parenting mothers) or infected 

mother (𝐼𝑛𝑚), and the compartment of mothers who have received education about good parenting or called 

educated mother (𝐸𝑑𝑚). 

Once the mathematical model of stunting is established, the study proceeds by determining the 

equilibrium points and their stability, calculating the basic reproduction number (𝑅0) using the Next 

Generation Matrix (NGM), analyzing the parameters that most influence the model and contribute to the 

increase or eliminate of stunting in the population, and finally conducting numerical simulations to determine 

the dynamics of changes in the number of individuals in each compartment in endemic and stunting-free 

states.  

2. RESEARCH METHODS 

The method used in this research is a literature review. Various health literature that discusses stunting, 

such as the causes of stunting, preventive measures, and how to deal with stunted children, is reviewed and 

studied. This is done so that the resulting mathematical model can approximate or represent the real stunting 

situation. In addition to the medical literature, literature searches and reviews of sources related to 

mathematical modelling were also conducted. 

The mathematical model constructed in this article extends the SIR (Susceptible, Infected, and 

Recovered) model. The SIR model is expressed as a system of differential equations, namely [16][17]: 

𝑑𝑆

𝑑𝑡
= μ𝑁 −

𝛽𝑆𝐼

𝑁
− 𝜇𝑆 

𝑑𝐼

𝑑𝑡
=
𝛽𝑆𝐼

𝑁
− 𝛾𝐼 − 𝜇𝐼 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅 

In addition to the reference to the SIR model, the model development in this research paper is also 

based on the SEIR mathematical model by Pratama and Lismayani [14]. 

Dynamic analysis of the model is carried out by checking the stability of the equilibrium point, 

determining the 𝑹𝟎 number, performing parameter sensitivity analysis and numerical simulation. 

Definition 1. [18] Consider the system 
𝑑𝑢

𝑑𝑡
= 𝑓(𝑢), with 𝑢 ∈ ℝ𝑛. A vector 𝑢̅ which satisfies 𝑓(𝑢̅) = 0 is 

called an equilibrium point. 

The equilibrium point 𝑢̅ of the nonlinear system 
𝑑𝑢

𝑑𝑡
= 𝑓(𝑢) is said to be asymptotically stable if the Jacobian 

matrix resulting from the linearisation of the system 
𝑑𝑢

𝑑𝑡
= 𝑓(𝑢) produces eigenvalues whose real part is 

negative in its entirety. On the other hand, if there is an eigenvalue with a positive real part, the equilibrium 

point 𝒖̅ is said to be unstable. The existence and stability of equilibrium points often depend on the number 

𝑹𝟎. In this study, 𝑹𝟎 is determined by the NGM matrix. Furthermore, a sensitivity analysis is performed 

based on the following definition. 
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Definition 2. [19][20] The normalized sensitivity index of a variable 𝑅0, that depends differentiated at 

parameter c is defined as 

𝑆𝑐
𝑅0 =

𝜕𝑅0
𝜕𝑐

×
𝑐

𝑅0
 

in which case 𝑹𝟎 is considered as the variable to be analyzed at parameter 𝒄.  

The data needed for numerical simulation are obtained by taking secondary data, namely data on the 

number of family heads, data on the number of young children, and data on the number of stunting cases in 

West Sumatra, which are obtained from the Ministry of Home Affairs and the West Sumatra BPS Office. 

The stages carried out in this study are: 

1. Literature review on stunting and mathematical modelling, 

2. Identify assumptions, 

3. Based on the assigned compartment, create a status change diagram for each individual, 

4. Construct a mathematical model of stunting with nutrition and education interventions, 

5. Determine/find the equilibrium point of the resulting model, 

6. Analyse the stability of the equilibrium point, 

7. Determine the basic reproduction number (𝑅0) by using the NGM matrix 

8. Conduct a sensitivity analysis to identify the factors that have the greatest impact on increasing 

the number of stunted children, and 

9. Perform numerical simulation of stunting cases using the generated model. 

3. RESULTS AND DISCUSSION 

3.1 Mathematical Model of Stunting Cases 

Based on the division of compartments for the population of young children and mothers in the 

introduction, individuals in each compartment can change status over time. The change in status depends on 

the interaction of the individual with other components of the system or on the nutritional interventions for 

toddlers and educational interventions for mothers in a given compartment. Changes in individual status 

cause an individual to move from one compartment to another. This movement creates a continuous and 

changing dynamic in the emerging interaction system. The diagram of an individual's status change is shown 

below. 
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Figure 1. The Compartment Diagram and State Change 

The parameters used in the compartmental diagram and mathematical model of stunting are described 

in Table 1 below. 

Table 1. Parameters in The Stunting Model 

The assumptions used to construct and simplify the mathematical model of stunting cases are as 

follows. 

1. Each child in each compartment is assumed to have a caregiver, but the concern in the model is 

only with mothers with poor parenting. 

Parameters Information Unit 

Λ𝑇 Recruitment rate of susceptible toddlers. Toddler/Unit of time 

Λ𝑚 Recruitment rates of susceptible mothers to poor parenting skills. Mother/Unit of time 

𝛼 The rate of transition from 𝑆𝑇 to 𝐸𝑇 is due to the mother’s poor 

parenting of the toddlers. 

1/ Unit of time 

𝜏 Number of toddlers cared for by a mother. Toddler/Mother 

𝛽 The transition rate from 𝐸𝑇 to 𝐼𝑛𝑇 is due to children with symptoms 

of stunting not receiving nutrition interventions. 

1/ Unit of time 

𝛾 The transition rate from 𝑆𝑇 to 𝑅𝑇 when susceptible toddlers receive 

nutrition interventions. 

1/Unite of time 

𝛿 Rate of transition from 𝐸𝑇 to 𝑅𝑇 when toddlers with symptoms of 

stunting receive nutrition interventions. 

1/Unite of time 

𝜀 The rate of transition from 𝑆𝑚 to 𝐼𝑛𝑚 due to mothers lacking good 

parenting skills. 

1/Unite of time 

𝜂 The rate of transition from 𝑆𝑚 to 𝐸𝑑𝑚 is due to mothers receiving 

education on good parenting. 

1/Unite of time 

𝜔 Transition rate from 𝐼𝑛𝑚 to 𝐸𝑑𝑚 as mothers with poor parenting 

receive education on good parenting. 

1/Unite of time 

𝜇𝑇 Mortality rate of toddlers. 1/Unite of time 

𝜇𝑚 Mortality rate of mothers. 1/Unite of time 

𝑁𝑇 Total population of toddlers. Toddler 

𝑁𝑚 Total population of mothers. Mother 

𝜇𝑇 ∙ 𝑆𝑇 

𝑺𝑻 
Λ𝑇 

𝑰𝒏𝑻 

𝜇𝑇 ∙ 𝐸𝑇 𝜇𝑇 ∙ 𝐼𝑛𝑇 

𝑬𝑻 

𝛼 ∙ 𝐼𝑛𝑚 ∙ 𝑆𝑇 ∙ 𝜏

𝑁𝑇
 

𝛽
∙ 𝐸  

𝛿 ∙ 𝐸𝑇 
𝛾 ∙ 𝑆𝑇 

𝜇𝑇 ∙ 𝑅𝑇 

𝑺𝒎 𝑬𝒅𝒎 

Λ𝑚 

𝜇𝑚 ∙ 𝑆𝑚 

𝜂 ∙ 𝑆𝑚 
𝜇𝑚 ∙ 𝐸𝑑𝑚 

𝜀 ∙ 𝐼𝑛𝑇 ∙ 𝑆𝑚
𝑁𝑇

 
𝜔
∙ 𝐼𝑛  

𝑰𝒏𝒎 𝜇𝑚 ∙ 𝐼𝑛𝑚 

𝑹𝑻 
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2. The increase in the population size of children/toddlers and mothers is constant over time. 

3. The population is closed (no migration into or out of the population). 

4. Susceptible toddlers (𝑆𝑇) can become toddlers with symptoms of stunting (𝐸𝑇) if raised by mothers 

who have poor parenting and no nutritional intervention. 

5. A toddler (𝑆𝑇) will become a stunting free toddler (𝑅𝑇) only if he/she always receives a nutrition 

intervention at the rate of 𝛾 until at least two years of age. 

6. Toddlers with stunting indication (𝐸𝑇) can turn into free of stunting (𝑅𝑇) if they always receive 

nutrition intervention at the rate of 𝛿 until at least two years of age. 

7. Toddlers with indications of stunting (𝐸𝑇) will turn into permanently stunted (𝐼𝑛𝑇) if they do not 

receive nutrition interventions. 

8. The status change period of each individual in each compartment is assumed to be the same. 

9. Mothers who take care of children with stunting are assumed to be mothers with poor parenting, 

causing 𝑆𝑚 to become 𝐼𝑛𝑚. 

Based on the state transition diagram in Figure 1 and the assumptions described above, a mathematical 

model for each compartment is as follows. 

𝑑𝑆𝑇(𝑡)

𝑑𝑡
= Λ𝑇 −

𝛼 ∙ 𝐼𝑛𝑚(𝑡) ∙ 𝑆𝑇(𝑡) ∙ 𝜏

𝑁𝑇
− 𝛾𝑆𝑇(𝑡) − 𝜇𝑇𝑆𝑇(𝑡) 

𝑑𝐸𝑇(𝑡)

𝑑𝑡
=
𝛼𝐼𝑛𝑚(𝑡)𝑆𝑇(𝑡)𝜏

𝑁𝑇
− 𝛽𝐸𝑇(𝑡) − 𝛿𝐸𝑇(𝑡) − 𝜇𝑇𝐸𝑇(𝑡) 

𝑑𝐼𝑛𝑇(𝑡)

𝑑𝑡
= 𝛽𝐸𝑇(𝑡) − 𝜇𝑇𝐼𝑛𝑇(𝑡) 

𝑑𝑅𝑇(𝑡)

𝑑𝑡
= 𝛾𝑆𝑇(𝑡) + 𝛿𝐸𝑇(𝑡) − 𝜇𝑇𝑅𝑇(𝑡) 

𝑑𝑆𝑚(𝑡)

𝑑𝑡
= Λ𝑚 −

𝜀𝐼𝑛𝑇(𝑡)𝑆𝑚(𝑡)

𝑁𝑇
− 𝜂𝑆𝑚(𝑡) − 𝜇𝑚𝑆𝑚(𝑡) 

𝑑𝐼𝑛𝑚(𝑡)

𝑑𝑡
=
𝜀𝐼𝑛𝑇(𝑡)𝑆𝑚(𝑡)

𝑁𝑇
− 𝜔𝐼𝑛𝑚(𝑡) − 𝜇𝑚𝐼𝑛𝑚(𝑡) 

𝑑𝐸𝑑𝑚(𝑡)

𝑑𝑡
= 𝜂𝑆𝑚(𝑡) + 𝜔𝐼𝑛𝑚(𝑡) − 𝜇𝑚𝐸𝑑𝑚(𝑡) 

where all parameters in the model are non-negative, 𝑁𝑇(𝑡) = 𝑆𝑇(𝑡) + 𝐸𝑇(𝑡) + 𝐼𝑛𝑇(𝑡) + 𝑅𝑇(𝑡), and 

𝑁𝑚(𝑡) = 𝑆𝑚(𝑡) + 𝐼𝑛𝑚(𝑡) + 𝐸𝑑𝑚(𝑡). The dynamics for the total population 𝑁𝑇(𝑡) and 𝑁𝑚(𝑡) are given by 

the equation 
𝑑𝑁𝑇(𝑡)

𝑑𝑡
= Λ𝑇 − 𝜇𝑇(𝑆𝑇(𝑡) + 𝐸𝑇(𝑡) + 𝐼𝑛𝑇(𝑡) + 𝑅𝑇(𝑡)) and 

𝑑𝑁𝑚(𝑡)

𝑑𝑡
= Λ𝑚 − 𝜇𝑚(𝑆𝑚(𝑡) +

𝐼𝑛𝑚(𝑡) + 𝐸𝑑𝑚(𝑡)). Thus obtained, lim
𝑡→∞

𝑁𝑇(𝑡) =
Λ𝑇

𝜇𝑇
, and lim

𝑡→∞
𝑁𝑚(𝑡) =

Λ𝑚

𝜇𝑚
. 

3.2 Points of Equilibrium Free and Endemic of stunting 

The equilibrium point is obtained when the system (1) is in the state 
𝑑𝑆𝑇(𝑡)

𝑑𝑡
=
𝑑𝐸𝑇(𝑡)

𝑑𝑡
=
𝑑𝐼𝑛𝑇(𝑡)

𝑑𝑡
=

𝑑𝑅𝑇(𝑡)

𝑑𝑡
=
𝑑𝑆𝑚(𝑡)

𝑑𝑡
=
𝑑𝐼𝑛𝑚(𝑡)

𝑑𝑡
=
𝑑𝐸𝑑𝑚(𝑡)

𝑑𝑡
= 0 [21][22]. System (1) has two equilibrium points, namely the 

stunting free equilibrium point (𝐸0) and the stunting endemic equilibrium point (𝐸1). The stunting free 

equilibrium point is reached when there are no cases of stunting in the population and no mothers who care 

for their children with poor parenting. The equilibrium point of 𝐸0 is: 

    

𝐸0 = (
Λ𝑇

𝛾+𝜇𝑇
, 0, 0,

γΛ𝑇

(𝛾+𝜇𝑇)𝜇𝑇
 ,

Λ𝑚

𝜂+𝜇𝑚
, 0,

𝜂Λ𝑚

(𝜂+𝜇𝑚)𝜇𝑚
 ) (2) 
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Furthermore, the stunting endemic equilibrium point (𝐸1) is reached when the compartment of mothers 

with poor parenting and the number of stunted children under five are both positive. The equilibrium 𝐸1 is 

defined as 

𝐸1 = (𝑆𝑇
∗(𝑡), 𝐸𝑇

∗(𝑡), 𝐼𝑛𝑇
∗ (𝑡), 𝑅𝑇

∗ (𝑡), 𝑆𝑚
∗ (𝑡), 𝐼𝑛𝑚

∗ (𝑡), 𝐸𝑑𝑚
∗ (𝑡)) (3) 

where: 

𝑆𝑇
∗(𝑡) =

𝐿

𝑌
 

𝐸𝑇
∗(𝑡) =

(𝑅0
3 − 1)𝑋

𝑌
 

𝐼𝑛𝑇
∗ (𝑡) =

(𝑅0
3 − 1)𝑋𝛽

𝜇𝑇𝑌
 

𝑅𝑇
∗ (𝑡) =

((𝑅0
3 − 1)𝜇𝑇 + 𝛾𝑅0

3) 𝛿𝐽 + 𝜇𝑇(𝐻 + 𝐺)

𝜇𝑇𝐾
 

𝑆𝑚
∗ (𝑡) =

Ω𝜇𝑚
𝐵

 

𝐼𝑛𝑚
∗ (𝑡) =

((𝑅0
3 − 1)𝑈 − 𝑃 − 𝑄) 𝜇𝑇 + 𝑈𝑅0

3𝛾

𝜇𝑇𝐹
=
(𝑅0
3 − 1)𝑈𝜇𝑇 − (𝑃 + 𝑄)𝜇𝑇 + 𝑈𝑅0

3𝛾

𝜇𝑇𝐹
 

𝐸𝑑𝑚
∗ (𝑡) =

(𝑅0
3 − 1)𝑍 + 𝑉 + 𝑅0

3𝑊 + 𝐴

𝐵
 

with: 

𝑅0 = √
𝜀Λ𝑇Λ𝑚𝜏𝛽𝛼

𝑁𝑇
2(𝜔 + 𝜇𝑚)(𝜂 + 𝜇𝑚)𝜇𝑇(𝛾 + 𝜇𝑇)(𝛽 + 𝛿 + 𝜇𝑇)

3

 

𝐿 = 𝑁𝛵(𝜇𝛵(𝜂 + 𝜇𝑚)(𝛽 + 𝛿 + 𝜇𝛵)𝑁𝛵 + 𝛽𝜀Λ𝛵)(𝜔 + 𝜇𝑚) 

𝑌 = 𝜀((𝛾 + 𝜇𝛵)(𝜔 + 𝜇𝑚)𝑁𝛵 + 𝛼𝜏Λ𝑚)𝛽 

𝑋 = 𝜇𝛵𝑁𝛵
2(𝜔 + 𝜇𝑚)(𝜂 + 𝜇𝑚)(𝛾 + 𝜇𝛵)) 

𝐽 = 𝑁𝛵
2𝜇𝛵
2(𝜔 + 𝜇𝑚)(𝛽 + 𝛿 + 𝜇𝛵)(𝜂 + 𝜇𝑚) 

𝐻 = 𝛾𝜇𝛵(𝛽 + 𝜇𝛵)(𝛽 + 𝛿 + 𝜇𝛵)(𝜔 + 𝜇𝑚)(𝜂 + 𝜇𝑚)𝑁𝛵
2 

𝐺 = 𝜀Λ𝛵𝛽𝛾(𝛽 + 𝛿 + 𝜇𝛵)(𝜔 + 𝜇𝑚)𝑁𝛵 

𝐾 = 𝜀𝛽(𝑁𝛵(𝜔 + 𝜇𝑚)𝜇𝛵 + 𝛾(𝜔 + 𝜇𝑚)𝑁𝛵 + 𝛼𝜏Λ𝑚)(𝛽 + 𝛿 + 𝜇𝛵)𝜇𝛵 

Ω = (𝛽 + 𝛿 + 𝜇𝛵)((𝛾 + 𝜇𝛵)(𝜔 + 𝜇𝑚)𝑁𝛵 + 𝛼𝜏Λ𝑚)𝜇𝛵𝑁𝛵 

𝐵 = 𝜇𝑚𝜏𝛼(𝜇𝛵(𝜂 + 𝜇𝑚)(𝛽 + 𝛿 + 𝜇𝛵)𝑁𝛵 + 𝛽𝜀Λ𝛵) 

𝑈 = 𝑁𝛵
2(𝛽 + 𝛿 + 𝛾)(𝜔 + 𝜇𝑚)(𝜂 + 𝜇𝑚)𝜇𝛵

2  

𝑃 = 𝑁𝛵
2(𝜔 + 𝜇𝑚)(𝜂 + 𝜇𝑚)𝜇𝛵

3  

𝑄 = 𝛾𝑁𝛵
2(𝛽 + 𝛿)(𝜔 + 𝜇𝑚)(𝜂 + 𝜇𝑚)𝜇𝛵 

𝐹 = (𝜔 + 𝜇𝑚)𝜏(𝑁𝛵(𝜂 + 𝜇𝑚)𝜇𝛵
2 +𝑁𝛵(𝛽 + 𝛿)(𝜂 + 𝜇𝑚)𝜇𝛵 + 𝛽𝜀Λ𝛵)𝛼 

𝑍 = 𝑁𝛵
2𝜇𝛵(𝛽 + 𝛿 + 𝜇𝛵)𝜔𝜇𝑚(𝛾 + 𝜇𝛵) 

𝑉 = 𝑁𝛵
2𝜇𝛵(𝛽 + 𝛿 + 𝜇𝛵)𝜂𝜇𝑚(𝛾 + 𝜇𝛵) 

𝑊 = 𝑁𝛵
2𝜇𝛵 . (𝛽 + 𝛿 + 𝜇𝛵)𝜔𝜂(𝛾 + 𝜇𝛵) 

𝐴 = 𝜇𝛵(𝛽 + 𝛿 + 𝜇𝛵)𝛼𝜂𝜏Λ𝑚𝑁𝛵 

Theorem 1. (Existence of Equilibrium Points). Suppose that 𝑅0 = √
𝜀𝛬𝑇𝛬𝑚𝜏𝛽𝛼

𝑁𝑇
2(𝜔+𝜇𝑚)(𝜂+𝜇𝑚)𝜇𝑇(𝛾+𝜇𝑇)(𝛽+𝛿+𝜇𝑇)

3
. If 

𝑅0 < 1, then the system (1) has exactly one equilibrium point, the stunting-free equilibrium point 𝐸0. On the 

other hand, if 𝑅0 > 1 and (𝑅0
3 − 1)𝑈𝜇𝑇 + 𝑈𝑅0

3𝛾 > (𝑃 + 𝑄)𝜇𝑇, then there exists a stunting-endemic 

equilibrium point 𝐸1. 

Proof. The stunting-free equilibrium point 𝐸0 is obtained when 𝐼𝑛𝑇(𝑡) = 0 and 𝐼𝑛𝑚(𝑡) = 0. Under this 

condition, we also have 𝐸𝑇(𝑡) = 0. Note that 𝑆𝑇(𝑡), 𝑅𝑇(𝑡), 𝑆𝑚(𝑡), and 𝐸𝑑𝑚(𝑡) are compartments with 

positive population sizes, since all model parameters are positive. Therefore, the equilibrium point 𝐸0 does 

not depend on 𝑅0, and hence, it always exists regardless of the value of 𝑅0. Furthermore, from system (1), 
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the stunting-endemic equilibrium point is given by  𝐸1 =

(𝑆𝑇
∗(𝑡),  𝐸𝑇

∗(𝑡), 𝐼𝑛𝑇
∗ (𝑡), 𝑅𝑇

∗ (𝑡), 𝑆𝑚
∗ (𝑡), 𝐼𝑛𝑚

∗ (𝑡), 𝐸𝑑𝑚
∗ (𝑡)) with 𝑆𝑇

∗(𝑡) =
𝐿

𝑌
, 𝐸𝑇

∗(𝑡) =
(𝑅0
3−1)𝑋

𝑌
, 𝐼𝑛𝑇

∗ (𝑡) =

(𝑅0
3−1)𝑋𝛽

𝜇𝑇𝑌
, 𝑅𝑇

∗ (𝑡) =
((𝑅0

3−1)𝜇𝑇+𝛾𝑅0
3)𝛿𝐽+𝜇𝑇(𝐻+𝐺)

𝜇𝑇𝐾
, 𝑆𝑚

∗ (𝑡) =
Ω𝜇𝑚

𝐵
, 𝐼𝑛𝑚

∗ (𝑡) =
(𝑅0
3−1)𝑈𝜇𝑇−(𝑃+𝑄)𝜇𝑇+𝑈𝑅0

3𝛾

𝜇𝑇𝐹
, and 

𝐸𝑑𝑚
∗ (𝑡) =

(𝑅0
3−1)𝑍+𝑉+𝑅0

3𝑊+𝐴

𝐵
. Note that, 𝑆𝑇

∗(𝑡) and 𝑆𝑚
∗ (𝑡) are always positive. The values of 𝐸𝑇

∗(𝑡), 𝐼𝑛𝑇
∗ (𝑡),

𝑅𝑇
∗ (𝑡) and 𝐸𝑑𝑚

∗ (𝑡) are also positive whenever 𝑅0 > 1. Meanwhile, 𝐼𝑛𝑚
∗ (𝑡) is positive if 𝑅0 > 1 and 

(𝑅0
3 − 1)𝑈𝜇𝑇 + 𝑈𝑅0

3𝛾 > (𝑃 + 𝑄)𝜇𝑇. In other words, if 𝑅0 > 1 and (𝑅0
3 − 1)𝑈𝜇𝑇 + 𝑈𝑅0

3𝛾 > (𝑃 + 𝑄)𝜇𝑇, 

then the stunting-endemic equilibrium point 𝐸1 exists.∎ 

3.3 Equilibrium Point Stability 

The local stability of the equilibrium point can be determined by linearizing system (1) around the 

equilibrium point [18][23]. If all the eigenvalues of the characteristic polynomial of the linearized matrix 

around the equilibrium point are negative, then the equilibrium point is locally asymptotically stable [24]. 

Conversely, if any of the eigenvalues is positive, then the equilibrium point is unstable [18]. The linearization 

result of system (1) is expressed in the following Jacobian matrix. 

 

 

 

Theorem 2. Suppose that 𝑅0 = √
𝜀𝛬𝑇𝛬𝑚𝜏𝛽𝛼

𝑁𝑇
2(𝜔+𝜇𝑚)(𝜂+𝜇𝑚)𝜇𝑇(𝛾+𝜇𝑇)(𝛽+𝛿+𝜇𝑇)

3
. The stunting free equilibrium point 𝐸0 

will be locally asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1. 

Proof. The local stability of the stunting free equilibrium point 𝐸0 is known from the sign of the eigenvalues 

of the matrix J evaluated around point 𝐸0. Eigenvalues that are all negative indicate that the system is locally 

asymptotically stable at this point. The matrix J at point 𝐸0 is given by 
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The characteristic polynomial of the Jacobian matrix 𝐽(𝐸0) has seven eigenvalues, four of which have 

a negative sign: 𝜆1 = −𝜇𝑚,  𝜆2 = −(𝜂 + 𝜇𝑚), 𝜆3 = −𝜇𝑇, and 𝜆4 = −(𝛾 + 𝜇𝑇). Furthermore, for 𝜆5, 𝜆6, and 

𝜆7, they are determined based on the roots of the equation 𝑎1𝜆
3 + 𝑎2𝜆

2 + 𝑎3𝜆 + 𝑎4 = 0, where  

𝑎1 = 𝑁𝑇
2(𝛾 + 𝜇𝑇)(𝜂 + 𝜇𝑚), 

𝑎2 = 𝑁𝑇
2(𝛾 + 𝜇𝑇)(𝛽 + 𝛿 + 𝜔 + 2𝜇𝑇 + 𝜇𝑚)(𝜂 + 𝜇𝑚), 

𝑎3 = (𝜂 + 𝜇𝑚)𝑁𝑇
2(𝛾 + 𝜇𝑇) (𝜇𝑇

2 + (𝛽 + 𝛿 + 2𝜔 + 2𝜇𝑚)𝜇𝑇 + (𝜔 + 𝜇𝑚)(𝛽 + 𝛿)), and 

𝑎4 = (𝜂 + 𝜇𝑚)𝑁𝑇
2(𝜔 + 𝜇𝑚)𝜇𝑇(𝛾 + 𝜇𝑇)(𝛽 + 𝛿 + 𝜇𝑇) − 𝜖Λ𝑇Λ𝑚𝜏𝛽𝛼.  

Since all parameters involved in the model are positive, the coefficients 𝑎1, 𝑎2, and 𝑎3 are positive. Based 

on Vieta Theorem [25], the eigen values 𝜆5, 𝜆6, and 𝜆7 obtained from the polynomial 𝑎1𝜆
3 + 𝑎2𝜆

2 + 𝑎3𝜆 +
𝑎4 = 0 will be negative if 𝑎4 > 0 or 𝑁𝑇

2(𝜔 + 𝜇𝑚)(𝜂 + 𝜇𝑚)𝜇𝑇(𝛾 + 𝜇𝑇)(𝛽 + 𝛿 + 𝜇𝑇) > 𝜀Λ𝑇Λ𝑚𝜏𝛽𝛼, which 

is equivalent to 
𝜀Λ𝑇Λ𝑚𝜏𝛽𝛼

𝑁𝑇
2(𝜔+𝜇𝑚)(𝜂+𝜇𝑚)𝜇𝑇(𝛾+𝜇𝑇)(𝛽+𝛿+𝜇𝑇)

< 1. This means that 𝑅0
3 < 1. Thus, if 𝑅0 < 1, then all 

roots of the polynomial 𝑎1𝜆
3 + 𝑎2𝜆

2 + 𝑎3𝜆 + 𝑎4 = 0 are negative, so the stunting free equilibrium point 𝐸0 

is locally asymptotically stable. Conversely, if 𝑅0 > 1 then 𝑎4 is negative, so there is a positive eigenvalue 

and the point 𝐸0 is unstable.∎ 

Furthermore, the stability of the stunting endemic equilibrium point 𝐸1 can be determined from the 

sign of the eigenvalue of the characteristic polynomial of the matrix J evaluated around point 𝐸1. The 

characteristic polynomial gives seven eigenvalues with two negative eigenvalues, 𝜆1 = −𝜇𝑚 and 𝜆2 = −𝜇𝑇. 

The next five eigenvalues are determined from the roots of the polynomial  

𝑏5𝜆
5 + 𝑏4𝜆

4 + 𝑏3𝜆
3 + 𝑏2𝜆

2 + 𝑏1𝜆 + 𝑏0 = 0 (4) 
 
where: 

𝑏5 = 𝐵𝑁𝑇
2𝑌𝜇𝑇

2𝐹, 

𝑏4 = 𝑥1 + 𝐵𝑁𝑇𝛽𝜀𝑋(𝑅0
3 − 1)𝜇𝑇𝐹 + (𝑈𝑅0

3 − 𝑃 − 𝑄 − 𝑈)𝜇𝑇
2𝑌𝜏𝛼 + 𝜏𝛼𝑌𝜇𝑇𝑈𝑅0

3𝛾, 

𝑏3 = 𝐵(𝑥3𝑌𝑁𝑇𝜇𝑇 + 𝑥2 + 3𝛽𝜀𝑋(𝑅0
3 − 1)𝜇𝑇 + 𝛽𝜀𝑋(𝑅0

3 − 1)𝑥4)𝑁𝑇𝜇𝑇𝐹 + 𝐵 (𝑥5 + 𝜏𝛼𝛽𝜀𝑋(𝑅0
3 −

1)) ((𝑈𝑅0
3 − 𝑃 − 𝑄 − 𝑈)𝜇𝑇 + 𝑅0

3𝑈𝛾), 

𝑏2 = 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9 − 𝜏𝛽Ω𝛼𝜇𝑇
2𝜇𝑚𝜀𝐿𝐹 + 𝐵𝛼((𝑈𝑅0

3 − 𝑃 − 𝑄 − 𝑈)𝜇𝑇 + 𝑅0
3𝑈𝛾)(𝜏𝜇𝑇𝑥11 + 𝜏𝑥10 +

𝑥12),  

𝑏1 = 𝜏𝛽𝛼 ((𝑈𝑅0
3 − 𝑃 − 𝑄 − 𝑈)𝜇𝑇 + 𝑅0

3𝑈𝛾) (𝜇𝑇
2𝑥21 + 𝜇𝑇𝑥22 + 𝑥20 + 𝑥23) + 𝑥13(𝑌𝑁𝑇𝜇𝑇

2𝑥15 + 𝜇𝑇
3𝑥14 +

𝜇𝑇
2𝑥16 + 𝜇𝑇𝑥17 + 𝑥18)𝑁𝑇𝐵𝜇𝑇𝐹 − 𝑥19, 

𝑏0 = (𝑥24 − 𝜏𝛽Ω𝛼𝜇𝑚𝜀𝐿(𝜂 + 𝜇𝑚))(𝛾 + 𝜇𝑇)𝜇𝑇
2𝐹 + 𝑥25𝑥26. 
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with: 

𝑥1 = 3𝐵𝑁𝑇
2𝜇𝑇
3𝑌𝐹 + 𝐵𝑁𝑇

2𝑌(𝛽 + 𝛿 + 𝛾 + 𝜔 + 2𝜇𝑚 + 𝜂)𝜇𝑇
2𝐹, 

𝑥2 = 3𝑁𝑇𝜇𝑇
3𝑌 + 2𝑁𝑇 (𝛽 + 𝛿 + 𝛾 +

3

2
𝜔 + 3𝜇𝑚 +

3

2
𝜂)𝑌𝜇𝑇

2 , 

𝑥3   = (𝛾 + 𝜔 + 2𝜇𝑚 + 𝜂)𝛽 + (𝛿 + 𝜔 + 2𝜇𝑚 + 𝜂)𝛾 + 𝜇𝑚
2 + (2𝛿 + 𝜔 + 𝜂)𝜇𝑚 + 𝛿 + 𝜂)𝜔 + 𝛿𝜂, 

𝑥4   = 𝛽 + 𝛿 + 𝛾 + 𝜔 + 𝜇𝑚, 

𝑥5   = 𝜏𝛼2𝑁𝑇𝜇𝑇
2𝑌 + 𝜏𝛼𝑁𝑇𝑌(𝛽 + 𝛿 + 𝜔 + 2𝜇𝑚 + 𝜂)𝜇𝑇, 

𝑥6   = 𝐵𝑁𝑇
2𝑌𝜇𝑇

5𝐹 + 3𝐵𝑁𝑇
2 (𝜂 +

1

3
𝛽 +

1

3
𝛿 +

1

3
𝛾 + 𝜔 + 2𝜇𝑚) 𝑌𝜇𝑇

4𝐹 , 

𝑥7   = (2 ((𝜂 +
1

2
𝛾 + 𝜔 + 2𝜇𝑚) 𝛽 +

3

2
𝜇𝑚
2 + (

3

2
𝜂 + 2𝛿 + 2𝛾 +

3

2
𝜔) 𝜇𝑚 + (

3

2
𝜂 + 𝛿 + 𝛾)𝜔 + (𝜂 +

1

2
𝛿) 𝛾 + 𝛿𝜂)𝑌𝑁𝑇 + 3𝛽𝜀𝑋(𝑅0

3 − 1)𝜇𝑇
3𝑁𝑇𝐵𝐹 , 

𝑥8   = (((𝜇𝑚
2 + (𝜂 + 2𝛾 + 𝜔)𝜇𝑚 + (𝜂 + 𝛾)𝜔 + 𝜂𝛾)𝛽 + (𝛿 + 𝛾)𝜇𝑚

2 + ((𝛿 + 𝛾)𝜔 + (𝜂 + 2𝛿)𝛾 +

𝛿𝜂)𝜇𝑚 + ((𝛿 + 𝜂)𝛾 + 𝛿𝜂)𝜔 + 𝜂𝛿𝛾)𝑌𝑁𝑇 + 2(𝑅0
3 − 1)𝛽 (𝛽 + 𝛿 + 𝛾 +

3

2
𝜔 +

3

2
𝜇𝑚) 𝜀𝑋)𝜇𝑇

2𝑁𝑇𝐵𝐹, 

𝑥9   = (𝑅0
3 − 1)𝛽((𝛾 + 𝜔 + 𝜇𝑚)𝛽 + (𝛿 + 𝛾)𝜇𝑚 + (𝛿 + 𝛾)𝜔 + 𝛿𝛾)𝜀𝑋𝐵𝜇𝑇𝐹,  

𝑥10 = 𝑁𝑇𝜇𝑇
3𝑌 + 2𝑁𝑇𝑌 (𝜂 +

1

2
𝛽 +

1

2
𝛿 + 𝜔 + 2𝜇𝑚) 𝜇𝑇

2 , 

𝑥11 = ((𝜂 + 𝜔 + 2𝜇𝑚)𝛽 + 𝜇𝑚
2 + (2𝛿 + 𝜔 + 𝜂)𝜇𝑚 + (𝛿 + 𝜂)𝜔 + 𝛿𝜂)𝑌𝑁𝑇 + 2𝛽𝜀𝑋(𝑅0

3 − 1), 

𝑥12 = 𝛽𝜀𝑋(𝑅0
3 − 1)(𝛽 + 𝛿 + 𝜔 + 𝜇𝑚)𝜏, 

𝑥13 = 𝑁𝑇
2𝑌(𝜂 + 𝜔 + 2𝜇𝑚)𝜇𝑇

5𝐵𝐹, 

𝑥14 = ((𝜂 + 𝜔 + 2𝜇𝑚)𝛽 + 3𝜇𝑚
2 + (3𝜂 + 2𝛿 + 2𝛾 + 3𝜔)𝜇𝑚 + (3𝜂 + 𝛿 + 𝛾)𝜔 + 𝜂(𝛿 + 𝛾))𝑌𝑁𝑇 +

𝛽𝜀𝑋(𝑅0
3 − 1),  

𝑥15 = (2𝜇𝑚
2 + (2𝜂 + 2𝛾 + 2𝜔)𝜇𝑚 + (2𝜂 + 𝛾)𝜔 + 𝜂𝛾)𝛽 + (2𝛿 + 2𝛾)𝜇𝑚

2 + ((2𝛿 + 2𝛾)𝜔 + (2𝜂 +

2𝛾)𝛿 + 2𝜂𝛾)𝜔 + 𝜂𝛿𝛾,  

𝑥16 = 𝛽𝜀𝑋(𝑅0
3 − 1)(𝛽 + 𝛿 + 𝛾 + 3𝜔 + 3𝜇𝑚), 

𝑥17 = (𝑅0
3 − 1)((𝛾 + 2𝜔 + 2𝜇𝑚)𝛽 + (2𝛿 + 2𝛾)𝜇𝑚 + (2𝛿 + 2𝛾)𝜔 + 𝛿𝛾)𝛽𝜀𝑋 + 𝛾𝑌(𝜔 + 𝜇𝑚)(𝛽 +

𝛿)(𝜂 + 𝜇𝑚)𝑁𝑇,  
𝑥18 = 𝛽𝛾𝜀𝑋(𝑅0

3 − 1)(𝜔 + 𝜇𝑚)(𝛽 + 𝛿), 
𝑥19 = 𝜏𝛽𝛺𝛼𝜇𝑇𝜇𝑚𝜀𝐿(𝜂 + 𝛾 + 𝜇𝑇 + 𝜇𝑚)𝜇𝑇𝐹, 

𝑥20 = 𝑁𝑇𝑌(𝜂 + 𝜔 + 2𝜇𝑚)𝜇𝑇
3 , 

𝑥21 = 𝑌((𝜂 + 𝜔 + 2𝜇𝑚)𝛽 + 2𝜇𝑚
2 + (2𝜂 + 2𝛿 + 2𝜔)𝜇𝑚 + (2𝜂 + 𝛿)𝜔 + 𝛿𝜂)𝑁𝑇 + 𝛽𝜀𝑋(𝑅0

3 − 1), 

𝑥22 = 𝑌(𝜔 + 𝜇𝑚)(𝛽 + 𝛿)(𝜂 + 𝜇𝑚)𝑁𝑇 + 𝛽𝜀𝑋(𝑅0
3 − 1)(𝛽 + 𝛿 + 2𝜔 + 2𝜇𝑚), 

𝑥23 = 𝛽𝜀𝑋(𝑅0
3 − 1)(𝜔 + 𝜇𝑚)(𝛽 + 𝛿), 

𝑥24 = (𝛽 + 𝛿 + 𝜇𝑇)(𝜔 + 𝜇𝑚)𝑁𝑇 (𝑁𝑇𝑌(𝜂 + 𝜇𝑚)𝜇𝑇 + 𝛽𝜀𝑋(𝑅0
3 − 1))𝐵, 

𝑥25 = 𝐵(𝛽 + 𝛿 + 𝜇𝑇)𝛼(𝜔 + 𝜇𝑚) ((𝑈𝑅0
3 − 𝑃 − 𝑄 − 𝑈)𝜇𝑇 + 𝑅0

3𝑈𝛾), and 

𝑥26 = (𝑁𝑇𝑌(𝜂 + 𝜇𝑚)𝜇𝑇 + 𝛽𝜀𝑋(𝑅0
3 − 1)) 𝜏𝜇𝑇. 

If the roots of Equation (4) are negative (𝜆3 < 0, 𝜆4 < 0, 𝜆5 < 0, 𝜆6 < 0, and 𝜆7 < 0), then the 

stunting endemic equilibrium point 𝐸1 is locally asymptotically stable. Based on the Vieta Theorem since 

𝑏5 = 𝐵𝑁𝑇
2𝑌𝜇𝑇

2𝐹 > 0, then Equation (4) will produce negative roots if 𝑏4 > 0, 𝑏3 > 0, 𝑏2 > 0, 𝑏1 > 0, 
and 𝑏0 > 0. Thus, it must be, 

1. 𝑥1 + 𝐵𝑁𝑇𝛽𝜀𝑋(𝑅0
3 − 1)𝜇𝑇𝐹 + (𝑈𝑅0

3 − 𝑃 − 𝑄 − 𝑈)𝜇𝑇
2𝑌𝜏𝛼 + 𝜏𝛼𝑌𝜇𝑇𝑈𝑅0

3𝛾 > 0, which is 

satisfied if 𝑅0 > 1 and 𝑈𝑅0
3 > 𝑃 + 𝑄 + 𝑈. 

2. 𝐵(𝑥3𝑌𝑁𝑇𝜇𝑇 + 𝑥2 + 3𝛽𝜀𝑋(𝑅0
3 − 1)𝜇𝑇 + 𝛽𝜀𝑋(𝑅0

3 − 1)𝑥4)𝑁𝑇𝜇𝑇𝐹 + 𝐵 (𝑥5 + 𝜏𝛼𝛽𝜀𝑋(𝑅0
3 −

1)) ((𝑈𝑅0
3 − 𝑃 − 𝑄 − 𝑈)𝜇𝑇 + 𝑅0

3𝑈𝛾) > 0, which is satisfied if 𝑅0 > 1 and 𝑈𝑅0
3 > 𝑃 + 𝑄 + 𝑈. 

3. 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9 − 𝜏𝛽Ω𝛼𝜇𝑇𝜇𝑚𝜀𝐿𝜇𝑇𝐹 + 𝐵𝛼 ((𝑅0
3𝑈 − 𝑃 − 𝑄 − 𝑈)𝜇𝑇 + 𝑈𝑅0

3𝛾) (𝑥10𝜏 +

𝑥11𝜇𝑇𝜏 + 𝑥12) > 0, which is satisfied if 𝑅0 > 1, 𝑈𝑅0
3 > 𝑃 + 𝑄 + 𝑈, and 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9 >

𝜏𝛽Ω𝛼𝜇𝑇𝜇𝑚𝜀𝐿𝜇𝑇𝐹. 

4. 𝜏𝐵𝛼 ((𝑈𝑅0
3 − 𝑃 − 𝑄 − 𝑈)𝜇𝑇 + 𝑅0

3𝑈𝛾) (𝜇𝑇
2𝑥21 + 𝜇𝑇𝑥22 + 𝑥20 + 𝑥23) + 𝑥13 + (𝑌𝑁𝑇𝜇𝑇

2𝑥15 +

𝜇𝑇
3𝑥14 + 𝜇𝑇

2𝑥16 + 𝜇𝑇𝑥17 + 𝑥18)𝑁𝑇𝐵𝜇𝑇𝐹 − 𝑥19 > 0, which is satisfied if  𝑅0 > 1, 𝑈𝑅0
3 > 𝑃 +

𝑄 + 𝑈, and 𝑥13 + (𝑌𝑁𝑇𝜇𝑇
2𝑥15 + 𝜇𝑇

3𝑥14 + 𝜇𝑇
2𝑥16 + 𝜇𝑇𝑥17 + 𝑥18)𝑁𝑇𝐵𝜇𝑇𝐹 > 𝑥19. 
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5. (𝑥24 − 𝜏𝛽Ω𝛼𝜇𝑚𝜀𝐿(𝜂 + 𝜇𝑚))(𝛾 + 𝜇𝑇)𝜇𝑇
2𝐹 + 𝑥25𝑥26 > 0, which is satisfied if 𝑅0 > 1 and 

(𝛾 + 𝜇𝑇)𝜇𝑇
2𝐹𝑥24 + 𝑥25𝑥26 > 𝜏𝛽Ω𝛼𝜇𝑚𝜀𝐿(𝜂 + 𝜇𝑚)(𝛾 + 𝜇𝑇)𝜇𝑇

2𝐹. 
 

3.4 Next Generation Matrix (NGM) and Basic Reproduction Number (𝑹𝟎) 

The matrix used to determine the basic reproduction number (𝑅0) is the next generation matrix (NGM). 

Based on the steps given by Diekmann and Heesterbeek [26][27][28], the NGM matrix is obtained by taking 

the subsystem/compartment of the population indicated as stunted (𝐸𝑇), permanently stunted (𝐼𝑛𝑇), and the 

compartment of mothers with poor parenting (𝐼𝑛𝑚) from the system (1) and then linearizing around the 

equilibrium point free of stunting (𝐸0). The subsystems are written as follows 

(

 
 

𝑑𝐸𝑇(𝑡)

𝑑𝑡
𝑑𝐼𝑛𝑇(𝑡)

𝑑𝑡
𝑑𝐼𝑛𝑚(𝑡)

𝑑𝑡 )

 
 
=

(

 
 

𝛼∙𝐼𝑛𝑚(𝑡)∙𝑆𝑇(𝑡)∙𝜏

𝑁𝑇

𝛽 ∙ 𝐸𝑇(𝑡)
𝜀∙𝐼𝑛𝑇(𝑡)∙𝑆𝑚(𝑡)

𝑁𝑇 )

 
 
− (

𝛽 ∙ 𝐸𝑇(𝑡) + 𝛿 ∙ 𝐸𝑇(𝑡) + 𝜇𝑇 ∙ 𝐸𝑇(𝑡)
𝜇𝑇 ∙ 𝐼𝑛𝑇(𝑡)

𝜔 ∙ 𝐼𝑛𝑚(𝑡) + 𝜇𝑚 ∙ 𝐼𝑛𝑚(𝑡)
). 

 

Suppose, 𝐹 =

(

 
 

𝛼∙𝐼𝑛𝑚(𝑡)∙𝑆𝑇(𝑡)∙𝜏

𝑁𝑇

𝛽𝐸𝑇(𝑡)
𝜀∙𝐼𝑛𝑇(𝑡)∙𝑆𝑚(𝑡)

𝑁𝑇 )

 
 

 is a vector representing the occurrence of new stunting cases and    

𝑉 = (

𝛽 ∙ 𝐸𝑇(𝑡) + 𝛿 ∙ 𝐸𝑇(𝑡) + 𝜇𝑇 ∙ 𝐸𝑇(𝑡)
𝜇𝑇 ∙ 𝐼𝑛𝑇(𝑡)

𝜔 ∙ 𝐼𝑛𝑚(𝑡) + 𝜇𝑚 ∙ 𝐼𝑛𝑚(𝑡)
) is a vector representing transitions or shifts, then the Jacobian 

matrices F and V around the equilibrium point 𝐸0 are given by 𝑀 =

(

 
 
0 0

𝛼Λ𝑇𝜏

(𝛾+𝜇𝑇)𝑁𝑇

𝛽 0 0

0
𝜀Λ𝑚

(𝜂+𝜇𝑚)𝑁𝑇
0

)

 
 

 and 𝑁 =

(
𝐵 + 𝜇𝑇 + 𝛿 0 0

0 𝜇𝑇 0
0 0 𝜔 + 𝜇𝑚

), respectively. Thus, the NGM matrix is 

 

𝑁𝐺𝑀 = 𝑀𝑁−1 =

(

 
 

0 0
𝛼Λ𝑇𝜏

(𝛾+𝜇𝑇)𝑁𝑇
𝛽

𝛽+𝛿+𝜇𝑇
0 0

0
𝜀Λ𝑚

(𝜂+𝜇𝑚)𝑁𝑇𝜇𝑇
0 )

 
 

. 

 

The characteristic polynomial of the NGM matrix is 𝑝(𝜆) = 𝜆3(𝛾 + 𝜇𝑇)(𝛽 + 𝛿 + 𝜇𝑇)(𝜂 + 𝜇𝑚)(𝜔 +
𝜇𝑚)𝑁𝑇

2𝜇𝑇 − 𝛼𝛽𝜏𝜀Λ𝑇Λ𝑚 = 0. The largest eigenvalue or maximum 𝜆𝑖 of the characteristic polynomial of the 

NGM matrix is defined as the basic reproduction number (𝑅0), namely 

𝑅0 = √
𝜀Λ𝑇Λ𝑚𝜏𝛽𝛼

𝑁𝑇
2(𝜔 + 𝜇𝑚)(𝜂 + 𝜇𝑚)𝜇𝑇(𝛾 + 𝜇𝑇)(𝛽 + 𝛿 + 𝜇𝑇)

3

(5) 

 

3.5 Sensitivity Analysis 

Sensitivity analysis was conducted on 𝑅0 as a number that indicates the disappearance or endemicity 

of stunting in the middle of the human population. This analysis aims to identify the parameters or factors 

that can increase or decrease the value of 𝑅0 [29][30]. The normalized sensitivity index of the variable 𝑅0 

differentiated at parameter c is defined as 𝑆𝑐
𝑅0 =

𝜕𝑅0

𝜕𝑐
×

𝑐

𝑅0
, in which case 𝑅0 is considered as the variable to 
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be analyzed at parameter c [19][20]. The parameter values used in the sensitivity analysis are based on data 

from West Sumatra Province. They are shown in the table below. 

Table 2. Parameter Values 

Parameters Value Information 

𝑁𝑇 393,475 Number of toddlers in West Sumatra Province in 2023 [31] 

𝑁𝑚 1,351,670 Number of family heads (assumed mothers) in West Sumatra Province in 2023 [32] 

𝜇𝑇 
1

70 × 365
 

1 

Assumption of the average human life expectancy in 

the Province of West Sumatra

 [33] 

𝜇𝑚 
1

70 × 365
 

1 

Assumption of the average human life expectancy in 

the Province of West Sumatra

 [33] 

Λ𝑇 
393,475

365 × 70
 𝑁𝑇 × 𝜇𝑇 

Λ𝑚 
1,351,670

365 × 70
 𝑁𝑚 × 𝜇𝑚 

𝛼 94.9 
8,8 % stunted toddlers × Total number of toddlers in West Sumatra

365 Days
 [31] 

𝜏 0.3 
𝑁𝑇
𝑁𝑚

 

𝛽 
1

1,000
 

1

The first 1000 days of life
 [3] 

𝛾 
1

720
 

1

Assumed number of days required to make the transition 

from 𝑆𝑇 to 𝑅𝑇 𝑑ue to a low intake of nutrients

  

𝛿 
1

720
 

1

Assumed number of days required to make the transition 

from 𝐸𝑇 to 𝑅𝑇 𝑑ue to a low intake of nutrients

  

𝜀 
1

120
 

1

The assumed number of days required for 𝑆𝑚 to become 𝐼𝑛𝑚 due to low education
  

𝜂 
1

360
 

1

Assumed number of days required to make the transition 

from 𝑆𝑚 to 𝐸𝑑𝑚 due to a poor training process

  

𝜔 
1

360
 

1

Assumed number of days required to make the transition 

from 𝐼𝑛𝑚 to 𝐸𝑑𝑚 due to a poor training process

  

Based on Equation (5) and the parameter values in Table 2, the value of 𝑅0 = 10.51 is obtained. This 

indicates that stunting is endemic in the population. The effect of changing the parameter values by 20% on 

the value of 𝑅0 = 10.51 is shown in the following Table 3. 

Table 3. The 𝑹𝟎 Value Change Due to Parameter Value Change 

Para- 

meters 

Expression of 

sensitivity index 

Index 

value 

Old 

value 

of 𝑹𝟎 

Old value 

of the 

parameter 

20% parameter 

addition creates  

new 𝑹𝟎 

20% parameter 

reduction creates 

new 𝑹𝟎 

Parameter 

+ (20% x 

Parameter) 

New 

𝑹𝟎 

Value 

Parameter – 

(20% x 

Parameter) 

New 

𝑹𝟎 

Value 

𝛼 
1

3
 0.33 10.51 94.9 113.88 11.16 75.92 9.75 

𝜏 
1

3
 0.33 10.51 0.3 0.36 11.16 0.24 9.75 

𝛽 
𝛿 + 𝜇𝑇

3(𝛽 + 𝛿 + 𝜇𝑇)
 0.196 10.51 0.001 0.0012 10.87 0.0008 10.04 

𝛾 −
𝛾

3(𝛾 + 𝜇𝑇)
 -0.32 10.51 0.00138 0.00166 9.91 0.0011 11.33 

𝛿 −
𝛿

3(𝛽 + 𝛿 + 𝜇𝑇)
 -0.19 10.51 0.00138 0.00166 10.14 0.0011 10.96 

𝜀 
1

3
 0.33 10.51 0.00833 0.01 11.16 0.00666 9.75 
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Para- 

meters 

Expression of 

sensitivity index 

Index 

value 

Old 

value 

of 𝑹𝟎 

Old value 

of the 

parameter 

20% parameter 

addition creates  

new 𝑹𝟎 

20% parameter 

reduction creates 

new 𝑹𝟎 

Parameter 

+ (20% x 

Parameter) 

New 

𝑹𝟎 

Value 

Parameter – 

(20% x 

Parameter) 

New 

𝑹𝟎 

Value 

𝜂 −
𝜂

3(𝜂 + 𝜇𝑚)
 -0.33 10.51 0.002778 0.00333 9.89 0.00222 11.31 

𝜔 −
𝜔

3(𝜔 + 𝜇𝑚)
 -0.33 10.51 0.002778 0.00333 9.89 0.00222 11.31 

Based on Table 3 above, there are eight parameters that affect the value of 𝑅0, with 4 parameters 

having a positive index and 4 other parameters having a negative index. Parameters with a positive index 

indicate that if the value of the parameter increases, the value of 𝑅0 will also increase. Conversely, if the 

value of a parameter with a positive index decrease, the value of 𝑅0 will also decrease. Meanwhile, 

parameters with a negative index have the opposite relationship with 𝑅0; if the value of a parameter with a 

negative index increase, the value of 𝑅0 will decrease. Conversely, if a parameter with a negative index 

decrease, 𝑅0 will increase. 

The results of the sensitivity index calculation in Table 3 show that the most influential parameters 

with a positive index on 𝑅0 are: the transition rate of susceptible toddlers to stunting indicated toddlers (𝛼), 

the number of children raised by mothers with poor parenting (𝜏), and the rate at which susceptible mothers 

become mothers with poor parenting (𝜀). The index value of the three parameters is the same at 0.3. The 

number of children raised by a mother (𝜏) is not possible to change, while the 𝛼 and 𝜀 parameters have the 

potential to be minimized. A smaller 𝛼 and 𝜀 value will result in a smaller 𝑅0 value. This can be seen in the 

table, where the original 𝑅0 value of 10.51 drops to 9.75 with a 20% reduction in the alpha or epsilon 

parameter values. Meanwhile, the most influential parameters with negative indices are 𝜂, 𝜔, and 𝛾. A 

negative sensitivity index means that an increase in intervention in the form of education for 

mothers/caregivers of toddlers will result in a decrease in the value of 𝑅0, while the lack of education can 

increase the value of 𝑅0. Similarly, a high rate of nutritional intervention for toddlers will make the 𝑅0 value 

smaller. This is indicated by the value of the sensitivity index 𝛾 of -0.32, where increasing the gamma 

parameter by 20% causes the value of 𝑅0 to decrease from 10.51 to 9.91. The following graph shows the 

relationship of parameters 𝛼, 𝜀, 𝜂, 𝜔, 𝛿 and 𝛾 to 𝑅0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)  Relating 𝜶 and 𝜺 to 𝑹𝟎              (b) Relating 𝜸 and 𝜼 to 𝑹𝟎  

Figure 2. Sensitivity Analysis of Parameters 𝜶, 𝜺, 𝜼, and 𝜸 against 𝑹𝟎 

The effect of changing the 𝛼 and 𝜀 parameters on 𝑅0 is shown in Figure 2 (a). From the figure, it 

appears that an increase in the rate of toddlers reported as indicated stunting (𝛼) and the rate of increase in 

the number of caregivers/mothers with poor parenting (𝜀) will result in an increase in the value of 𝑅0. 
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Conversely, a small 𝛼 and 𝜀 will also minimize the value of 𝑅0. This means that an increase in the number 

of mothers with poor parenting will result in an increase in the number of toddlers who will be stunted. 

Furthermore, Figure 2 (b) shows the results of the sensitivity analysis on the effect of maternal education (𝜂) 

and nutrition intervention (𝛾) on increasing or decreasing the value of 𝑅0. The figure shows that an increase 

in the value of 𝜂 and 𝛾 parameters lead to a decrease in the value of 𝑅0. Meanwhile, low values of 𝜂 and 𝛾 

will result in an increase in the value of 𝑅0. This means that increasing educational services for mothers of 

toddlers and intensive nutritional interventions for toddlers will reduce the number of stunting cases and may 

even eliminate stunting from the population. Conversely, low levels of maternal education and low levels of 

nutrition intervention for young children can increase the number of stunted children and even lead to 

endemic stunting in the population. 

 

 
(a) Relating 𝜹 and 𝜺 to 𝑹𝟎    (b) Relating 𝜹 and 𝝎 to 𝑹𝟎 

Figure 3. Sensitivity Analysis of Parameters 𝜹, 𝜺, and 𝝎 against 𝑹𝟎 

Figure 3 shows the results of the sensitivity analysis of the 𝛿, 𝜀, and 𝜔 parameters to 𝑅0. Figure 3 (a) 

shows that an increase in the rate of caregivers/mothers with poor parenting (𝜀) and a decrease in the rate of 

nutrition interventions for toddlers indicated as stunted (𝛿) can increase the value of 𝑅0. Conversely, the 𝑅0 

value will decrease if the 𝜀 value decreases and the 𝛿 value increases. This means that stunting cases can be 

reduced or eliminated from the population by increasing the rate of nutritional intervention and reducing the 

rate of poor maternal parenting by providing education. Meanwhile, Figure 3 (b) shows the state of 𝑅0, which 

increases when the rate of nutritional intervention for toddlers indicated as stunted (𝛿) and the rate of 

education for mothers (𝜔) are both low. Conversely, the value of 𝑅0 decreases as the values of the 𝛿 and 𝜔 

parameters increase. This means that stunting will disappear from the population when the rate of nutrition 

and education intervention is increased (high intensity nutrition and education intervention). 

3.6 Numerical Simulations 

Numerical simulations are performed in the state 𝑅0 > 1 and 𝑅0 < 1. Numerical solutions are 

performed using the Runge-Kutta method [34]. Simulations were conducted with initial condition values as 

shown in the following Table 4. 

Table 4. The Initial Values 

𝑺𝑻(𝟎) 𝑬𝑻(𝟎) 𝑰𝒏𝑻(𝟎) 𝑹𝑻(𝟎) 𝑺𝒎(𝟎) 𝑰𝒏𝒎(𝟎) 𝑬𝒅𝒎(𝟎) 

303,849 50,000 34,626 5,000 1,330,458 1,542 20,000 

Based on the parameter values in Table 2 and Equation (5), the value of 𝑅0 = 10,51 > 1, is obtained. 

Furthermore, the numerical simulation results using the initial conditions in Table 4 and the parameter values 

in T Table 2 are shown in the following figure. 
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Figure 4. Dynamics of Changes in The Number of 𝑰𝒏𝑻, 𝑬𝑻, and 𝑰𝒏𝒎 when 𝑹𝟎 > 𝟏 

The simulation shown in Figure 4 is a simulation in the state 𝑅0 > 1 with a stable stunting endemic 

equilibrium point. As a result, there is always a very large number of permanently stunted toddlers in the 

population. Based on the calculation of the equilibrium point, the system is stable with the number of 

permanently stunted toddlers (𝐼𝑛𝑇) totaling 161,745, toddlers with stunting symptoms (𝐸𝑇) totaling 6,331, 

and mothers practicing poor parenting/bad parenting mothers (𝐼𝑛𝑚) totaling 10,306, each of which is stable 

after about 2,000 days. 

Numerical simulations for the value of 𝑅0 < 1 were obtained by changing some parameter values in 

Table 2, namely the 𝛼, 𝛿, 𝜂, 𝛾, 𝜔, and 𝜀 parameters to 20, 
1

270
, 
1

21
, 
1

180
, 
1

30
, and 

1

150
, respectively. The 𝑅0 value 

obtained is 0,516 < 1. Based on the parameter values in Table 2 and their changes, as well as the initial 

condition values in Table 4, the following numerical simulation results are obtained. 

 

  
(a) Toddlers Showing Symptoms of Stunting       (b) Mothers with Poor Parenting 
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(c) Toddlers with Permanent Stunting 

Figure 5. Dynamics of Changes in The Number of 𝑰𝒏𝑻, 𝑬𝑻, and 𝑰𝒏𝒎 when 𝑹𝟎 < 𝟏 

In Figure 5 the population of 𝐼𝑛𝑇, 𝐸𝑇, and 𝐼𝑛𝑚 eventually became zero. This occurs because the 

simulation is run in the state 𝑅0 < 1, where in this state the population state is free of individuals with 

indicated stunting and free of toddlers with permanent stunting status. In contrast to the simulation results in 

Figure 4, where stunting cases reached 161,745 cases, the simulation results in Figure 5 show that stunting 

cases can disappear from the population. The elimination of stunting is achieved through the implementation 

of optimal and sustainable nutrition interventions. These interventions can accelerate the transformation of 

𝑆𝑇 or 𝐸𝑇 toddlers into permanently stunting-free toddlers (𝑅𝑇). This situation is shown in the simulation by 

changing the parameter values 𝛾 and 𝛿, which were originally 𝛾 =
1

720
 and 𝛿 =

1

720
 as in Table 2, to 𝛾 =

1

180
 

and 𝛿 =
1

270
, resulting in a simulation as shown in Figure 5. The change in the parameter value 𝛾 means that 

an individual infant initially needs 720 days to be able to move from the 𝑆𝑇 to the 𝑅𝑇 compartment, but 

through nutritional intervention activities the time required for the move is reduced to only 180 days. 

Similarly, a change in the value of the parameter 𝛿 means that initially an individual toddler 𝐸𝑇 takes 720 

days to move to the 𝑅𝑇 compartment, but with the nutritional intervention, the time required is reduced to 

only 270 days. 

The disappearance of stunting shown in Figure 5 is also due to the educational interventions provided 

to mothers who care for children aged under five. Intensive educational activities are represented by changing 

the parameter values 𝜂 =
1

360
 and 𝜔 =

1

360
 to 𝜂 =

1

21
 and 𝜔 =

1

30
. The change in parameter 𝜂 means that with 

intensive education that is easily understood by mothers, the movement of mothers from the 𝑆𝑚 compartment 

to the 𝐸𝑑𝑚 compartment is shorter, taking only 21 days from the original 360 days. Furthermore, the change 

in the parameter 𝜔 means that it is easier for a mother to move from the compartment 𝐼𝑛𝑚 to the compartment  
𝐸𝑑𝑚 with educational activities. This move took only 30 days, which is faster than the original 360 days. 

The nutritional intervention activities for young children and education for mothers are assumed to have an 

impact on reducing the rate of stunted children (𝛼), namely from 𝛼 = 94.9 in simulation Figure 4, down to 

𝛼 = 20, whose simulation results are shown in Figure 5. In particular, the educational activities play a role 

in reducing the transition rate 𝜀, from susceptible mothers 𝑆𝑚 to mothers with poor parenting (𝐼𝑛𝑚). This 

decrease can be seen from the change in the value of 𝜀 =
1

120
 to 𝜀 =

1

150
.  

Overall, changes in parameter values have an impact on reducing the number of stunting cases from 

161,745 cases based on the simulation results in Figure 4 to zero cases in the simulation of Figure 5. The 

disappearance of stunting in Figure 5 occurs after 60,000 days. This is because infants who have experienced 

permanent stunting do not disappear from the population until they die due to natural mortality factors. 

Simulations like the one shown in Figure 5 are very likely to be carried out in real life in the community. 

This can happen because a toddler who receives adequate nutrition from the womb can immediately become 

a permanently stunting-free toddler (𝑅𝑇) while receiving adequate nutrition through the first 1000 days of 

life. Therefore, it is possible to change the parameter values to 𝛼 = 20, 𝛿 =
1

270
, 𝜂 =

1

21
, 𝛾 =

1

180
, 𝜔 =

1

30
, 

and 𝜀 =
1

150
. These parameter values can be improved upon by implementing more optimal nutrition and 

education interventions, and stunting can be eliminated from the population more quickly. 
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4. CONCLUSION 

Based on the results obtained and discussed, the following can be concluded. 

1. The 𝑅0 can be reduced through education programs for mothers of under-five children and the 

provision of appropriate nutritional interventions for toddlers. 

2. Nutritional interventions for children under five and education for mothers are very effective in 

reducing and eliminating stunting in the population. 

3. The resulting mathematical expression for the value of 𝑅0 is 𝑅0 =

√
𝜀Λ𝑇Λ𝑚𝜏𝛽𝛼

𝑁𝑇
2(𝜔+𝜇𝑚)(𝜂+𝜇𝑚)𝜇𝑇(𝛾+𝜇𝑇)(𝛽+𝛿+𝜇𝑇)

3
 . 

4. The mathematical model of stunting with nutrition and education interventions produces two 

equilibrium points, namely the stunting free equilibrium point (𝐸0), which is stable when 𝑅0 < 1, 

and the stunting endemic equilibrium point (𝐸1), which is stable when 𝑅0 > 1. 
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