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ABSTRACT 

Article History: West Kalimantan is particularly susceptible to the devastating effects of forest fires, among 

the natural disasters that have a significant impact. One of the indicators that can be used 

to identify forest fires is the presence of hotspots. The term "hotspot" refers to data that 

has both spatial and temporal characteristics. Using the Generalized Space-Time 

Autoregressive (GSTAR) model combined with the Queen Contiguity weight matrix, this 

research aims to model and forecast the confidence level of hotspots in Kubu Raya 

Regency and its surrounding areas. We chose the GSTAR model because of its ability to 

model spatial interactions between locations and temporal change patterns over time. 

According to NASA FIRMS, the data used in this study were confidence level hotspot data, 

covering the period from January 2014 to August 2024. To define locations for modeling, 

the study area was divided into grids measuring 1 × 1 degrees. The maximum confidence 

level value in each grid was used to represent the highest potential fire risk. The research 

process consists of the following stages: data preparation, stationarity testing, calculation 

of the Queen Contiguity spatial weight matrix, identification of model orders based on 

STACF and STPACF plots, and estimation of model parameters to predict hotspot 

confidence levels. The GSTAR (3;1) model was selected as the best model because it 

satisfies the white-noise assumption and has a MAPE value of 14.78%. Based on the 

MAPE, the GSTAR (3;1) model can provide reasonably accurate predictions for the 

confidence level of fire points over the following three periods. The prediction results 

indicate a decline in the fire point confidence level across all locations during the 

following three periods. The findings of this study can support the optimization of resource 

allocation in the prevention of forest fires. 
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1. INTRODUCTION 

Forest fires are one of the environmental disasters that frequently occur in Indonesia, particularly in 

West Kalimantan. The situation in question is driven by a confluence of natural forces, including extended 

periods of drought and the El Niño weather phenomenon, as well as human activity, such as clearing land 

through burning strategies. Especially in peatlands, the risk of forest fires is increased when the climate is 

dry and the temperatures are high. Forest fires have severe repercussions, including the destruction of the 

environment, the ill effects of smoke on human health (such as acute respiratory illness), and the interruption 

of transportation and the economy [1]. Additionally, the haze that is produced frequently travels to 

neighbouring countries, threatening diplomatic ties at the time. 

One of the regions in West Kalimantan most prone to forest and land fires is the Kubu Raya Regency 

[2]. The case occurred by the vast peatlands prone to fire during the dry season for various reasons. According 

to information obtained from SiPongi, the forest and land fire monitoring system of the Ministry of 

Environment and Forestry, the area of forest fires in West Kalimantan experienced a significant increase in 

2023, reaching more than 111,000 hectares from the previous year. Because Kubu Raya Regency contains 

many hotspots, it is among the regions with the highest potential for sparking fires. The fact that these hotspots 

have been identified through satellite technology is a significant signal for determining the likelihood of forest 

fires. 

A comprehensive analysis is required to comprehend the patterns of forest fires that occur in regions 

such as Kubu Raya. Because these patterns are influenced by relationships between locations (spatial) and 

changes in time (temporal), they are considered quite complicated. For instance, hotspots in a particular area 

are influenced by the conditions and the presence of hotspots in other locations, especially if the locations are 

directly adjacent and have environmental conditions encouraging fire spread, such as dry peatlands [3]. 

Additionally, temporal patterns demonstrate that hotspots tend to arise at specific times, such as during the 

dry season; consequently, the extent to which they expand might vary daily or monthly. A model capable of 

simultaneously combining spatial and temporal aspects is required to represent this dynamic accurately. 

Several research have been conducted to investigate forest fires and the GSTAR model. One of these studies, 

conducted by Imro'ah et al. [4], utilized binary logistic regression to examine the probability of forest fires 

occurring in West Kalimantan. According to the findings of this study, the danger of forest fires was 

significantly impacted by factors such as the distance to rivers and highways, the types of land, and the climate 

variables. This study suggests that the fire extinguishing system should be strengthened and that public 

education should be increased to reduce the risk of forest fires. Alkaff and Yulianto [5] used Seasonal ARIMA 

with monthly data from NASA's Terra satellite to make a prediction about the frequency of hotspots in 

Kalimantan for the period spanning from 2001 to 2018. Although SARIMA (1,0,1)(1,0,1)12 was the best 

model, it was not very accurate in predicting significant spikes. For example, in September 2018, 36 hotspots 

were only projected to be 2. The assumption of stationarity, which helps to eliminate big swings in the data, 

is connected to this constraint. 

Modeling the connectedness between regions based on directly intersecting geographic boundaries is 

more robust by utilizing the Queen Contiguity weight matrix in the GSTAR model. This model helps to 

strengthen spatial analysis. This matrix captures the spatial influence between hotspots more flexibly since it 

considers the relationship between nearby regions in all three directions: horizontally, vertically, and 

diagonally [6]. Additionally, [7] utilized the GSTAR model to make predictions regarding the number of 

cases of COVID-19 in Java Island by using the Queen Contiguity weight matrix. Forty-one districts and cities 

in Banten, DKI Jakarta, and West Java were the data sources. The GSTAR (1;1) model showed a high level 

of accuracy in forecasting the progression of cases over the next five days, which aided in formulating policies 

to deal with the pandemic. 

This study's application of a 1 × 1 degree grid for the selected areas distinguishes this study from 

several other studies conducted in the past. This grid is utilized to ensure that the setup procedure and the 

places that are described correspond to a consistent size standard. Specifically for regions containing a 

significant number of hotspots that change over time, dividing the area into grid units enables a more 

extensive spatial-temporal analysis in this study. The GSTAR model in this investigation utilizes the Queen 

Contiguity weight matrix. This matrix connects the relationship between sites geographically based on direct 

neighbors in a horizontal, vertical, and diagonal manner. In comparison to other research that made use of 

equal weights or inverse distances, this offers a further moment in the process of capturing spatial influences. 
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By applying the GSTAR method with the Queen Contiguity weight matrix, this study aims to model 

fire spots in the Kubu Raya geographic region. When predicting when and where fire spots will appear, this 

method is anticipated to provide more accurate responses. As part of the efforts to prevent and manage forest 

fires, this model will help reduce the number of forest fires in the region. Additionally, it will be utilized to 

optimize the distribution of resources within the context of fire prevention and management. When local 

governments have better predictions, they can take more effective and expedient action if forest fires occur. 

The statement above holds particularly true in regions such as Kubu Raya, susceptible to danger. 

The findings of this research are anticipated to make significant contributions to developing strategies 

for mitigating the effects of forest and land fire disasters. Furthermore, the developed model can also be 

utilized in other regions at a high risk of fire, strengthening the policy on the prevention and mitigation of 

forest fires in Indonesia as a whole. 

2. RESEARCH METHODS 

2.1. Generalized Space-Time Autoregressive Model (GSTAR) 

The Generalized Space-Time Autoregressive (GSTAR) model captures geographical and temporal 

relationship patterns in time series data involving many geographic locations. A generalization of the 

autoregressive (AR) and space-time autoregressive (STAR) models, the generalized spatial-temporal 

autoregressive (GSTAR) model considers interactions between locations in space as well as changes over 

time. The following is the general equation that defines the GSTAR (𝑝; 𝜆1, 𝜆2, … , 𝜆𝑝) model [8]: 

 

𝐘𝑡 = (∑ ∑ 𝚽𝑘ℓ𝐖
(ℓ)𝐘𝑡−𝑘
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and 𝐖(ℓ) is spatial weight matrix at lag ℓ 

Nevertheless, suppose the matrix 𝚽 is transformed into a scalar or vector, which is no longer a matrix.  

In that case, it signifies that every location is regarded as having the same autoregressive coefficient. This 

implies that the diversity of interactions between places in space is no longer explicitly taken into 

consideration. In this instance, the model is changed into a STAR model, which stands for space-time 

autoregressive [9]. As a result, the equation for the STAR (𝑝; 𝜆1, 𝜆2, … , 𝜆𝑝) model can be stated as follows 

[10]: 

 

𝐘𝑡 = (∑ ∑ ϕ𝑘ℓ𝐖
(ℓ)𝐘𝑡−𝑘

𝜆𝑘
ℓ=0

𝑝
𝑘=1 ) + 𝐞𝑡           (2) 

 

The STAR formulation incorporates spatial effects using a spatial weight matrix to describe the 

interactions between different locations. On the other hand, if the spatial component of the STAR model is 

disregarded, then the model can be simplified into a Vector Autoregressive (VAR) model. The VAR model 

is a multivariate statistical model that solely considers the temporal link between variables at different 

locations. Other than that, it does not consider the impact of spatial factors. VAR (𝑝) model can be defined 

as follows[11]: 

 

𝐘𝑡 = 𝚽1𝐘𝑡−1 + 𝚽2𝐘𝑡−2 + ⋯+ 𝚽k𝐘𝑡−𝑘 + 𝐞𝑡          (3) 
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where 𝒀𝑡 is the vector of observations at period 𝑡 𝒆𝑡 , residual at period 𝑡, and 𝚽𝑘 , and the parameter matrix 

of the VAR model for each 𝑘 =  1, 2, 3, . . . , 𝑝. 

The VAR model is a model that evaluates the interaction between numerous variables in a system, 

where each variable is influenced by its previous values as well as the past values of other variables. Such a 

model is known as a VAR model. If this model is reduced to a single variable, the interaction between the 

variables is removed, and the model transforms into an autoregressive (AR) model. In the AR model, the 

variable solely depends on its historical values, and no other variables influence it. An equation that can be 

used to describe the AR (𝑝) model in its entirety is as follows [12]: 

 

Y𝑡 = ϕ1Y𝑡−1 + ϕ2Y𝑡−2 + ⋯+ ϕkY𝑡−𝑘 + e𝑡                          (4) 

 
where 𝑌𝑡 is the observation at period 𝑡, 𝑒𝑡 is the residual at period 𝑡, and 𝜙𝑘 is the AR parameter for 𝑘 =
1,2,3, . . . , 𝑝. 

2.2. Queen Contiguity Weight Matrix 

The spatial weight matrix is an essential component in the development of the GSTAR model, as it 

aids in the description of the relationship that exists between sites in the spatial dimension [13]. Through 

geographical closeness, such as geographic distance, this matrix exerts control over the influence of one site 

on another. In the case of forest fires, for instance, the matrix elements show the degree to which there is 

interaction between several different areas. The weight conditions that must be satisfied are as follows: 

𝑤𝑖𝑗 =  0 where  𝑖 = 1,2,… , 𝑁 . The following form (W) can generally represent the 𝑁 ×  𝑁 weight matrix 

[14]. 
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where 𝑤𝑖𝑗is the weight between regions 𝑗 and 𝑖. 

The Queen Contiguity weight matrix is available among the several types of weight matrices. The 

Queen Contiguity spatial weight matrix is utilized in the GSTAR model to describe the relationship between 

sites based on their geographical proximity. When two sites share a boundary, whether horizontally, 

vertically, or diagonally, they are considered neighbors [15]. This is analogous to the movement of the 

"Queen" piece in the game of chess. In this matrix, the neighboring locations are given a weight of 1, while 

the non-neighboring locations are provided with 0. Because it considers all the neighbors, even those who 

share corners, the Queen Contiguity technique is more adaptable than other ways, like the Rook Contiguity 

method. The utilization of this matrix is highly appropriate for conducting research that calls for a thorough 

description of spatial interactions. To ensure that the value of ∑𝑤𝑖𝑗  =  1 is achieved, it is necessary to first 

normalize this matrix by employing the following formula: 

 

      𝑤𝑖𝑗 =
𝑐𝑖𝑗

𝑐𝑖
                          (5)  

 
where 𝑤𝑖𝑗 the weight of 𝑖-th location respect to 𝑗-th, 𝑐𝑖𝑗 is element of 𝑖-th row, 𝑗-th column, and 𝑐𝑖 is the total 

elements of 𝑖-th row. Figure 1 illustrates how spatial weights are calculated using Queen Contiguity weights. 
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Figure 1. Queen Contiguity Weight Illustration 

 

According to Figure 1, it is possible to observe that location 8 has first neighbors, also known as direct 

neighbors, at locations 3, 5, 7, 10, 11, and 12. Location 8 has direct neighbors that intersect it from all 

directions, including horizontally, vertically, and diagonally. Additionally, location 8 has second neighbors 

at locations 2, 6, 9, 13, and 14, which are one step further away but continue to be under spatial influence 

according to the Queen Contiguity concept. These second neighbors are located at locations 2, 6, 9, 13, and 

14. As a result, location 8 interacts with both its immediate neighbors and its neighbors further away, 

demonstrating a more intricate pattern of interrelationships in the context of spatial analysis. 

2.3.    Parameter Estimation 

Ordinary least square (OLS) is used for parameter estimation within the GSTAR model. The following 

is an example of the OLS method in its generic form [16]. 

𝒀 = 𝑿𝜷 + 𝒆            (6) 

Equation 6 can also be written as follows for GSTAR (1;1) Model: 
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Where 𝑉(𝑡−1)
(𝑖)

= ∑ 𝑤𝑖𝑗𝑌(𝑡−1)
(𝑗)𝑁

𝑗=1  for 𝑖 ≠ 𝑗. Therefore, Equation 7 can be utilized for parameter estimation. 

 

   𝜷 = [𝑿𝑇𝑿]−1[𝑿𝑇𝒀]              (7) 

 

In general, the steps involved in the research are as follows: (1) Order identification, (2) Estimation of 

the parameters, (3) Diagnostic test of the residual, and (4) forecasting the future. The following flowchart in 

Figure 2 uses the Queen Contiguity weight matrix to provide a more in-depth illustration of the phases of 

forming a GSTAR model from hotspot data. 
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Figure 2. Flowchart of GSTAR Model 

 

3. RESULTS AND DISCUSSION 

3.1 Data Preprocessing 

We carried out data pretreatment activities before forming the GSTAR model to verify that the data 

was ready to be analyzed and that the assumptions underpinning the model were agreed upon. For this 

research, the data utilized were daily confidence-level data from hotspots collected from the NASA FIRMS 

website (Fire Information for Resource Management System). The data covered the period from January 

2014 to August 2024. This information consists of several primary characteristics, including the date, the 

longitude, the latitude, and confidence level. As a result of the fact that the data that was obtained 

encompassed the entirety of Indonesia, the initial step that was conducted was to filter the data according to 

geographic area. After preprocessing, the data were aggregated into 128 monthly observations, consisting of 

maximum confidence-level hotspot data ranging from 0% to 100%. Specifically, the West Kalimantan 

region is the focus of this research. The sorting of the data was therefore carried out based on the coordinates 

of latitude and longitude that correspond to the administrative boundaries of West Kalimantan. An illustration 

of this process is shown in Figure 3.  

 
Figure 3. Filtering the Data of Hotspot 
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The research location was decided to be in West Kalimantan because this region contains a large 

amount of, makes peatlands and is highly exposed to fires [17]. The composition of peatlands, characterized 

by a high concentration of dry organic matter, makes them combustible. Therefore, peatlands can potentially 

cause catastrophic fires in agricultural and forest settings. The Kubu Raya Regency is widely regarded as 

having one of the most extensive peatlands in West Kalimantan compared to the other regencies and cities in 

the region. The composition of peatlands, characterized by a high concentration of dry organic matter, makes 

them combustible. Therefore, peatlands can potentially cause catastrophic fires in both forests and on land. 

The Kubu Raya Regency is widely regarded as having one of the most extensive peatlands in West 

Kalimantan compared to the other regencies and cities in the region [18]. Figure 4 illustrates the number of 

hotspots in each district and town in West Kalimantan during 2014 – 2023. 

According to the data presented in Figure 4, Kubu Raya has been identified as the fourth-highest 

hotspot during the past ten years. Furthermore, this study concentrates on the Kubu Raya region because it is 

directly adjacent to Pontianak, the capital city of West Kalimantan, and peatlands predominate in the Kubu 

Raya region. Pontianak is the hub of the capital city, and as a result, it has a high population and significant 

levels of economic and governmental activity. The condition can raise the likelihood of forest fires spreading 

their effects to the surrounding area, including the release of haze. 

 

 
Figure 4. Number of Hotspots in Regency/City in West Kalimantan Period 2014-2023 

The following are data preprocessing steps. 

a. Filtering Monthly Data 

The data that was utilized is annual data, comprised of twelve months. Immediately following 

filtering the hotspot data for the West Kalimantan region, it is essential to filter it into monthly 

data for each year. 

b. Formating the Grid Location 

The next step involves the creation of a location grid of the West Kalimantan region that is 1×1 

degrees in size. We used a grid size 1 × 1 degrees to simplify the calculating process. Any 

reduction in the size of the grid will increase the number of locations that are generated, which 

will ultimately result in the calculation being complicated. Following the formation of the grid, 

the grid unit that provides coverage of the Kubu Raya Regency region has been chosen as the 

research area. Removing hotspots and grid units located outside of the Kubu Raya area allows 

the analysis to concentrate solely on pertinent locations. 

A grid is created because the number of hotspots in a region will be different today compared to 

the number that existed the day before. As a result, it is essential to create a grid to record these 

variations. In the illustration in Figure 5, this is indeed made. 
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Figure 5. Visualization Comparison of Hotspot Maps 

 

Figure 5 shows data samples from hotspots collected on two different days. As of January 17, 

2023, four hotspots were spread across four other locations, whereas on January 16, 2023, there 

was only one hotspot. When the latitude and longitude of each point are considered, these 

locations can be seen. The GSTAR model necessitates a predetermined number of locations 

throughout the period [19]. Because of this, the study area was partitioned into grids of equal 

sizes to standardize the location. 

c. Filtering Monthly Data in Each Grid 

After the location grid is formed, the next step is to filter the monthly data based on the grid units 

that have been formed. Each grid unit will, therefore, consist of fire point data gathered over one 

year. Following the formation of each grid, each such grid is regarded as a location that we 

utilized for GSTAR analysis. 

d. Aggregating of Hotspot Values in Each Grid  

Aggregating the data contained within each grid is the last step in the grid formation process. A 

representative value for each grid is determined by taking the highest possible value of the fire 

confidence level at each time point (for example, each day). This value is taken from each grid. 

Suppose there are multiple fires in a grid on the same day. In that case, the purpose of this step 

is to ensure that the highest value, which indicates the most significant fire potential, is selected 

as the representative of the highest value. If a grid does not contain any fires, we reset that grid's 

value to zero (0). Figure 6 provides a comprehensive analysis of the steps involved in data 

preprocessing. 

 
Figure 6. Illustration of Preprocessing Data Steps 

 

Figure 6 reveals that six grids have been formed, which indicates that 6 locations will be utilized 

for GSTAR modeling. The maximum value is extracted from each grid and used to represent 

specific locations for the modeling process. The districts and sub-districts involved in each grid 

are listed in Table 1. 

Table 1. Summary of Location in Each Grid 

Grid 

Location 
Regency Subdistrict 

A1 
Bengkayang 

Bengkayang, Capkala, Ledo, Monterado, Betung River, Bawang Valley, Lumar, 

Samalantan, Raya River, and Raya Islands River. 

Landak Sompak, Banyuke Hulu, Mandor, Mempawah Hulu, and Menyuke. 
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Grid 

Location 
Regency Subdistrict 

Singkawang 
East Singkawang, South Singkawang, North Singkawang, Central Singkawang, and 

West Singkawang. 

Mempawah 
Anjongan, Mempawah Hilir, East Mempawah, Sadaniang, Segedong, Kunyit River, 

Toho, Pinyuh River. 

Kuburaya Kuala Mandor B 

 

A2 

 

Landak Jagoi Babang, Suti Semarang, Teriak, Tujuh Belas, Siding, Seluas, Sanggau Ledo 

Sanggau 
Tayan Hulu, Bonti, Noyan, Kembayan, Balai, Parindu, Sekayam, Beduai, and 

Entikong. 

Bengkayang 
Air Besar, Jelimpo, Kuala Behe, Meranti, Menyuke, Ngabang, Sengah Temila, and 

Sebangki. 

 

A3 

Kubu Raya 
Kubu, Teluk Pakedai, Sungai Kakap, Rasau Jaya, Ambawang River, Terentang, Batu 

Ampar, and Kuala Mandor B. 

Pontianak 
West Pontianak, Pontianak City, East Pontianak, South Pontianak, North Pontianak, 

and Southeast Pontianak 

A4 

Sanggau Toba, Tayan Hilir, Meliau 

Kubu Raya Sungai Raya, Sungai Ambawang, Terentang, Kubu, Batu Ampar 

Kayong Utara Seponti 

Ketapang Simpang Hulu, Simpang Dua, 

A5 Kayong Utara Pulau Maya 

A6 
Ketapang 

Muara Pawan, Benua Kayong, Sungai Melayu Rayak, Pemahan, Matan Hilir Utara, 

Simpang Dua, Landai, Laur River 

Kayong Utara Sukadana, Teluk Batang, 

3.2 Numerical Summary 

After the data has been collected, the following phase is a descriptive analysis to obtain an overall 

picture of the data distribution [20]. The average, standard deviation, minimum, and maximum values of the 

number of hotspots on each grid are some of the fundamental statistics included in this descriptive study. The 

conclusions drawn from the descriptive analysis of the hotspot data on each grid can be seen in Table 2. 

           Table 2. Numerical Summary of Data Hotspot 

Grid A1 A2 A3 A4 A5 A6 

Maximum 100 100 100 100 82 96 

Mean 54 45 42 47 13 42 

Standard Deviation 20 30 27 24 25 32 

 

Table 2 shows descriptive statistics for the data maximum of hotspots in each cell grid gathered in six 

different grid cells (A1 to A6), each containing 128 observations. Every single grid cell has a value of zero 

as its minimum. Grid cells A5 and A6 have maximum values slightly lower than the average, at 82 and 96, 

respectively. The maximum value for most grid cells is 100. January 2023 was the month that the value of 

82 (red text in Table 2) in the A5 grid unit occurred. This hotspot is the only one found in the A5 grid cell 

region. When compared to the other grid cells, this hotspot has the maximum value, which is the lowest. 

Because of the state of the A5 region, which is the boundary between the Kubu Raya area and Karimata 

Island, the humidity level is higher. As a result, the potential for fire is lower than in other grid cells, which 

tend to be dry and combustible. Grid cell A1 has the highest average of 54 observations, while grid cell A5 

has the lowest average of 13 (red text in Table 2). The average observation value varies from grid to grid 

across the board. This is in addition to the fact that the standard deviation, which indicates the degree of 

variance in the data, differs between each grid cell. Compared to grid cell A4, which has the lowest standard 

deviation of 25, grid cell A6 has the highest standard deviation of 32, indicating greater variety in the data. 

For the most part, Table 2 summarizes the properties and distribution of the data on each grid cell, which 

helps conduct additional analysis. 

3.2.1 Data Stationary Test 

While developing the GSTAR model, one of the processes involves ensuring that the data is steady in 

terms of both the mean and the variance [21]. In addition, an ADF test, also known as an Augmented Dickey-

Fuller test, is carried out to determine whether the data is stationary in the mean [22]. The ADF test was 
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conducted using the RStudio software, resulting indicated for each cell grid in a p-value of  

0.01 ≤ 𝛼 (0.01). This p-value indicates that the data is stationary in the mean, allowing it to be utilized for 

the subsequent step. 

3.3 Queen Contiguity Weight Matrix 

The Queen Contiguity rule will be utilized for the next stage to calculate the weight matrix. Using the 

Queen Contiguity rule on the generated location grid, the neighborhood is depicted in the following table, 

also known as Table 3.  
Table 3. Queen Contiguity Weight Matrix 

Ilustration Weight 
Before 

Normalization 

After 

Normalization 

 

𝐖(0) I, for identity matrix size 𝑁 × 𝑁 

𝐖(1) 

[
 
 
 
 
 
0 1 1 1 0 0
1 0 1 1 0 0
1 1 0 1 1 1
1 1 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 0]

 
 
 
 
 

 

[
 
 
 
 
 

0 0.33 0.33 0.33 0 0
0.33 0 0.33 0.33 0 0
0.2 0,2 0 0.2 0.2 0.2
0.2 0.2 0.2 0 0.2 0.2
0 0 0.33 0.33 0 0.33
0 0 0.33 0.33 0.33 0 ]

 
 
 
 
 

 

𝐖(2) 

                                               UNDEFINED  

Grid cells A3 and A4 have no second-order neighbors in this spatial grid, 

meaning grid cells A3 and A4 have no second-order spatial locations in any 

direction. Therefore, it is impossible to create precisely the queen continuity 

weight matrix.  

According to Table 3 (first column), it is possible to observe that grid cell A1 is surrounded by grid 

cells A2, A3, and A4 as its first neighbors. This means that the W1 matrix of each grid cell has a value of 1 

for the first neighbor and 0 for the other neighbors (see column 3). In the created grid, grid cells A3 and A4 

do not have any neighbors in the second spatial lag. The condition indicates that in the second spatial order, 

no locations are exactly adjacent to grid cells A3 and A4 from any possible orientations. Because of this, it 

is impossible to create the queen contiguity weight matrix in its entirety. Every site must have nearby 

neighbors, including diagonal neighbors, for every order of spatial lag to implement the queen contiguity 

technique. Because the same columns that render the parameter estimation matrix incapable of producing an 

inverse are present, we cannot continue estimating parameters if the imperfect queen contiguity weight matrix 

is generated. Therefore 𝐖(ℓ) undefined for ℓ ≥ 2. The method for determining the weight of the queen 

contiguity matrix can be seen in Figure 1. 

3.3.1 Order Identification and Establishment of the GSTAR Model 

The STPACF plot of the data can identify the GSTAR model order [23]. Figure 7 shows STACF and 

STPACF plots of the data acquired. These plots are based on the weight matrix established in Table 3, which 

was obtained using the RStudio software. 

 
Figure 7. Plot (a) STACF, (b) STPACF 

 

  
(a) (b) 
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Figure 7 shows that the STPACF first slag plot has a cutting-off lag, specifically at lag first, second, and 

third. GSTAR (1;1), GSTAR (2;1), and GSTAR (3;1) are the possible GSTAR models that can be produced 

during the process. Following the formation of the GSTAR model, it is possible to proceed to the next step. 

3.4 Parameter Estimation and Diagnostics Residual Test 

Table 4 shows the results of the independence and normality tests of each model's residuals, along 

with the results of the GSTAR model estimation produced by utilizing Queen Contiguity weights with 

parameter estimation using the least squares (LS) method. Additionally, the results of the independence test 

(Ind.) and residual normality (Norm.) can be seen in Table 4. It is important to note that the white noise 

assumption means that the residuals are normally distributed and independent of each other. The parameter 

estimation results indicate varied values, with some parameters having positive values and others having 

negative values, as described in Table 4. The parameter is not utilized in the modeling process, as indicated 

by the red text in Table 4, which shows that the parameter is insignificant. As a result, the model does not 

contain parameters that are not significant. The residual diagnostic results have determined that the GSTAR 

(3;1) model has a white noise assumption with an error percentage of 14.78%. This indicates that this model 

offers the most favorable outcomes regarding normalcy and independence in each grid. 

Table 4. Parameter Estimation and Diagnostics Residual Test 

Model Parameter 
Location 

 MAPE (%) 
(1) (2) (3) (4) (5) (6) 

(1;1) 

𝜙10 .578 .372 .457 .447 .312 .198   

𝜙11 .408 .465 .452 .568 .191 .815  13.51 

Ind. Yes Yes Yes Yes No Yes   

Norm. Yes Yes Yes Yes No Yes   

(2;1) 

𝜙10 .377 .336 .403 .314 .359 .14   

𝜙20 .325 -.017 .211 .338 -.065 -.13   

𝜙11 .363 .177 .36 .475 .187 .656   

𝜙21 -.078 .355 -.074 -.136 .014 .409  13.88 

Ind. Yes Yes Yes Yes No Yes   

Norm. Yes Yes Yes Yes No Yes   

(3;1) 

𝜙10 .317 .370 .405 .283 .319 .136   

𝜙20 .219 .009 .196 .309 -.009 -.125   

𝜙30 .191 -.040 .031 -.058 -.021 -.035   

𝜙11 .370 .146 .320 .499 .254 .658   

𝜙21 -.040 .454 -.233 -.115 .154 .413  14.78 

𝜙31 -.062 .013 .198 -.032 -.222 .031   

Ind. Yes Yes Yes Yes Yes Yes   

Norm. Yes Yes Yes Yes Yes Yes   

 

The GSTAR (3;1) model was the most effective approach. Consequently, we used the following 

formula to predict each grid cell. 

 

𝐘t = 𝚽10𝐘t−1 + 𝚽11𝐖
(1)𝐘t−1 + 𝚽20𝐘t−2 + 𝚽21𝐖

(1)𝐘t−2 + 𝚽30𝐘t−3 + 𝚽31𝐖
(1)𝐘t−3 + 𝒆𝒕 

 

Here is a formula that can be used to estimate hotspots in grid cell A1 until A6. 

�̂�𝑡
(1)

= 0.317𝑌𝑡−1
(1)

+ 0.123(𝑌𝑡−1
(2)

+ 𝑌𝑡−1
(3)

+ 𝑌𝑡−1
(4)

) + 0.219𝑌𝑡−2
(1)

+ 0.191𝑌𝑡−3
(1)

 

�̂�𝑡
(2)

= 0.370𝑌𝑡−1
(2)

+ 0.049(𝑌𝑡−1
(1)

+ 𝑌𝑡−1
(3)

+ 𝑌𝑡−1
(4)

) + 0.151(𝑌𝑡−2
(1)

+ 𝑌𝑡−2
(3)

+ 𝑌𝑡−2
(4)

) − 0.140𝑌𝑡−3
(2)

 

�̂�𝑡
(3)

= 0.405𝑌𝑡−1
(3)

+ 0.017𝑌𝑡−1
(5)

+ 0.064(𝑌𝑡−1
(1)

+ 𝑌𝑡−1
(2)

+ 𝑌𝑡−1
(4)

+ 𝑌𝑡−1
(6)

) + 0.196𝑌𝑡−2
(3)

− 0.047(𝑌𝑡−2
(1)

+ 𝑌𝑡−2
(4)

  

+𝑌𝑡−2
(5)

+ 𝑌𝑡−2
(6)

) + 0.040(𝑌𝑡−3
(1)

+ 𝑌𝑡−3
(2)

+ 𝑌𝑡−3
(4)

+ 𝑌𝑡−3
(5)

+ 𝑌𝑡−3
(6)

) 

�̂�𝑡
(4)

= 0.283𝑌𝑡−1
(4)

+ 0.1(𝑌𝑡−1
(1)

+ 𝑌𝑡−1
(2)

+ 𝑌𝑡−1
(3)

+ 𝑌𝑡−1
(5)

+ 𝑌𝑡−1
(6)

) + 0.309𝑌𝑡−2
(4)
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�̂�𝑡
(5)

= 0.319𝑌𝑡−1
(5)

+ 0.085(𝑌𝑡−1
(3)

+ 𝑌𝑡−1
(4)

+ 𝑌𝑡−1
(6)

) + 0.051 (𝑌𝑡−2
(3)

+ 𝑌𝑡−2
(4)

+ 𝑌𝑡−2
(6)

) − 0.074(𝑌𝑡−3
(3)

+ 𝑌𝑡−3
(4)

 

+𝑌𝑡−3
(6)

) 

�̂�𝑡
(6)

= 0.136𝑌𝑡−1
(6)

+ 0.219(𝑌𝑡−1
(3)

+ 𝑌𝑡−1
(4)

+ 𝑌𝑡−1
(5)

) − 0.125𝑌𝑡−2
(6)

+ 0.138(𝑌𝑡−2
(3)

+ 𝑌𝑡−2
(4)

+ 𝑌𝑡−2
(5)

) 

3.5 Forecast 

The GSTAR (3;1) model is utilized to forecast the hotspot data for the subsequent three months in each 

grid cell.  

Table 5. Result Prediction of Confidence Level Maximum for Each Location 

Period A1 A2 A3 A4 A5 A6 

Sep-24 97% 84% 54% 94% 36% 65% 

Okt-24 100% 64% 47% 89% 19% 60% 

Nov-24 96% 58% 50% 83% 17% 59% 

 

Figure 8 shows a plot of the forecast data versus the estimate versus the forecast from each grid cell. 

        
(a) (b) 

  
(c) (d) 

  

(e) (f) 

Figure 8. Comparison Plot of the Actual, Estimation, and Forecast Values for each Location (a) A1, (b) A2, (c) 

A3, (d) A4, (e) A5, (f) A6  

 

As can be observed from the significant match between the estimated line and the real data at most 

sites, Figure 8 shows that the estimating model can accurately reproduce the actual data. In general, the 

forecasts continue to successfully follow the primary trend at most locations, even though the results show 

some deviations from the actual data. Nevertheless, there are some discrepancies at specific spots, which 

indicates that the model can be further enhanced to improve the prediction accuracy at certain areas about 

certain sites. 
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4. CONCLUSIONS 

The conclusion from the analysis that has been carried out is that the GSTAR (3;1) model is the most 

effective. This conclusion is based on the fact that the development of the GSTAR model (𝑝; 𝜆1, 𝜆2, . . . , 𝜆𝑝) 

utilizing the confidence level hotspot data, the Queen Contiguity weight matrix, and a 1×1 degree location 

grid results in the formation of the GSTAR (3;1) model. With a MAPE value of 14.78%, the GSTAR (3;1) 

model is the most accurate for predicting the fire point confidence level at the Kubu Raya location and its 

environs, which satisfies the white noise assumption. However, the result indicates that the model's accuracy 

level falls into the good category. A decline was observed in most places, as indicated by the confidence level 

hotspot findings for September, October, and November 2024. It was in September 2024 that Location A1 

had the maximum degree of trust, 97%. In October 2024, the confidence level grew to 100%; in November 

2024, it declined to 96%. The fact that this is the case demonstrates that location A1 is in dire need of 

preventative mitigation and stringent supervision, such as positioning firefighters in vulnerable areas. 

Location A1 includes all the sub-districts in Singkawang City and Mempawah Regency, as well as some sub-

districts in Bengkayang Regency, Landak Regency, and Kuburaya Regency, specifically Kuala Mandor B 

District. This location encompasses all the sub-districts in the aforementioned districts. According to the 

findings of this research, the GSTAR model can accurately forecast the level of confidence associated with 

hotspots. However, it also helps optimize resource allocation in forest fire prevention. This study only uses 

one weight matrix and one variable. Future research might use other weight matrices and other elements that 

influence the incidence of hotspots, such as the amount of rainfall or the wind speed, to produce more accurate 

forecast findings. 
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