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ABSTRACT 

Article History: The poverty line is the threshold income level below which a person or household is 
considered to be living in poverty. The poverty line is a representation of the minimum 
rupiah amount needed to meet the minimum basic food needs equivalent to 2100 
kilocalories per capita per day and basic non-food needs. According to data from the 
Central Bureau of Statistics (BPS), although the poverty rate in West Sumatra has 
decreased in recent years, the issue of poverty is still very relevant to be discussed and 
addressed. The issue of the poverty line is important to discuss because it is directly related 
to the welfare of people and the development of a country. For modeling the poverty line 
and its influencing factors, appropriate statistical methods are needed. This research is 
about the comparison of two methods, namely the Bayesian quantile regression method 
and Bayesian LASSO quantile regression.  The two methods are compared with the aim 
of seeing which method produces the smallest error. Bayesian quantile regression is one 
method that can model data assuming heteroscedasticity violations. This study compares 
the ordinary Bayesian quantile regression method with penalized LASSO. These two 
methods are applied in modeling the poverty line in West Sumatra. The purpose of this 
study is to see the best method for modeling data. The data used amounted to 133 data 
points from BPS in the years 2017 and 2023. Model parameters were estimated using 
MCMC with a Gibbs sampling approach. The results show that the Bayesian LASSO 
method is superior to the method without LASSO. This is evidenced that the superior 
method produces the smallest MSE value, 0.208, at quantile 0.5. Model poverty line in 
West Sumatra is significantly influenced by per capita spending (𝑋1), Gross Regional 
Domestic Product (𝑋2), Human Development Index (𝑋3), Open Unemployment Rate (𝑋4), 
and minimum wages (𝑋5). 
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1. INTRODUCTION 

The poverty line is the threshold income level below which a person or household is considered to be 

living in poverty [1]. This poverty line is calculated based on per capita (per person) expenditure in a family, 

and is used to determine whether a person or family is considered to be living in poverty. Poverty is one of 

the main problems faced by many provinces in Indonesia, including West Sumatra. According to data from 

the Central Bureau of Statistics (BPS), although the poverty rate in West Sumatra has decreased in recent 

years, the issue of poverty is still very relevant to be discussed and addressed. The poverty line remains a 

major concern despite the decline in the poverty rate for several important reasons: persistent inequality, 

differential quality of life, uneven economic growth, insecure poverty reduction, and social policy targets. 

Poverty is not only limited to a lack of income but also includes limited access to basic services such as 

education, health, and infrastructure. Therefore, it is important to understand the factors that influence poverty 

so that policies can be better targeted.  

One way to analyze and measure poverty is by using a poverty line. This poverty line is usually 

determined based on the income or consumption needed by an individual or family to fulfill basic needs. 

However, in a regional context, poverty measurement is not always uniform, and the uncertainty in the data 

and the variability between individuals or regions require a method that can capture this uncertainty more 

effectively. Regression is a statistical analysis technique used to measure the relationship between one or 

more independent (or predictor) variables and a dependent (or response) variable [2],[3],[4],[5],[6],[7],[8]. 

However, it is often found that our research data, which may be obtained from the field, does not meet the 

classical assumptions, namely the assumptions of normality, homoscedasticity, and the absence of 

multicollinearity and autocorrelation. One statistical method that can handle cases of violated assumptions is 

quantile regression [9].  

Quantile regression is a very useful approach in this regard. Unlike the usual linear regression that only 

focuses on the mean of the data, quantile regression can estimate the relationship between the independent 

and dependent variables at different quantiles (for example, the 25th, 50th, and 75th quantiles)[10]. Quantile 

Regression (QR) is a statistical analysis method that was first introduced by Koenker [11]. Regression is used 

to quantify the relationship between the response variable and the covariates [12]. A quantile is a point in a 

dataset that divides the data into intervals with a certain proportion of the data falling below and above that 

point [9]. According to [3], quantile regression is a more comprehensive and flexible approach compared to 

ordinary linear regression as it focuses not only on the mean but also on the distribution of data across 

different quantiles (percentiles), providing deeper insights into the relationship between variables under 

different conditions. This technique is more robust to outliers and can reveal patterns that are not visible with 

traditional regression. The discussion related to this method has been studied by many researchers, including 

[13],[14].   

QR is also discussed in [15], introducing a new distribution (0,1) and transforming positive random 

variables according to the Chen distribution with parameters estimated by quantile regression. The research 

conducted by [16] and [9] said that violations of the assumption of normality can be overcome with quantile 

regression. QR has the limitation that it requires a large sample, so it needs a Bayesian approach that can 

model small amounts of data and known as BQR [17],[18]. The Bayesian concept refers to an approach in 

statistics that uses Bayes' Theorem to update the probability of an event based on new evidence or 

information. The main components of the Bayesian concept are prior (Initial Probability), before obtaining 

new evidence, we have an initial belief or assumption about a hypothesis or parameter. This is called the prior 

probability, the second is the likelihood, likelihood measures how likely it is that we will get the evidence at 

hand if a particular hypothesis or parameter is true.  The third is the posterior (conditional probability of the 

parameter), after combining the prior with the likelihood, we obtain the posterior probability, which is an 

updated estimate of the hypothesis after seeing the evidence. It turns out that research is growing, so the 

Bayesian method is not precise enough to obtain parameters either. So variable selection using LASSO was 

found.  

One other method in the parameter estimation process is to use the LASSO (Least Absolute Shrinkage 

and Selection Operator) method is a technique in regression used to select important variables (feature 

selection) and simultaneously reduce model complexity by regularizing. The combination of BQR and 

LASSO is often referred to as (BLQR).   LASSO is a type of linear regression that penalizes the size of 

regression coefficients to avoid overfitting and improve model generalization. Applications of quantile 

regression with Bayesian and LASSO are also presented [5]. Some studies using BLQR method include 
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modeling the length of stay of covid 19 patients [19].   The same method is also used in modeling low birth 

weight [20]. Meanwhile, according to the Central Bureau of Statistics (BPS) of West Sumatra and literature 

review, the factors that influence the poverty line are percapita spending [21], gross regional domestic product 

[22], human development index [23], open unemployment rate [24], and minimum wages [25]. These factors 

will be used by researchers to model the poverty line. The modeling uses Bayesian quantile regression 

analysis without penalized LASSO and using LASSO. Based on previous literature studies and the 

advantages of the proposed method, researchers are interested in modeling the poverty line in West Sumatra 

using this method. Poverty lines in West Sumatra require special attention in the field of statistical modelling 

for several important reasons: economic inequality, social and economic change, diverse data, future poverty 

projections, and policy evaluation. Overall, statistical modeling provides a strong analytical framework for 

understanding poverty issues in West Sumatra and helps in designing more effective and evidence-based 

interventions. 

 

2. RESEARCH METHODS 

2.1 Quantile Regression  

If a vector 𝑦𝑖 = (𝑦1, 𝑦2, … , 𝑦𝑛)
′ is dependent variable and 𝑥𝑖 = (𝑥1, 𝑥2, … , 𝑥𝑘) 

′ is independent variable 

for 𝑖 = 1,2, . . . , 𝑛 we can define the sample mean 𝜇 as solution, having succeeded in defining the 

unconditional quantiles as an optimization problem, it is easy to define conditional quantiles in an analogous 

fashion. Least squares regression offers a model for how we proceed to solve:  

𝑚𝑖𝑛𝜇𝜖ℝ∑ (𝑦𝑖 − 𝜇)
2

𝑛

𝑖=1
 (1) 

We obtain the sample mean, an estimate of the unconditional population mean 𝐸[𝑌]. If we now replace the 

scalar 𝜇 by 𝒙𝒊
′𝜷 and solve:  

𝑚𝑖𝑛𝛽 𝜖ℝ∑ (𝑦𝑖 − 𝑥𝑖
′𝛽)2

𝑛

𝑖=1
 (2) 

𝑚𝑖𝑛𝛽𝜖ℝ∑ |𝑦𝑖 − 𝑥𝑖
′𝛽|

𝑛

𝑖=1
(3) 

we obtain an estimate of the conditional expectation function 𝐸(𝑌|𝑥). So, the quantile regression equation 

model for quantile 0 < 𝜏 < 1 with n samples and k predictors for 𝑖 = 1,2, . . . , 𝑛 is written in the form: 

𝑦𝑖 = 𝛽0𝜏 + 𝛽1𝜏𝑥𝑖1 + 𝛽2𝜏𝑥𝑖2 +⋯+ 𝛽𝑘𝜏𝑥𝑖𝑘 + 𝑒𝑖 . (4) 

With 𝛽𝜏 as parameter and 𝑒𝑖 as residual. To find the parameter value 𝛽�̂� is done by minimizing the 

equation  [26]: 

𝑚𝑖𝑛𝛽𝜖ℝ ∑ 𝜌𝜏(𝑦𝑖 − 𝑥𝑖
′𝛽).

𝑖𝜖𝑖|𝑦𝑖≥𝑥𝑖
′𝛽

 (5)
 

Where  𝜌𝜏(𝑢) = 𝑢(𝜏 − 𝐼(𝑢 < 0)) is the loss function. In quantile regression, the loss function is specifically 

designed to estimate the conditional quantiles of the response variable. The goal of quantile regression is to 

minimize the sum of these asymmetric losses for all data points, thus finding predicted values corresponding 

to the desired quantiles with the equation:  

𝜌𝜏(𝜖) = 𝜀(𝜏𝐼(𝜀 ≥ 0) − (1 − 𝜏)𝐼(𝜀 < 0)) (6) 

𝐼 ( . ) is an indicator function, which has a value of 1 when 𝐼 ( . ) is true and 0 if otherwise.  Indicator function 

in quantile regression helps define the conditions under which different parts of the quantile loss function 

should be applied, thus enabling quantile regression to estimate specific quantiles of the conditional 

distribution. 
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2.2 Bayesian Quantile Regression 

Bayesian quantile regression extends this framework by incorporating a probabilistic approach, using 

Bayesian inference to estimate the model parameters. Instead of point estimates for the quantile regression 

coefficients, Bayesian methods provide a distribution for the coefficients, reflecting uncertainty in the 

estimates. This is done by placing prior distributions on the regression coefficients and then updating these 

priors based on the data using Bayes' theorem. The combination [27] suggested that the process of minimizing 

the loss function of quantile regression. So, it corresponds to maximizing the likelihood function of the 

asymmetric Laplace distribution (ALD).  The ALD distribution random variable uses a probability density 

function error for the quantile 𝑓𝜏(𝜖)  [17]: 

𝑓𝜏(𝜖) = 𝜏(1 − 𝜏)𝑒𝑥 𝑝(−𝜌𝜏(𝜖)) (7) 

With 0 < 𝜏 < 1 and 𝜌𝜏 is a loss function with as the error of the estimation, and is an indicator function. 

The ALD distribution is one of the continuous probability distributions. Suppose Z is a random variable with 

an exponential distribution (𝑍~𝑒𝑥𝑝 (1)) and U is a random variable with a standard normal distribution 

𝑈~𝑁 (0,1). If 𝜀 is an ALD distributed random variable, then 𝜀 can be expressed in the following equation 

[28]: 

𝜀 = 𝜃𝑧 + 𝑝𝑢√𝑧. (8) 

Where 𝜃 =
1−2𝜏

(1−𝜏)𝜏
 and 𝑝2 =

2

(1−𝜏)𝜏
 . Likelihood function used in parameter 𝜷 estimation for the  𝜏𝑡ℎquantile 

in the Bayesian quantile regression analysis is written [19]:  

𝐿(𝒚𝒊
∗|𝜷, 𝝈, 𝒗) = (∏ (𝜎𝑣𝑖)

−
1
2

𝑛

𝑖=1
) (exp(−

(𝑦𝑖
∗ − (𝒙𝒊

′𝜷𝝉 + 𝜃𝑣𝑖))
2

2𝑝2𝜎𝑣𝑖
)) . (9) 

With 𝜎 > 0 as the scale parameter and dan 𝑣𝑖 = 𝜎𝑧𝑖 spreading exp (𝜎) distribution. The prior 

distributions used in this study are 𝜷𝜏~𝑁(𝑏0, 𝐵0), 𝑣𝑖~exp (𝜎) and 𝜎~𝐼𝐺(𝑎, 𝑏). While posterior distributions 

for each prior are as follows:  

(𝜷|, 𝜎, 𝑣, 𝒚 )~𝑁[(𝑩𝟎
−𝟏 + 𝒙𝒊(𝑝

2𝜎𝑣)−1𝒙𝒊
′)−1(𝑩𝟎

−𝟏𝒃𝟎 + 𝒙𝒊(𝑝
2𝜎𝑣)−1𝑥𝑖

′)−1𝑦 − 𝑥𝑖(𝑝
2𝜎𝑣)−1𝜃𝑣𝑖), 

(𝑩𝟎
−𝟏 + 𝒙𝒊(𝑝

2𝜎𝑣)−1𝒙𝒊
′)−1] 

(𝑣𝑖|𝜷, 𝜎, 𝒚)~𝐺𝐼𝐺 (
1

2
, (
𝑦−𝑥𝑖

′𝛽𝜏)

𝑝2𝜎

2

) , (
2

𝜎
+

𝜃2

𝑝2𝜎
)) (10)                                                                         

(𝜎|𝜷, 𝒗, 𝒚 )~𝐼𝐺 (𝑎 +
3𝑛

2
, 𝑏 +  ∑ 𝑣𝑖 +

𝑛
𝑖=1 ∑ +(

(𝑦−(𝑥𝑖
′𝛽𝜏+𝜃𝑣𝑖))

2𝑝2𝜎

2

)𝑛
𝑖=1 ). 

In determining the posterior distribution for the estimated parameters on the use of ALD as a likelihood 

function for the data, it is difficult to solve analytically [29]. To overcome this difficulty, a numerical 

approach is used with the help of the MCMC (Markov Chain Monte Carlo) algorithm, which is not only 

effectively used but also able to overcome complex analytical integration [27][30].  

 

2.3 Bayesian LASSO Quantile Regression  

Mathematically, estimates of Bayesian LASSO quantile regression parameters can be calculated by:  

𝜷𝑳𝑨𝑺𝑺𝑶 = 𝐦𝐢𝐧
𝜷𝝐ℝ

∑𝝆𝝉(𝒚𝒊  − 𝒙𝒊
′𝜷)

𝒏

𝒊=𝟏

+ 𝝀∑|𝜷𝒋|

𝒌

𝒋=𝟏

. (11) 

Where 𝝀 is a non-negative variable penalty coefficient. Prior distribution 𝜷𝝉, 𝜼
𝟐, 𝜻, 𝝈, 𝒔, 𝒗, 𝜹 used for 𝑛-th 

sample with 𝑘 predictors according to for use in Bayesian LASSO quantile regression (BLQR) are: 

𝒇(𝜷|𝜼𝟐, 𝒔𝒋) =∏∫
𝟏

√𝟐𝝅𝒔𝒋

∞

𝟎

𝒌

𝒋=𝟏

𝐞𝐱𝐩(−
𝜷𝒋
𝟐

𝟐𝒔𝒋
) (𝟏𝟐) 
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𝒇(𝛈𝟐|𝜹, 𝜻) =
𝜻𝜹

𝚪(𝜹)
𝛈𝟐(𝜹−𝟏) 𝐞𝐱𝐩(−𝜻𝛈𝟐), 

𝒇(𝜻|𝜹) = 𝟏, 

𝒇(𝝈) = 𝝈𝒂𝟏
−𝟏
𝐞𝐱𝐩(−𝒂𝟐𝝈), 

𝒇(𝒔𝒋|𝛈
𝟐) =

𝛈𝟐

𝟐
𝐞𝐱𝐩(−

𝛈𝟐

𝟐
𝒔𝒋), 

𝒇(𝒗𝒊|𝝈) = 𝝈𝐞𝐱𝐩(−𝒗𝒊𝝈), 

𝒇(𝜹|𝜻, 𝛈𝟐 ) =
(𝜻𝛈𝟐)

𝜹

𝚪(𝜹)
. 

with 𝜼 = 𝝈𝝀, 𝛈𝟐~𝑮𝒂𝒎𝒎𝒂(𝛈𝟐, 𝜻−𝟏), 𝒔 = ( 𝒔𝟏, … , 𝒔𝒌), 𝒊 = 𝟏, 𝟐…𝒌,  𝒗 = ( 𝒗𝟏, … , 𝒗𝒏), 𝝈 > 𝟎, 𝒂𝟏 > 𝟎, 

𝒂𝟐 > 𝟎 , 𝛈𝟐 > 𝟎, 𝜻 > 𝟎, 𝜹 > 𝟎. Based on Equation (12), the joint posterior distribution Bayesian LASSO  

quantile regression is obtained as follows: 

𝒇(𝜷𝝉|𝜼
𝟐, 𝜻, 𝝈, 𝒔, 𝒗, 𝜹)~𝑵

(

 
 

𝝈∑ �̂�𝒊𝒋
𝒏
𝒊=𝟏 𝒙𝒊𝒋
𝟐𝒗𝒊

𝟏
 𝒔𝒋
+ 𝝈∑

𝒙𝒊𝒋
𝟐

𝟐𝒗𝒊
𝒏
𝒊=𝟏

,
𝟏

𝟏
 𝒔𝒋
+ 𝝈∑

𝒙𝒊𝒋
𝟐

𝟐𝒗𝒊
𝒏
𝒊=𝟏

)

 
 

 

                      𝒇(𝜼𝟐|𝜷𝝉, 𝜻, 𝝈, 𝒔, 𝒗, 𝜹)~𝑮𝒂𝒎𝒎𝒂(𝜻 + 𝒌, 𝒗 +∑
𝒔𝒋

𝟐

𝒌

𝒋=𝟎

) , (𝟏𝟑) 

𝒇(𝒗|𝜷𝝉, 𝜼
𝟐, 𝜻, 𝝈, 𝒔, 𝒗, 𝜹)~𝑮𝒂𝒎𝒎𝒂(𝜻, 𝜼𝟐), 

𝒇(𝜻|𝜷𝝉, 𝜼
𝟐, 𝝈, 𝒔, 𝒗, 𝜹)~𝑮𝒂𝒎𝒎𝒂(𝜻, 𝜼𝟐), 

𝒇(𝒗𝒊|𝜷𝝉, 𝜼
𝟐, 𝒗, 𝜻, 𝝈, 𝒔, 𝒗, 𝜹)~𝑮𝑰𝑮(

𝟏

𝟐
, (
𝒚𝒊−𝒙𝒊

′𝜷𝝉)

𝒑𝟐𝝈

𝟐

) , (
𝟐

𝝈
+

𝜽𝟐

𝒑𝟐𝝈
)), 

𝒇(𝒔𝒊|𝜷𝝉, 𝜼
𝟐, 𝒗, 𝜻, 𝝈, 𝒔, 𝒗, 𝜹)~𝑮𝑰𝑮 (

𝟏

𝟐
, 𝜷𝒋
𝟐, 𝜼𝟐 ), 

𝒇(𝝈|𝜷𝝉, 𝜼
𝟐, 𝒗, 𝜻, 𝒔, 𝒗, 𝜹)~𝑮𝑰𝑮(𝒂 +

𝟑𝒏

𝟐
, (𝒃 + ∑ (

𝒚𝒊−(𝒙𝒊
′𝜷𝝉+𝝈𝒗𝒊)

𝟐𝒑𝟐𝒗𝒊

𝟐

)𝒏
𝒊=𝟏 + 𝒗𝒊). 

An indicator of model goodness is the Mean Squared Error (MSE) because it handles outliers well. 

Mean Squared Error (MSE) is a measure used to evaluate how well the model predicts the actual data. The 

main purpose of MSE is to measure the difference between the value predicted by the model and the true (or 

target) value in a form that is easy to calculate and understand. The objectives of MSE include measuring 

Model Accuracy. MSE gives an indication of how close the model prediction is to the true value. The smaller 

the MSE value, the better the model is at making predictions and minimizing error. In the context of model 

training, we strive to minimize the MSE.  

This process is known as model optimization. A good model will have a lower MSE, which means that 

the model's predictions are closer to the true values. Avoiding Overfitting and underfitting using MSE, we 

can evaluate whether our model is complex enough (overfitting) or too simple (underfitting). Too high MSE 

on training or testing data may indicate a problem in the model. Evaluation in Regression uses MSE, which 

is often used in regression problems, where the goal is to predict a continuous value. MSE measures the 

average square of the difference between the predicted value and the true value. It provides a larger penalty 

for predictions that are further away from the true value. MSE measures the average squared difference 

between the value predicted by the model and the true value (observed value) below [26],[31]: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 (14) 
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Where 𝑦𝑖 is the value of the i-th data actual and 𝑦�̂� is the estimated value of the i-th prediction value 

from the model. Thus, the goal of MSE is to provide a clear and objective metric for evaluating and optimizing 

prediction models in various data analysis applications. So, the indicator of model goodness chosen in this 

study is MSE. 

 

3. RESULTS AND DISCUSSION 

3.1 Data Set  

Research data sourced from the Central Bureau of Statistics of West Sumatra. Variables that are 

assumed to affect the poverty line (Y) are Percapita Spending (𝑋1), Gross Regional Domestic Product (𝑋2), 

Human Development Index (𝑋3), Open Unemployment Rate (𝑋4), and minimum wages (𝑋5). The data used 

133 poverty lines from 2017 to 2023. Variable information can be seen in the following Table 1 below:  

Table 1. Variable Research, Description, Unit, and Type Data 

Variable Description Unit Type Data  

Y Poverty Line Rupiah/Capita/month Numeric 

𝑿𝟏 Percapita Spending Thousand 

Rupiah/Person/Year 

Numeric 

𝑿𝟐 Gross Regional Domestic Product Rupiah (IDR) Numeric 

𝑿𝟑 Human Development Index Percent (%) Numeric 

𝑿𝟒 Open Unemployment Rate Percent (%) Numeric 

𝑿𝟓 Minimum Wages Rupiah  Numeric 

 

3.2 Estimated Parameter Model of Bayesian Quantile Regression and Bayesian LASSO Quantile 

Regression Method.  

To estimate the parameters using Bayesian Quantile Regression (BQR) and Bayesian LASSO Quantile 

Regression (BLQR) method, the Gibbs Sampling Monte Carlo Markov Chain (MCMC) algorithm is used. In 

this stage, parameter estimation will be performed with 5000 iterations and 1000 burn-ins, as can be seen in  

Table 2 below. Before running iterations using MCMC, we first determine the quantile that we will choose. 

In this study, we use 𝜏 =0.05, 𝜏 =0.25, 𝜏 =0.5, 𝜏 =0.75, and 𝜏 =0.95. The quantiles chosen already represent the 

location of the data we use, namely the low quantile, the middle quantile (median), and the upper quantile. 

Estimation parameter uses the Software R. The parameter to be estimated is the mean of the posterior 

distribution. The results of parameter estimation for each quantile can be seen in Table 2 below: 

Table 2. Estimated Parameter Model BQR and BLQR  

Independent Variable 

BQR BLQR 

Estimated 

Mean (𝜷)̂ 

Width 

(95%) 

Estimated 

Mean (𝜷)̂ 

Width 

(95%) 

𝝉 =0.05 

Intercept -278554* 169009 187777* 7589 

𝑋1 (Percapita Spending) 25.231* 7.741 -162* 15.640 

𝑋2 (Gross Regional Domestic Product) 0.0009* 0.5583 0.158* 10.471 

𝑋3 (Human Development Index)  -441.3 905 24400* 566.58 

𝑋4 (Open Unemployment Rate) -3623* 5356.44 61500* 11201.29 

𝑋5 (Minimum Wages) 0.1937* 0.0414 2.930* 0.1442 

𝝉 = 𝟎. 𝟐𝟓 

Intercept -233635* 213578 113000* 10222.575 

𝑋1 (Percapita Spending) 24.013* 13.987 -12.700* 26.620 

𝑋2 (Gross Regional Domestic Product) 0.0013* 0.5577 0.0831* 14.043 

𝑋3 (Human Development Index)  -122.622 122 619.000* 117.88 

𝑋4 (Open Unemployment Rate) -4286* 7120.19 2810* 13526 
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Independent Variable 

BQR BLQR 

Estimated 

Mean (𝜷)̂ 

Width 

(95%) 

Estimated 

Mean (𝜷)̂ 

Width 

(95%) 

𝑋5 (Minimum Wages) 0.1783* 0.3469 2.430* 11.696 

𝝉 = 𝟎. 𝟓𝟎 

Intercept -355055* 250594 -502000* 11010 

𝑋1 (Percapita Spending) 15.954* 13.73 -860.000* 28.565 

𝑋2 (Gross Regional Domestic Product) 0.0001* 0.7205 0.0345* 2.3135 

𝑋3 (Human Development Index)  3122.86* 5054.68 71800* 28305 

𝑋4 (Open Unemployment Rate) -3615.8 7264.32 174.000* 12985 

𝑋5 (Minimum Wages) 0.1745* 0.042 1.850* 10.628 

𝝉 =0.75 

Intercept -459687* 203998 116000* 10606.92 

𝑋1 (Percapita Spending) 5.349 1.0226 -527* 21.027 

𝑋2 (Gross Regional Domestic Product) 0.0013* 0.7921 0.018* 1.434 

𝑋3 (Human Development Index)  6129.49* 4224 58500* 23355 

𝑋4 (Open Unemployment Rate) -3879 7309.45 -8820* 14185.20 

𝑋5 (Minimum Wages) 0.1844* 0.0379 1.430* 8.782 

 𝝉 = 𝟎. 𝟗𝟓    

Intercept -429149* 191066 -373000* 10179 

𝑋1 (Percapita Spending) 2.8166 5.220 -242* 5.891 

𝑋2(Gross Regional Domestic Product) 0.0040* 0.543 0.024* 2.5392 

𝑋3 (Human Development Index)  5792* 4285 6860* 22412 

𝑋4 (Open Unemployment Rate) -95.823 554 -156* 831.34 

𝑋5 (Minimum Wages) 0.1935* 0.0336 0.908* 8.894 

*Significant at 𝜶 = 𝟎. 𝟎𝟓     

 

Based on Table 2, it is known that the use of the BLQR method obtained different significance results 

for the independent variables in each quantile, and the BQR method was not significant for all quantiles. The 

BLQR method obtained all the variables as statistically significant in influencing the poverty line in all 

quantiles. But in BQR, the Human Development Index (𝑋3) not statistically significant in influencing poverty 

line in quantiles 0.05 and 0.25, and open unemployment Rate (𝑋4) not statistically significant in influencing 

the poverty line in quantiles 0.75 and 0.90. The Bayesian quantile regression method has the value of MSE 

for all quantiles, it can be seen in Table 3 below: 

Table 3. MSE Value BQR and BLQR  

Quantile 
Model BQR  Model BLQR  

MSE MSE 

0.05 0.586 0.348 

0.25 0.383 0.263 

0.5 0.217 0.208 

0.75 0.391 0.295 

0.90 0.445 0.38 

In Table 3 above, it can be seen that for each quantile, the Bayesian LASSO quantile regression method 

(BLQR) has the smallest MSE value in quantile 0.5 of 0.208. So the best model chosen is: 

�̂� = −502000− 860𝑋1 + 0.0345𝑋2 + 71800𝑋3 + 174𝑋4 + 1.850𝑋5 (15) 

Based on Equation (15), the best model obtained, it can be interpreted that an increase in per capita 

income of one thousand rupiah/person/year will reduce the poverty line by 860 Rupiah/capita/month. If Gross 

Regional Domestic Product increases by one rupiah, then the poverty line will increase by 0.034 

thousand/capita/day. If the Human Development Index increases by one percent, it will increase the poverty 

line by 71800 Rupiah/capita/day. If the Open Unemployment Rate increases by one percent, it will increase 

the poverty line by 174 Rupiah/capita/day. If the Minimum wage increases by one Rupiah, then the poverty 

line will increase by 1.850 thousand/capita/day. Furthermore, it is necessary to perform a convergence test 
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for each model parameter resulting from applying the BLQR method. The convergence test is identified by 

looking at the results of the trace plot and the density plot. The results of the convergence test are presented 

in Figure 1 below: 

 

 

Figure 1. Trace Plot and Density Plot of all Parameters for 𝝉 = 0.5 

From  Figure 1, the resulting trace plot has formed two horizontal linear lines for each parameter. 

Thus, it is said that the estimated values of the model parameters have converged to a certain value. Figure 

1 also shows that the density plot produced for each parameter estimate already resembles a normal 

distribution curve, which is symmetrical, meaning that the estimated model parameter values are normally 

distributed.  
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4. CONCLUSIONS 

In this paper, we have presented a Bayesian approach for quantile regression dan Bayesian LASSO 

quantile regression. The advantages of this approach are, first, that it compares two methods; the estimation 

and variable selection procedure is insensitive with regard to outliers, heteroskedasticity, or other anomalies 

that can break existing methods down. And second, the selection of predictive variables affecting the 

dependent variable without sensitivity to abnormal values, unlike other methods such as the method of 

ordinary least squares. A Bayesian approach to this problem is to put a Laplace prior distribution on the 

regression parameters. The Bayesian LASSO quantile regression method (BLQR) using the MCMC Gibbs 

Sampling algorithm is proven to be easier and more practical to apply and produces better estimators than 

estimators produced by ordinary quantile regression. From the case study described above, the best model is 

obtained at quantile 0.50, because it has a small MSE value of 0.208. The independent variables that 

significantly affect the poverty line are minimum wage, gross regional domestic product and per capita 

spending, Open Unemployment Rate, and Human Development Index. 
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