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ABSTRACT 

Article History: Time series forecasting often faces challenges in producing reliable predictions due to 

inherent uncertainty in dynamic systems. While point predictions are commonly used, they 
may not adequately capture this uncertainty, especially in financial systems where 

forecasting accuracy directly impacts decision-making. Prediction intervals offer a solution 

by providing a range of likely outcomes rather than single-point estimates. This study 

implements multivariate time series forecasting using gradient boosting algorithms 
(XGBoost, CatBoost, and LightGBM) to predict cash flow patterns in banking transactions, 

focusing on constructing reliable prediction intervals. Using transaction data from Bank 

Rakyat Indonesia (BRI), the research analyzes both office and e-channel transactions with 
different lag structures based on Granger Causality tests. Model performance was 

evaluated using RMSLE, MAE, and MAPE metrics, with RMSLE chosen as primary due to 

its ability to handle skewed distributions. LightGBM achieved best performance for office 

cash-in transactions (RMSLE: 0.2395), while CatBoost outperformed others for office cash-
out (RMSLE: 0.2848), e-channel cash-in (RMSLE: 0.3946), and e-channel cash-out 

(RMSLE: 0.4221). For prediction intervals, two methods were compared: Residual 

Bootstrap with 500 samples and Quantile Regression. Residual Bootstrap generally 

produced coverage probabilities closer to the 80% level (i.e., 10–90% prediction interval), 
especially for office transactions, while maintaining narrower interval widths. In contrast, 

Quantile Regression tended to generate wider intervals and often overestimated 

uncertainty, resulting in overly high coverage in some cases. However, both methods 

showed clear limitations when applied to e-channel transactions, particularly for cash-in e-
channel, where coverage probabilities fell below 50% due to high volatility and irregular 

transaction patterns. Unlike previous work focused only on point forecasts, this study offers 

insights into forecast uncertainty by evaluating how well each method quantifies, providing 

practical guidance for financial institutions aiming to improve risk management through 
interval-based forecasting. 
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1. INTRODUCTION 

Prediction often comes with a level of uncertainty that needs to be considered. To quantify this 

uncertainty, prediction intervals are used. A prediction interval is a range between two bounds that indicates 

where an unknown value is estimated to lie with a certain probability [1]. The upper and lower bounds of this 

interval provide decision-makers with valuable information about the reliability and potential variability of 

forecasts.  

Statistical methods for generating prediction intervals have evolved significantly over time. In the 

article "Prediction Intervals in Machine Learning" [2], various approaches to creating prediction intervals are 

explored, including Analytical Methods, Bootstrap Methods, Bayesian Methods, Monte Carlo Dropout, Deep 

Quantile Regression, and Heteroskedastic Models. Traditional approaches often relied on parametric 

assumptions and symmetric intervals based on normal distributions. However, real-world data frequently 

violates these assumptions, particularly in fields such as finance where asymmetric distributions and 

heteroscedasticity are common. This has led to the development and application of more robust methods, 

particularly resampling techniques and quantile regression approaches. 

The bootstrap method involves repeatedly sampling the original dataset with replacement to estimate 

the sampling distribution of statistics of interest [3]. In the context of time series forecasting, this method 

helps capture both model uncertainty and inherent data variability. Quantile regression, developed by 

Koenker and Bassett [4], extends beyond traditional mean regression by modeling different quantiles of the 

response variable, providing a more comprehensive view of the relationship between variables at various 

points in the conditional distribution. 

These methods offer several advantages in financial forecasting. Bootstrap resampling provides non-

parametric prediction intervals that don't rely on restrictive distributional assumptions [5], making them 

particularly suitable for financial data that often exhibits non-normal characteristics. Quantile regression can 

capture heteroscedasticity and asymmetric responses that are common in financial time series, offering more 

realistic uncertainty estimates at different probability levels [5]. 

Previous approaches to cash flow forecasting in banking institutions have often relied on traditional 

time series methods such as ARIMA or exponential smoothing [6], [7], which typically assumes 

homoscedastic errors and normal distributions. However, these assumptions are frequently violated in 

financial data, which can exhibit changing volatility patterns and heavy-tailed distributions. Furthermore, 

conventional prediction intervals based on standard errors often underestimate uncertainty during periods of 

market stress or structural changes.  

Several researchers have explored similar applications in various contexts. In [8], researchers 

developed a hybrid ARIMAX-Quantile Regression model for forecasting currency inflow and outflow, while 

[9] analyzed bootstrap methods for financial risk. However, these studies primarily focused on currency 

circulation forecasting or different financial applications. In Indonesia's banking sector, most previous 

research has concentrated on point forecasts rather than prediction intervals. 

The novelty of this study lies in its comprehensive application of both residual bootstrap and quantile 

regression methods to BRI's cash flow data, providing a more complete understanding of forecast uncertainty 

in an emerging market banking context. By combining these methods with modern machine learning 

algorithms (XGBoost, LightGBM, and CatBoost), this research offers insights into how advanced forecasting 

techniques can be effectively applied to Indonesian banking data. Additionally, this study provides a 

comparative analysis of different prediction interval methods in a real-world banking context, which can 

serve as a valuable reference for similar applications in other financial institutions, particularly in emerging 

markets. 

This research aims to address challenges in financial forecasting by employing interval prediction 

methods to analyze cash flow data from Bank Rakyat Indonesia (BRI), a major banking institution in 

Indonesia. Cash flow forecasting is crucial in banking as it affects liquidity management and financial 

stability. The primary objective of this research is to construct accurate prediction intervals that can provide 

clearer insights into the uncertainty of the company's financial conditions. By accurately estimating prediction 

intervals, this research's findings are expected to provide valuable insights for decision-makers in the financial 

sector, helping them manage risks and make better-informed decisions. 
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2. RESEARCH METHODS 

2.1 Data Description 

The data used in this study is sourced from Kaggle. This dataset focuses on financial information from 

BRI related to cash flow. It includes changes in cash values and other variables that influence and are 

processed to achieve cash optimization. The data range covers the period from July 31, 2019, to September 

30, 2020. In this study, variables are divided into two main groups: dependent variables and independent 

variables. Dependent variables include four variables: cash_in_office, cash_out_office, cash_in_echannel, 

and cash_out_echannel. Meanwhile, independent variables encompass all variables except for those 

dependent variables. In addition to independent and dependent variables, the study also incorporates dummy 

variables such as weekend and national holidays. 

Table 1. Variables and Descriptions of Cash Flow Parameters in BRI 

Variables Description 

Cash_in_office The total cash inflow at the BRI office cash desk 

Cash_out_office The total cash outflow at the BRI office cash desk 

Cash_in_e-channel 
Total cash inflow at Automated Teller Machines (ATMs) and Cash Recycle 

Machines (CRMs) 

Cash_out_e-channel Total cash outflow at ATMs and CRMs 

Current_account Total giro deposits 

Deposits Total deposit deposits 

Additional_liabilities Deposits other than giro, savings, and deposits, including issued securities 

Savings Total savings deposits 

IsWeekend 0 for weekends (not operating); 1 for weekdays (operating) 

IsHoliday 0 for national holidays (not operating); 1 for working days (operating) 

 

2.2 XGBoost 

XGBoost (eXtreme Gradient Boosting), introduced by Chen and Guestrin in 2016 [10]. At its core, 

XGBoost minimizes a regularized objective function: 

𝐿(𝜑) = Σ(𝑙(𝑦𝑖 , ŷ𝑖)) + Σ(Ω(𝑓𝑘)) (1) 

where 𝑙 : the loss function, 𝑦𝑖 : the response variable, ŷ𝑖 : the prediction, and Ω(𝑓) : the regularization term.  

XGBoost employs a second-order Taylor expansion of the loss function, allowing for more accurate 

optimization. It features built-in regularization to prevent overfitting, efficient handling of sparse data, and 

parallel processing capabilities, making it suitable for a wide range of problems [11]. 

 

2.3 LightGBM 

LightGBM (Light Gradient Boosting Machine), developed by Microsoft, represents a significant 

advancement in gradient boosting frameworks. This algorithm enhances the conventional Gradient Boosting 

Decision Tree approach through two innovative techniques: Gradient-based One-Side Sampling (GOSS) and 

Exclusive Feature Bundling (EFB). The main idea of GOSS is to focus more on under-trained data by 

employing a selective approach to data sampling. The technique prioritizes instances with larger gradients 

while maintaining a balanced distribution through random sampling of instances with smaller gradients. This 

can be expressed mathematically as  

∇𝐿 ≈ 𝑎Σ{𝑖∈𝐴}𝑔𝑖  +  𝑏 Σ{𝑖∈𝐵}𝑔𝑖 (2) 

where 𝐴: the subset of instances with larger gradients and 𝐵: a random sample of the remaining instances.  
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Meanwhile, EFB aims to bundle exclusive features to reduce the number of features. These 

complementary techniques are specifically designed to enhance both computational efficiency and scalability 

while maintaining model accuracy [12]. 

 

2.4 CatBoost 

CatBoost (Categorical Boosting), created by Yandex, distinguishes itself through its effective handling 

of categorical variables. It introduces ordered boosting to reduce prediction shift, a common issue in gradient 

boosting methods [13]. The prediction for each example is calculated using the formula:  

ŷ𝑖 = 𝐹𝑖(𝑥𝑖) =  ∑ 𝑀𝑜𝑑𝑒𝑙𝑗(𝑥𝑖)

𝑖

{𝑗=1}

(3) 

where 𝑀𝑜𝑑𝑒𝑙𝑗 : trained on a subset of the data preceding the 𝑖-th example.  

This ordered approach helps to mitigate the bias introduced by using modified labels in training. 

CatBoost also employs a novel categorical feature handling method based on ordering the response variable 

statistics:  

ŝ =  
∑ [𝑗 < 𝑖] ∗  𝑦𝑗 +  𝑎 ∗  𝑃𝑛
{𝑗=1}

 ∑ [𝑗 < 𝑖] +  𝑎𝑛
{𝑗=1}    

(4) 

where [𝑗 < 𝑖] : an indicator function, 𝑦𝑗 : the response variable, 𝑃 : a prior, and 𝑎 : a weighting parameter. 

 

2.5 Prediction Interval using Residual Bootstrap 

The bootstrap method provides a robust solution for prediction interval calculations when the 

assumption that residuals follow a normal distribution cannot be met. This method is straightforward, 

assuming only that residuals are uncorrelated and have constant variance. Here is the procedure using naïve 

forecasting [14]. 

The error of a one-step forecast is defined as 𝑒𝑡 = 𝑦𝑡 − �̂�𝑡|𝑡−1. For naïve forecasting, �̂�𝑡|𝑡−1 = 𝑦𝑡−1. 

Thus, it can be rewritten as: 

𝑦𝑡 = 𝑦𝑡−1 + 𝑒𝑡 (5) 

Assuming that future errors will be like past errors, when 𝑡 < 𝑇, we can replace 𝑒𝑡  by sampling from the set 

of previously occurred errors (residuals). This way, we can simulate the next observation: 

𝑦𝑇+1
∗ = 𝑦𝑇 + 𝑒𝑇+1

∗ (6) 

where 𝑒𝑇+1
∗  : a randomly sampled error from the past and 𝑦𝑇+1

∗  : a possible future value. 

The asterisk (*) denotes that this is not the actual value of 𝑦𝑇+1, but one potential future value. By 

adding this simulated observation to the dataset, we can iterate on the process to improve the results [15]. 

𝑦𝑇+2
∗ = 𝑦𝑇 + 𝑒𝑇+2

∗ (7) 

By repeating these steps, a collection of predictions (potential future values) is formed, representing the 

expected variance in forecasting. 

 

2.6 Prediction Interval using Quantile Regression 

Quantile regression serves as an alternative to classical regression with Ordinary Least Squares (OLS). 

In classical regression, OLS is used to predict the average response variable across predictor values, whereas 

quantile regression predicts the median or other quantiles of the response variable. OLS assumes that residuals 

have constant variance across all values of the independent variables. However, quantile regression offers a 
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superior approach by employing quantile loss, which provides sensible prediction intervals even for residuals 

with non-constant variance or non-normal distribution [5]. 

Just as regression minimizes the squared-error loss function to predict a single point estimate, quantile 

regression minimizes quantile loss when predicting specific quantiles [16]. Quantile loss is defined as: 

𝜌𝜏(𝑢) = 𝜏 max(𝑢, 0) + (1 − 𝜏) max(−𝑢, 0) (8) 

where 𝜏 : the required quantile and has a value in the range (0, 1) and 𝑢 : the error or difference between the 

actual observation (𝑦) and the predicted value (𝑦 ). 

 

2.7 Evaluation Metrics 

Root Mean Squared Logarithmic Error (RMSLE) is an evaluation metric used when the response 

variables have varying scales, or the data exhibits a skewed distribution [17]. RMSLE measures the difference 

between the logarithms of predicted and actual values. Mathematically, the formula for RMSLE is: 

𝑅𝑀𝑆𝐿𝐸 =  √
1

𝑛
∑ (log(�̂�𝑖 + 1) − log(𝑦𝑖 + 1))2

𝑛

𝑖=1
(9) 

RMSLE tends to weigh more heavily when the predicted value is less than the actual value, while applying 

less weight when the predicted value exceeds the actual value. 

Mean Absolute Percentage Error (MAPE) is the average absolute difference between predicted and 

actual values, expressed as a percentage of the actual value [18]. MAPE is used to calculate the percentage 

error between actual and predicted values, defined by the equation: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝑦𝑖 − �̂�𝑖
𝑦𝑖

|

𝑛

𝑖=1

(10) 

Mean Absolute Error (MAE) measures the average absolute difference between predicted and actual 

values. Unlike other metrics, MAE does not square the errors, thus assigning equal weight to all errors 

irrespective of their direction [19]. This property makes MAE particularly useful when understanding the 

magnitude of errors without considering whether they are overestimations or underestimations. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

(11) 

3. RESULTS AND DISCUSSION 

In this study, the data used covers the period from July 31, 2019, to September 30, 2020. The data 

consists of various variables recording daily observations during the study period. Descriptive analysis was 

conducted to understand the characteristics and basic patterns of this time series data. This information serves 

as a crucial foundation for further analysis and the development of predictive models in subsequent stages. 

Table 2 below presents the descriptive statistics for these variables. 

Table 2. Descriptive Statistics of Variables 

Variables   Mean (IDR) Min (IDR) Max (IDR) Std (IDR) 

𝑦1,𝑡 Cash_in_office 89,779,694,500 0 656,925,500,445 92,603,694,470 

𝑦2,𝑡 Cash_out_office -62,862,353,978 -344,749,440,186 0 52,247,391,641 

𝑦3,𝑡 Cash_in_e-channel 703,341,412 0 3,744,400,000 342,185,919 

𝑦4,𝑡 Cash_out_e-channel -699,203,294 -2,670,100,000 0 373,507,578 

𝑥1,𝑡 Current_account 881,283,069,011 382,093,559,531 4,678,342,418,901 386,604,058,907 

𝑥2,𝑡 Deposits 900,630,117,960 729,321,441,460 3,464,394,920,252 191,594,178,023 

𝑥3,𝑡 Additional_liabilities 13,765,019,988 10,080,295,596 47,590,591,384 3,401,930,180 

𝑥4,𝑡 Savings 678,195,351,170 617,056,714,583 2,794,601,471,249 109,363,810,824 
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Based on the descriptive statistical analysis presented in Table 2, several patterns emerge in BRI's 

transaction and deposit products. Cash_in_office transactions show a mean of IDR 89.77 billion with a 

standard deviation of IDR 92.60 billion, significantly higher compared to cash_in_e-channel transactions, 

which only average IDR 703.34 million with a standard deviation of IDR 342.18 million. This substantial 

difference indicates that customers still predominantly prefer conducting deposit transactions through 

physical offices rather than digital channels. Meanwhile, cash_out_office transactions recorded an average 

of IDR 62.86 billion with a standard deviation of IDR 52.24 billion, while cash_out_e-channel transactions 

averaged IDR 699.20 million with a standard deviation of IDR 373.50 million. The high standard deviation 

in office transactions indicates greater volatility, implying the need for more stringent liquidity management. 

Regarding deposit products, time deposits dominate with an average balance of IDR 900.63 billion, 

followed by current accounts at IDR 881.28 billion, and savings accounts at IDR 678.19 billion. Although 

time deposits maintain the highest average balance, they exhibit a lower standard deviation (IDR 191.59 

billion) compared to current accounts (IDR 386.60 billion), indicating greater stability. Current accounts 

show the widest fluctuation range, with minimum values of IDR 382.09 billion and maximum values reaching 

IDR 4.67 trillion, reflecting the dynamic nature of this product in line with corporate customer transaction 

behavior. Other liabilities show relatively small values with an average of IDR 13.76 billion and a standard 

deviation of IDR 3.40 billion, indicating a more stable component within the bank's liability structure. 

 

3.1 Data Preprocessing and Feature Engineering 

The preprocessing phase began with an exploratory analysis of transaction patterns in the banking 

dataset. The analysis revealed an interesting pattern where office transactions consistently showed zero values 

on Fridays and Saturdays, while significant transactions were recorded on Sundays. After a thorough 

investigation, it was discovered that these patterns indicated a temporal misalignment in the recording system, 

where transactions were being recorded a day before their actual execution date. Based on this finding, date 

shifting (H+1) was implemented as the primary preprocessing step to address the temporal misalignment in 

the transaction records. This adjustment was necessary after confirming that transaction records on certain 

dates represented cash flows for the following day. The shift alignment resulted in a more accurate 

representation of operational patterns, particularly evident in the proper recording of zero values on Saturdays 

and Sundays, consistent with non-operational branch conditions. 

Following the date shift adjustment, a comprehensive analysis of data quality and temporal patterns 

was conducted. This examination revealed systematic missing values in the dataset, particularly on specific 

dates such as June 21, 2020, June 25, 2020, and August 28, 2020. These patterns were not random but 

reflected the operational characteristics of banking transactions, especially during non-business hours and 

weekends. For handling these missing values in time-dependent variables, a Seasonal Decomposition method 

[20] with a 7-day seasonal period was employed. The 7-day period was selected based on ACF and PACF 

analyses revealing consistent weekly patterns in banking transactions, with strong correlations. This 

sophisticated approach began with linear interpolation for initial gap filling, followed by decomposition into 

trend, seasonal, and residual components. The decomposed components were then carefully reconstructed, 

maintaining the data's inherent characteristics while providing more accurate representations of missing 

values. This method proved particularly effective for variables such as cash_in_e-channel, cash_out_e-

channel, current_accounts, deposits, additional_liabilities, and savings, as well as office cash transactions 

during business days. 

Further enhancement of the dataset involved sophisticated feature engineering techniques. Holiday 

flags were introduced to mark major religious and national holidays such as Eid al-Fitr, Christmas, and New 

Year, while weekend flags were added to differentiate between weekday and weekend patterns. These 

temporal indicators proved crucial for capturing the distinct behavioral patterns that emerged during holidays 

and weekends compared to regular business days. 

Following these preprocessing steps, the optimal lag structure was determined using Granger Causality 

testing [21], and the data was appropriately partitioned into training and testing sets. The combination of 

these preprocessing steps resulted in a more robust and information-rich dataset. The enhanced data quality 

provided a stronger foundation for subsequent analysis, particularly in improving the accuracy of predictive 

models and supporting more reliable insights into cash flow patterns. This comprehensive preprocessing 
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approach was essential in addressing the unique characteristics of banking transaction data while preserving 

the temporal integrity necessary for accurate forecasting. 

 

3.2 Multivariate Time Series Forecasting 

This research implements multivariate forecasting using XGBoost, CatBoost, and LightGBM 

algorithms through the ForecasterAutoregMultiVariate() function from the skforecast library. This function 

enables the creation of forecasting models that can handle multiple input variables simultaneously, 

automatically generate lagged features based on specified parameters. To achieve optimal performance, 

parameter tuning was conducted using the grid_search_forecaster_multivariate() function, which optimizes 

forecasting parameters using RMSLE, MAE, and MAPE evaluation metrics. The optimization process 

performs a systematic search through specified parameter combinations, employs cross-validation to prevent 

overfitting, and utilizes multiple evaluation metrics for comprehensive model assessment. Following the 

Granger Causality test results, the training data implemented different lag values for each variable: lag 6 for 

cash_in_office, lag 2 for cash_out_office, lag 4 for cash_in_e-channel, and lag 2 for cash_out_e-channel, 

ensuring appropriate temporal dependencies are captured in the model. 

Table 3. Performance Comparison of Optimal Models for Different Cash Flow Categories 

 Best Model RMSLE MAE (IDR) MAPE 

Cash_in_office LightGBM 0.2395 20,686,654,405 0.1947 

Cash_out_office CatBoost 0.2848 14,090,147,801 0.2073 

Cash_in_e-channel CatBoost 0.3946 228,662,201 0.3591 

Cash_out_e-channel CatBoost 0.4221 255,251,432 0.4019 

The comparative analysis of model performance reveals distinct patterns across different cash flow 

categories. LightGBM demonstrated superior performance for cash_in_office transactions, achieving the 

lowest RMSLE (0.2395) and MAPE (0.1947) among all categories, despite having a relatively high MAE of 

IDR20.69 billion. CatBoost emerged as the optimal choice for both cash_out_office and cash_in_e-channel 

predictions, with notably different error magnitudes between these categories. For e-channel transactions, 

both cash-in and cash-out categories showed higher error metrics (RMSLE > 0.39, MAPE > 0.35) compared 

to office transactions, suggesting greater prediction complexity in e-channel cash flows. XGBoost, while 

performing best for cash_out_e-channel predictions, exhibited the highest error metrics across all evaluation 

criteria, indicating challenges in this category's prediction accuracy. 

 

3.3 Prediction Intervals 

Enhancing the robustness of prediction, prediction intervals were constructed using Residual Bootstrap 

and Quantile Regression methods. Implementation was performed through the 

backtesting_forecaster_multivariate () function with 500 bootstrap samples and percentile ranges of 10-90 to 

accommodate significant variations in data distribution. This function evaluates model performance across 

multiple time windows while generating prediction intervals through both resampling of model residuals and 

estimation of conditional quantiles of the target variable. This approach enables the model to provide more 

comprehensive estimates by considering prediction uncertainties. The performance comparison of both 

methods for four types of transaction data is presented in Table 4. 

 

Table 4. Performance Comparison of Prediction Interval Methods 

Data Method Coverage Probability Interval Range 

Cash_in_office Residual Bootstrap 87.10% 10% - 90% 

 Quantile Regression 100.00% 10% - 90% 

Cash_out_office Residual Bootstrap 93.55% 10% - 90% 

 Quantile Regression 96.77% 10% - 90% 
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Data Method Coverage Probability Interval Range 

Cash_in_e-channel Residual Bootstrap 51.61% 10% - 90% 

 Quantile Regression 45.16% 10% - 90% 

Cash_out_e-channel Residual Bootstrap 77.42% 10% - 90% 

 Quantile Regression 87.10% 10% - 90% 

Based on the results obtained in Table 4, prediction interval visualizations were created to provide a 

clearer picture of each method's performance. Figure 1 shows a visual comparison between the Residual 

Bootstrap and Quantile Regression methods for one of the analyzed variables, namely Cash In Office. 

  
(a)        (b) 

Figure 1. Cash In Office Analysis: Actual vs. Predicted Values with Prediction Intervals using (a) Residual 

Bootstrap and (b) Quantile Regression Approach 

The blue line represents actual values, while the orange line shows prediction values, with the yellow 

area depicting the prediction interval. The Residual Bootstrap method achieved a coverage probability of 

87.10% within the 10–90% prediction interval range. This value is relatively close to the nominal coverage 

level of 80%, indicating a well-calibrated model with efficient uncertainty estimation. Moreover, the 

prediction intervals are relatively narrow, providing sharper and more informative guidance while still 

successfully capturing the majority of actual observations, even during periods of significant fluctuation. In 

contrast, the Quantile Regression method attained a coverage probability of 100% in the same 10–90% 

interval range. Although this suggests all actual values were captured within the interval, it also indicates that 

the model may be overly conservative. The wider intervals produced, especially during periods of normal 

variation, reduce the precision and informativeness of the predictions. Overall, the Residual Bootstrap method 

offers a more balanced performance by providing prediction intervals that are both well-calibrated and 

efficiently narrow, making it more suitable for capturing the dynamic behavior of Cash In Office data without 

overestimating uncertainty. 

  

(a)        (b) 

Figure 2. Cash Out Office Analysis: Actual vs. Predicted Values with Prediction Intervals using (a) Residual 

Bootstrap and (b) Quantile Regression Approach 
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 The Residual Bootstrap method achieved a coverage probability of 93.55% within the 10–90% 

prediction interval range. Although this indicates strong performance and well-calibrated intervals, several 

actual observations—particularly on September 18 and 21, 2020—fell outside the prediction bounds, likely 

due to extreme fluctuations. In comparison, the Quantile Regression method yielded a higher coverage 

probability of 96.77% within the same interval range. This approach produced prediction intervals that more 

consistently encompassed actual values, especially during periods of sharp variation. The wider intervals 

generated by Quantile Regression reflect its conservative nature but also its ability to adapt effectively to 

outlier behavior and sudden spikes in data. Overall, while both methods demonstrate solid performance, the 

analysis suggests that Residual Bootstrap offers a more balanced trade-off between interval sharpness and 

reliability. Its intervals are narrower and more efficient, with a coverage probability that remains close to the 

target level, making it particularly suitable for operational forecasting where clarity and precision are 

important. 

 

(a)        (b) 

Figure 3. Cash In E-channel Analysis: Actual vs. Predicted Values with Prediction Intervals using (a) Residual 

Bootstrap and (b) Quantile Regression Approach 

The prediction performance for Cash In E-channel transactions was notably weak using both the 

Residual Bootstrap and Quantile Regression methods. The Residual Bootstrap approach (a) achieved a 

coverage probability of only 51.61%, while Quantile Regression (b) performed even lower, at 45.16%, within 

the 10–90% prediction interval range. These values are far below the nominal 80% target, indicating poor 

reliability of the prediction intervals. The Cash In E-channel data exhibited extreme volatility, with 

unpredictable transaction spikes and sharp declines. One significant anomaly occurred around September 13, 

2020, where cash inflows surged to approximately 1.6 billion, far exceeding the typical range of 0.6 to 0.8 

billion. These abrupt changes were not captured adequately by either method. Overall, the analysis reveals 

fundamental limitations of traditional predictive models in handling highly volatile and irregular transaction 

behavior in E-channel systems. This suggests the need for more advanced and adaptive forecasting 

approaches, possibly involving hybrid models, external drivers, or real-time learning mechanisms to better 

anticipate unexpected surges and shifts in electronic transaction flows. 

  

(a)        (b) 

Figure 4. Cash Out E-channel Analysis: Actual vs. Predicted Values with Prediction Intervals using (a) 

Residual Bootstrap and (b) Quantile Regression Approach 
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For Cash Out E-channel transactions, the Residual Bootstrap method (a) showed limited effectiveness, 

achieving a coverage probability of 77.42% within the 10–90% prediction interval. Meanwhile, Quantile 

Regression (b) offered a slight improvement with a coverage probability of 87.10%. Although Quantile 

Regression provided higher coverage, both methods struggled to capture the extreme fluctuations 

characteristic of Cash Out E-channel data. A notable spike occurred in mid-September 2020, where the 

transaction value surged to approximately 2.0 billion, far exceeding typical daily patterns. These findings 

highlight the highly dynamic and volatile nature of E-channel financial data, underscoring the need for more 

sophisticated and adaptive predictive models. Incorporating hybrid methods, external features, or real-time 

learning could better accommodate irregular transaction behaviors and sudden surges.  

This finding aligns with previous research [22] by using the same Bank Rakyat Indonesia dataset, 

where they compared Transfer Function and Artificial Neural Network (ANN) methods. While their study 

found ANN to be the superior method overall, it still showed higher error rates for e-channel transactions 

compared to office transactions. This consistent pattern across different studies suggests that e-channel 

transactions inherently possess greater volatility and are more challenging to predict than office-based 

transactions. The analysis revealed critical limitations in current predictive modelling approaches for E-

channel transactions. The high volatility and irregular patterns suggest the need for more sophisticated, 

integrated predictive strategies. 

 

4. CONCLUSIONS 

This study evaluated machine learning models and prediction interval methods for cash flow 

forecasting at Bank Rakyat Indonesia (BRI). Among the machine learning models compared (XGBoost, 

LightGBM, CatBoost), CatBoost and LightGBM demonstrated superior performance across different 

transaction types. CatBoost excelled in predicting cash_out_office, cash_in_e-channel, and cash_out_e-

channel transactions, while LightGBM showed better accuracy for cash_in_office predictions. In terms of 

prediction interval methods, Residual Bootstrap generally produced coverage probabilities closer to the 

nominal 80% coverage level (i.e., 10–90% prediction interval), while also maintaining relatively narrower 

interval widths compared to Quantile Regression. This balance makes its prediction intervals more efficient 

and better calibrated for most transaction types. However, both methods faced challenges when applied to E-

channel transactions, which exhibited extreme volatility. For example, in cash_in_e-channel, low coverage 

probabilities were primarily due to highly erratic transaction patterns influenced by factors such as early-

month salary disbursements, promotional programs, and pandemic-related shifts. 
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