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 ABSTRACT 

Article History: 
Let 𝐺 be a nontrivial simple connected graph, 𝑎𝑏 be an edge of 𝐺 and 𝑚 be an integer 

greater than or equal to 3. A path of order 𝑚, denoted by 𝑃𝑚, is a graph whose vertices 

can be labelled 𝑣1, 𝑣2, … , 𝑣𝑚 such that 𝐸(𝑃𝑚) = {𝑣1𝑣2, 𝑣2𝑣3, … , 𝑣𝑚−1𝑣𝑚}. A 𝐺𝑎𝑏
𝑚 -shield 

graph is a graph obtained by 𝑃𝑚 and 𝑚 − 1 copies of 𝐺 such that the 𝑎𝑏 edge of 𝑖-th 𝐺 

embedded to 𝑖-th edge of 𝑃𝑚 by embedding 𝑎 to 𝑣𝑖 and 𝑏 to 𝑣𝑖+1. A path in a vertex-

colored graph is said to be rainbow-vertex path if every internal vertex in the path has 

different color. A vertex-colored graph is said to be rainbow-vertex connected if for every 

pair of vertices there exists a rainbow-vertex path connecting them. The rainbow- vertex 

connection number of 𝐺, denoted by 𝑟𝑣𝑐(𝐺), is the minimum colors needed to make 𝐺 

rainbow-vertex connected. In this paper, we determine the rainbow-vertex connection 

numbers of of wheel-shield graphs (𝑊𝑛)𝑎𝑏
𝑚 , specifically finding that the number ranges 

from 𝑚 − 2 to 𝑚 + 1 depending on the order of the wheel. 
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1. INTRODUCTION 

Mathematics is a fundamental discipline that holds significant importance due to its extensive and close 

application in everyday life [1]. One area of mathematics that has extensive applications in everyday life is 

graph theory. Graph theory garners significant attention due to its practical applications in everyday life, such 

as scheduling transportation departures [2], organizing course timetables [3], determining the shortest routes 

[4] cyber security [5] and many other uses [6].  

Diestel [7] defines a graph 𝐺 as a pair of two sets (𝑉(𝐺), 𝐸(𝐺)) where 𝑉(𝐺) is called the set of vertices 

in 𝐺 and 𝐸(𝐺) ⊆ [𝑉(𝐺)]2 = {{𝑥, 𝑦}|𝑥, 𝑦 ∈ 𝑉(𝐺), 𝑥 ≠ 𝑦} is the set of edges in 𝐺. An edge 𝑒 = {𝑥, 𝑦} can be 

written as 𝑥𝑦. The number of vertices of a graph 𝐺, denoted by |𝑉(𝐺)|, is its order and the number of edges, 

denoted by |𝐸(𝐺)|, is its size. 

The distance from vertex 𝑢 to vertex 𝑣, denoted by 𝑑(𝑢, 𝑣), is the length of the shortest path connecting 

𝑢 and 𝑣 if there exists a path connecting them, or infinity if there are no paths connecting 𝑢 and 𝑣. The 

diameter of 𝐺, denoted by 𝑑𝑖𝑎𝑚(𝐺), is max {𝑑(𝑢, 𝑣)|𝑢, 𝑣 ∈ 𝑉(𝐺)}. 

One of the topics in graph theory is graph colorings, which involves associating vertices, edges, or 

faces with a set of natural numbers [8]. This problem is known as an NP-complete problem and has various 

real-world applications [9] such as register allocation, scheduling, and frequency assignment in 

telecommunications, where it is used to model and solve problems involving the assignment of limited 

resources to conflicting tasks or entities, often represented as nodes and edges in a graph [10]. 

There are many types of graph colorings. One of which is a rainbow-vertex coloring of graph. It was 

introduced by [11].  Rainbow coloring, a concept in graph theory where each edge of a graph is assigned a 

distinct color, has found applications in the study of Hamilton cycles in edge-colored graphs. A Hamilton 

cycle is a cycle that visits each vertex of the graph exactly once [12]. Recent research has shown that under 

certain conditions, randomly colored graphs almost surely admit rainbow Hamilton cycles, which are 

Hamilton cycles where each edge has a different color. These findings provide insights into the structural 

properties and characteristics of complex networks and graphs [12]. 

In addition to its theoretical applications, rainbow coloring has also been applied in the domain of data 

visualization, particularly in the design of effective colormaps for graphical inference tasks [13]. Studies have 

demonstrated that colormaps featuring a wide range of uniquely nameable colors, such as those found in 

rainbow colormaps, can enhance cognitive performance in tasks that require model-based judgments and 

decision-making. This suggests that leveraging the principles of rainbow coloring in the creation of data 

visualizations can facilitate more accurate interpretation and understanding of complex datasets [13]. By 

assigning distinct colors to different elements or categories within a visualization, rainbow coloring can help 

users quickly identify patterns, relationships, and anomalies, ultimately leading to improved comprehension 

and decision-making based on the visualized information. 

A path in a vertex-colored graph is said to be rainbow-vertex path if every internal vertex in the path 

has different color [14]. A vertex-colored graph is said to be rainbow-vertex connected if for every pair of 

vertices there exists a rainbow-vertex path. The rainbow-vertex connection number of 𝐺, denoted by 𝑟𝑣𝑐(𝐺), 
is the minimum colors needed to make 𝐺 rainbow-vertex connected. In this paper, we determine the rainbow-

vertex connection numbers of 𝐺𝑎𝑏
𝑚 -shield graphs where 𝐺 are wheels. 

2. RESEARCH METHODS 

This research employs a literature study approach (library research), the axiomatic deductive method, 

and pattern recognition. The axiomatic deductive method involves the use of deductive proofs that are 

applicable in mathematical logic [15]. The study involves examining books, textbooks, journals, and 

scientific articles on the number of rainbow vertex connections. 

We used several definitions, lemmas, and observations in order to prove the theorems. The definitions, 

lemmas, and observations are as follows. 

Definition 1. [16] Let 𝒏 be a natural number with 𝒏 ≥ 𝟑. A wheel with 𝒏 + 𝟏 vertices, denoted by 𝑾𝒏, is a 

graph which vertices and edges can be defined by 
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𝑉(𝑊𝑛)  =  {𝑣, 𝑣𝑖  |𝑖 ∈  [1, 𝑛]} and 

𝐸(𝑊𝑛) =  {𝑣𝑣𝑖  |𝑖 ∈  [1, 𝑛]} ∪ {𝑣𝑖𝑣𝑖+1|𝑖 ∈  [1, 𝑛 − 1]} ∪ {𝑣1𝑣𝑛}, respectively, 

The vertex 𝑣 is called the hub of 𝑊𝑛, see Figure 1. 

 
Figure 1. A Wheel with Order 4 (𝑾𝟒) 

Lemma 1. [17] Let 𝑮 be a non-trivial connected graph with order 𝒏 and 𝒅𝒊𝒂𝒎(𝑮) be the diameter of 𝑮, then 

𝒅𝒊𝒂𝒎(𝑮) −  𝟏 ≤  𝒓𝒗𝒄(𝑮)  ≤  𝒏 −  𝟐. 

Lemma 2. [17] [18] Let 𝑮 be a non-trivial connected graph and 𝒄 be the number of cut vertices in 𝑮, then 

𝒓𝒗𝒄(𝑮)  ≥  𝒄 

Theorem 1. [17] Let 𝒏 ≥  𝟑 and 𝑪𝒏 be a cycle graph with order 𝒏, then  

𝑟𝑣𝑐(𝐶𝑛) =

{
 
 

 
 ⌈
𝑛

2
⌉ − 2, if 𝑛 ∈ {5, 9};

⌈
𝑛

2
⌉ − 1, if 𝑛 ∈ {3, 4, 6, 7, 8, 10, 11, 12, 13, 15};

⌈
𝑛

2
⌉ ,               if 𝑛 = 14 𝑜𝑟 𝑛 ≥ 16.

 

 

3. RESULTS AND DISCUSSION 

Graph operation is a technique for generating a new graph by merging two existing graphs [19]. There 

are various types of operations, such as joint, corona, comb, shackle, and amalgamation [20] In this paper, 

the shield graph is obtained by combining two graphs in different way from those operations. 

Let 𝐺 be a nontrivial simple connected graph, 𝑎𝑏 be an edge of 𝐺, and 𝑚 be an integer at least 3. A 

path of order 𝑚, denoted by 𝑃𝑚, is a graph whose vertices can be labelled by 𝑣1, 𝑣2, … , 𝑣𝑚 such that 𝐸(𝑃𝑚) =
{𝑣1𝑣2, 𝑣2𝑣3, … , 𝑣𝑚−1𝑣𝑚}. A 𝐺𝑎𝑏

𝑚 -shield graph is a graph obtained by 𝑃𝑚 and 𝑚− 1 copies of 𝐺 such that the 

𝑎𝑏 edge of 𝑖-th 𝐺 embedded to 𝑖-th edge of 𝑃𝑚 by embedding 𝑎 to 𝑣𝑖 and 𝑏 to 𝑣𝑖+1. 

3.1 Wheel-Shield Graphs 

Let 𝑚 and 𝑛 be two natural numbers at least 3, 𝑊𝑛 be a wheel with order 𝑛 + 1, and 𝑎𝑏 ∈ 𝐸(𝑊𝑛). There 

are two types of wheel-shield graphs, namely: 

1. A wheel-shield graph where neither 𝑎 nor 𝑏 is the hub of 𝑊𝑛, denoted by 𝑆ℎ(𝑚,𝑊𝑛 , 𝑎𝑏), see 

Figure 2 for the example; 

 
Figure 2. A Wheel-Shield Graph 𝑺𝒉(𝟓,𝑾𝟑, 𝒂𝒃) 

2. A wheel-shield graph where 𝑎 is the hub of 𝑊𝑛 , denoted by 𝑆ℎ(𝑚,𝑊𝑛, 𝑎̅𝑏), see Figure 3 for the 

example. 
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Figure 3. A Wheel-Shield Graph 𝑺𝒉(𝟒,𝑾𝟒, 𝒂̅𝒃) 

Definition 2.  Let 𝑚 and 𝑛 be two natural numbers at least 3. A wheel-shield graph 𝑆ℎ(𝑚,𝑊𝑛, 𝑎𝑏) as shown 

in Figure 4 is a graph with the vertex set and the edge set defined as follows, respectively.  

𝑉(𝑆ℎ(𝑚,𝑊𝑛 , 𝑎𝑏)) = {𝑝𝑖|𝑖 ∈ [1,𝑚]} ∪ {𝑣𝑗|𝑗 ∈ [1,𝑚 − 1]} ∪ {𝑣𝑘,𝑗|𝑘 ∈ [1, 𝑛 − 2], 𝑗 ∈ [1,𝑚 − 1]} and 

𝐸(𝑆ℎ(𝑚,𝑊𝑛 , 𝑎𝑏))

= {𝑝𝑖𝑝𝑖+1|𝑖 ∈ [1,𝑚 − 1]} ∪ {𝑣𝑗𝑝𝑖 , 𝑣𝑗𝑝𝑖+1 |𝑖 ∈ [1,𝑚 − 1], 𝑗 ∈ [1,𝑚 − 1], 𝑖 = 𝑗}

∪ {𝑣𝑗𝑣𝑘,𝑗|𝑘 ∈ [1, 𝑛 − 2], 𝑗 ∈ [1,𝑚 − 1]}  ∪ {𝑣𝑘,𝑗𝑣𝑘+1,𝑗|𝑘 ∈ [1, 𝑛 − 3], 𝑗 ∈ [1,𝑚 − 1]}

∪ {𝑣1,𝑗𝑝𝑖 , 𝑣𝑛−2,𝑗𝑝𝑖+1|𝑖 ∈ [1,𝑚 − 1], 𝑗 ∈ [1,𝑚 − 1], 𝑖 = 𝑗}. 

 
Figure 4. A Wheel-Shield Graph 𝑺𝒉(𝒎,𝑾𝒏, 𝒂𝒃) 

Theorem 2. Let 𝑚 and 𝑛 be two natural numbers at least 3, then the rainbow-vertex connection number of 

𝑆ℎ(𝑚,𝑊𝑛, 𝑎𝑏), a wheel-shield graph where neither 𝑎 nor 𝑏 is the hub of 𝑊𝑛, is 

𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛 , 𝑎𝑏)) = {

𝑚 − 2, for 𝑛 = 3;
𝑚 + 1, for (even 𝑛 ≥ 8  and 𝑚 ∈ [3, 𝑛 − 4] ) or

  (odd 𝑛 ≥ 9 and 𝑚 ∈ [3, 𝑛 − 5]);
𝑚,  for others 𝑚 and 𝑛.

 

Proof. We divide the proof into nine cases as follows. 

Case 1. For 𝒏 = 𝟑 

(i) It will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊3, 𝑎𝑏)) ≥ 𝑚 − 2. Based on Lemma 1, 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊3, 𝑎𝑏)) ≥

𝑑𝑖𝑎𝑚 (𝑆ℎ(𝑚,𝑊3, 𝑎𝑏)) − 1 = 𝑚 − 1 − 1 = 𝑚 − 2. 

(ii) Conversely, it will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊3, 𝑎𝑏)) ≤ 𝑚 − 2. Define a vertex (𝑚 − 2)-

coloring 𝑐: 𝑉(𝑆ℎ(𝑚,𝑊3, 𝑎𝑏)) → [1,𝑚 − 2] as follows: 

𝑐(𝑥) = {
𝑖 − 1, if 𝑥 = 𝑝𝑖  for every 𝑖 ∈ [2,𝑚 − 1];

1, otherwise.
 

For every 𝑥, 𝑦 ∈ 𝑉(𝑆ℎ(𝑚,𝑊3, 𝑎𝑏)) there exist 𝑝𝑖 , 𝑝𝑗 ∈ 𝑉(𝑆ℎ(𝑚,𝑊3, 𝑎𝑏)) with 𝑥𝑝𝑖 , 𝑝𝑗𝑦 ∈

𝐸(𝑆ℎ(𝑚,𝑊3, 𝑎𝑏)) so that the path 𝑥, 𝑝𝑖 , 𝑝𝑖+1, 𝑝𝑖+2, … , 𝑝𝑗 , 𝑦 be a vertex rainbow path. Based on (i) 

and (ii), 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊3, 𝑎𝑏)) = 𝑚 − 2. An illustration of this proof can be seen in Figure 5. 
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Figure 5.  A rainbow-vertex  (𝒎 − 𝟐)-coloring of 𝑺𝒉(𝒎,𝑾𝟑, 𝒂𝒃) 

Case 2. For 𝒏 = 𝟒 

(i) It will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊4, 𝑎𝑏)) ≥ 𝑚. Based on Lemma 1, 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊4, 𝑎𝑏)) ≥

𝑑𝑖𝑎𝑚 (𝑆ℎ(𝑚,𝑊4, 𝑎𝑏)) − 1 = 𝑚 + 1 − 1 = 𝑚. 

(ii) Conversely, it will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊4, 𝑎𝑏)) ≤ 𝑚. Define a vertex 𝑚-coloring 

𝑐: 𝑉(𝑆ℎ(𝑚,𝑊4, 𝑎𝑏)) → [1,𝑚] as follows: 

𝑐(𝑥) = {
𝑖, if 𝑥 = 𝑝𝑖  for every  𝑖 ∈ [1,𝑚];
1, otherwise.

 

For every 𝑥, 𝑦 ∈ 𝑉(𝑆ℎ(𝑚,𝑊4, 𝑎𝑏)) there exist 𝑝𝑖 , 𝑝𝑗 ∈ 𝑉(𝑆ℎ(𝑚,𝑊4, 𝑎𝑏)) with 𝑥𝑝𝑖 , 𝑝𝑗𝑦 ∈

𝐸(𝑆ℎ(𝑚,𝑊4, 𝑎𝑏)) so that the path 𝑥, 𝑝𝑖 , 𝑝𝑖+1, 𝑝𝑖+2, … , 𝑝𝑗 , 𝑦 be a rainbow-vertex path. Based on 

(i) and (ii), 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊4, 𝑎𝑏)) = 𝑚. The illustration of this proof can be seen in Figure 6. 

 
Figure 6. A Rainbow-Vertex 𝒎-Coloring of 𝑺𝒉(𝒎,𝑾𝟒, 𝒂𝒃)  

Case 3. For 𝒏 = 𝟓 

(i) It will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊5, 𝑎𝑏)) ≥ 𝑚. Based on Lemma 1, 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊5, 𝑎𝑏)) ≥

𝑑𝑖𝑎𝑚 (𝑆ℎ(𝑚,𝑊5, 𝑎𝑏)) − 1 = 𝑚 + 1 − 1 = 𝑚. 

(ii) Conversely, it will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊5, 𝑎𝑏)) ≤ 𝑚. Define a vertex 𝑚-coloring 

𝑐: 𝑉(𝑆ℎ(𝑚,𝑊5, 𝑎𝑏)) → [1,𝑚] as follows: 

𝑐(𝑥) =

{
 
 

 
 𝑖, if 𝑥 = 𝑝𝑖  for every 𝑖 ∈ [1,𝑚];
𝑗 + 1, if 𝑥 = 𝑣1,𝑗  for every 𝑗 ∈ [1,𝑚 − 1];

𝑗, if 𝑥 = 𝑣3,𝑗  for every 𝑗 ∈ [1,𝑚 − 1];

1, otherwise.

 

By this coloring, for every two vertices in 𝑆ℎ(𝑚,𝑊5, 𝑎𝑏), there exists a rainbow-vertex path that 

connects the two vertices. The rainbow-vertex path can be seen in Table 1. 

Table 1. 𝒙 − 𝒚 Rainbow-Vertex Paths in 𝑺𝒉(𝒎,𝑾𝟓, 𝒂𝒃)  

Cases Rainbow Vertex Paths 

𝑥𝑝𝑖 , 𝑝𝑗𝑦 ∈ 𝐸(𝑆ℎ(𝑚,𝑊5, 𝑎𝑏)) 𝑥, 𝑝𝑖 , 𝑝𝑖+1, 𝑝𝑖+2, … , 𝑝𝑗, 𝑦 

𝑥𝑝𝑖 , 𝑝𝑗𝑦 ∉ 𝐸(𝑆ℎ(𝑚,𝑊5, 𝑎𝑏)) 

{𝑥, 𝑝𝑖} ⊆ 𝑁(𝑎) 
and {𝑝𝑗,𝑦} ⊆ 𝑁(𝑏) 

𝑥, 𝑎, 𝑝𝑖 , 𝑝𝑖+1, 𝑝𝑖+2, … , 𝑝𝑗 , 𝑏, 𝑦 
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For another case, there exists a rainbow-vertex path which is a subpath of one of rainbow-vertex 

paths in Table 1. Based on (i) and (ii), 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊5, 𝑎𝑏)) = 𝑚. 

Case 4. For 𝒏 = 𝟔 

(i) It will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊6, 𝑎𝑏)) ≥ 𝑚. Based on Lemma 1, 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊6, 𝑎𝑏)) ≥

𝑑𝑖𝑎𝑚 (𝑆ℎ(𝑚,𝑊6, 𝑎𝑏)) − 1 = 𝑚 + 1 − 1 = 𝑚. 

(ii) Conversely, it will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊6, 𝑎𝑏)) ≤ 𝑚. Define a vertex 𝑚-coloring 

𝑐: 𝑉(𝑆ℎ(𝑚,𝑊6, 𝑎𝑏)) → [1,𝑚] as follows: 

𝑐(𝑥) =

{
 
 
 

 
 
 

1, if 𝑥 = 𝑣1;

𝑚 − 1, if 𝑥 = 𝑣𝑖  for every 𝑖 ∈ [2,𝑚 − 2];
𝑚, if 𝑥 = 𝑣𝑚−1;

𝑖 , if 𝑥 = 𝑝𝑖  for every 𝑖 ∈ [1,𝑚];

(𝑖 + 𝑗) mod 𝑚, if 𝑥 = 𝑣𝑖,𝑗  for every 𝑖 ∈ [1,2] and 𝑗 ∈ [1,𝑚 − 1];

(𝑗 − 1) mod 𝑚, if 𝑥 = 𝑣3,𝑗  for every 𝑗 ∈ [2,𝑚 − 1];

𝑗, if 𝑥 = 𝑣4,𝑗 for every 𝑗 ∈ [1,𝑚 − 1].

 

By this coloring, for every two vertices in 𝑆ℎ(𝑚,𝑊6, 𝑎𝑏), there exists a rainbow-vertex path that 

connects the two vertices. The rainbow-vertex path can be seen in Table 2. 

Table 2. 𝒙 − 𝒚 Rainbow-Vertex Paths in 𝑺𝒉(𝒎,𝑾𝟔, 𝒂𝒃) ≅ 𝑯  

Cases Notes Rainbow Vertex Paths 

𝑑(𝑥, 𝑦) = 𝑑𝑖𝑎𝑚 𝐻  𝑥, 𝑣1, 𝑝2, 𝑝3, … , 𝑝𝑚−1, 𝑣𝑚−1, 𝑦 

𝑥𝑝𝑖 , 𝑝𝑗𝑦 ∈ 𝐸(𝐻)  𝑥, 𝑝𝑖 , 𝑝𝑖+1, 𝑝𝑖+2, … , 𝑝𝑗 , 𝑦 

𝑥𝑝𝑖 , 𝑝𝑗𝑦 ∉ 𝐸(𝐻) 𝑎1𝑎2, 𝑏1𝑏2, 𝑥𝑎1, 𝑎2𝑝𝑖 , 𝑝𝑗𝑏1, 𝑏2𝑦 ∈ 𝐸(𝐻)  

For another cases, there exist a rainbow-vertex path which is a subpath of one of rainbow-vertex 

paths in Table 2. Based on (i) and (ii), 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊6, 𝑎𝑏)) = 𝑚. 

Case 5. For 𝒏 = 𝟕 

(i) It will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊7, 𝑎𝑏)) ≥ 𝑚. Based on Lemma 1, 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊7, 𝑎𝑏)) ≥

𝑑𝑖𝑎𝑚 (𝑆ℎ(𝑚,𝑊7, 𝑎𝑏)) − 1 = 𝑚 + 1 − 1 = 𝑚. 

(ii) Conversely, it will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊7, 𝑎𝑏)) ≤ 𝑚. Define a vertex 𝑚-coloring 

𝑐: 𝑉(𝑆ℎ(𝑚,𝑊7, 𝑎𝑏)) → [1,𝑚] as follows: 

𝑐(𝑣𝑖,𝑗) =

{
 
 
 
 

 
 
 
 𝑖 + 𝑗, for every 𝑖 ∈ [1,2] and 𝑗 ∈ [1, ⌈

𝑚 − 1

2
⌉] ;

𝑗 − 𝑖 + 7, for every 𝑖 ∈ [4,5] and 𝑗 ∈ [1, ⌈
𝑚 − 1

2
⌉] ;

𝑗 − 𝑖, for every 𝑖 ∈ [1,2] and 𝑗 ∈ [⌈
𝑚 + 1

2
⌉ ,𝑚 − 1] ;

𝑗 + 𝑖 − 5, for every 𝑖 ∈ [4,5] and 𝑗 ∈ [⌈
𝑚 + 1

2
⌉ ,𝑚 − 1] ;

1, for every 𝑖 = 3  and 𝑗 ∈ [1,𝑚 − 1].

 

𝑐(𝑣𝑖) = {
𝑖, for every 𝑖 ∈ [1, ⌈

𝑚 − 1

2
⌉] ;

𝑖 + 1, for every 𝑖 ∈ [⌈
𝑚 + 1

2
⌉ ,𝑚 − 1] .

 

𝑐(𝑝𝑖) = 𝑖, for every 𝑖 ∈ [1,𝑚]. 

By this coloring, for every two vertices in 𝑆ℎ(𝑚,𝑊7, 𝑎𝑏), there exists a rainbow-vertex path that 

connects the two vertices. The rainbow-vertex path can be seen in Table 3. 

  



BAREKENG: J. Math. & App., vol. 19(4), pp. 2377- 2390, December, 2025. 2383 

 

Table 3. 𝒗𝒊,𝒋 − 𝒗𝒌,𝒍 Rainbow-Vertex Paths in 𝑺𝒉(𝒎,𝑾𝟕, 𝒂𝒃)  

Cases Rainbow Vertex Paths 

𝑗 ∈ [1, ⌈
𝑚 − 1

2
⌉] , 𝑙 ∈ [1, ⌈

𝑚 − 1

2
⌉] , 𝑘 ∈ [1,3], 𝑗 < 𝑙 

𝑣𝑖,𝑗 , 𝑣𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, … , 𝑝𝑙 , 𝑣1,𝑙 , 𝑣2,𝑙 , 𝑣3,𝑙 

𝑗 ∈ [1, ⌈
𝑚 − 1

2
⌉] , 𝑙 ∈ [1, ⌈

𝑚 − 1

2
⌉] , 𝑘 ∈ [4,5], 𝑗 < 𝑙 

𝑣𝑖,𝑗 , 𝑣𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, … , 𝑝𝑙 , 𝑝𝑙+1, 𝑣5,𝑙 , 𝑣4,𝑙 

𝑗 ∈ [⌈
𝑚 + 1

2
⌉ ,𝑚 − 1] , 𝑙 ∈ [⌈

𝑚 + 1

2
⌉ ,𝑚 − 1] , 𝑖 ∈ [1,2], 𝑗 < 𝑙 

𝑣2,𝑗 , 𝑣1,𝑗 , 𝑝𝑗, 𝑝𝑗+1, 𝑝𝑗+2, … , 𝑝𝑙 , 𝑣𝑙 , 𝑣𝑘,𝑙 

𝑗 ∈ [⌈
𝑚 + 1

2
⌉ ,𝑚 − 1] , 𝑙 ∈ [⌈

𝑚 + 1

2
⌉ ,𝑚 − 1] , 𝑖 ∈ [3,5], 𝑗 < 𝑙 

𝑣3,𝑗 , 𝑣4,𝑗 , 𝑣5,𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, … , 𝑝𝑙 , 𝑣𝑙 , 𝑣𝑘,𝑙 

𝑗 ∈ [1, ⌈
𝑚 − 1

2
⌉] , 𝑙 ∈ [⌈

𝑚 + 1

2
⌉ ,𝑚 − 1] 

𝑣𝑖,𝑗 , 𝑣𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, … , 𝑝𝑙 , 𝑣𝑙 , 𝑣𝑘,𝑙 

For another case, there exists a rainbow-vertex path which is a subpath of one of rainbow-vertex 

paths in Table 3. Based on (i) and (ii), 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊7, 𝑎𝑏)) = 𝑚. 

Case 6. For even number 𝒏 ≥ 𝟖  𝐚𝐧𝐝 𝟑 ≤ 𝒎 ≤ 𝒏− 𝟒 

(i) It will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛, 𝑎𝑏)) ≥ 𝑚 + 1. Suppose 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛, 𝑎𝑏)) ≤ 𝑚. Without 

loss of generality, give a color for 𝑣1, 𝑝2, 𝑝3, … , 𝑝𝑚−1, 𝑣𝑚−1 with 1, 2, … ,𝑚, respectively, so the 

𝑣𝑛−2
2
,1
− 𝑣𝑛

2
,𝑚−1-path becomes a rainbow-vertex path as shown in Figure 7. 

Figure 7. 𝑺𝒉(𝒎,𝑾𝒏, 𝒂𝒃) with 𝐞𝐯𝐞𝐧 𝒏 ≥ 𝟖  𝐚𝐧𝐝 𝟑 ≤ 𝒎 ≤ 𝒏 − 𝟒 

A 𝑣𝑛−2
2
,1
− 𝑣𝑛

2
,⌈
𝑚

2
⌉
-path with 𝑑(𝑣𝑛−2

2
,1
− 𝑣𝑛

2
,⌈
𝑚

2
⌉
) ≤ 𝑚 must go through 𝑣

⌈
𝑚

2
⌉
. Because the colors 

1, 2, … , ⌈
𝑚

2
⌉ have been used, the colors that can be used to color 𝑣

⌈
𝑚

2
⌉
 are ⌈

𝑚+2

2
⌉ , ⌈

𝑚+4

2
⌉ , … ,𝑚  as 

shown in Figure 8. 

Figure 8. 𝑺𝒉(𝒎,𝑾𝒏, 𝒂𝒃) with 𝐞𝐯𝐞𝐧 𝒏 ≥ 𝟖  𝐚𝐧𝐝 𝟑 ≤ 𝒎 ≤ 𝒏 − 𝟒 

Now, the 𝑣𝑛−2
2
,⌈
𝑚

2
⌉
− 𝑣𝑛

2
,𝑚−1-path with 𝑑(𝑣𝑛−2

2
,⌈
𝑚

2
⌉
− 𝑣𝑛

2
,𝑚−1) also must go through 𝑣

⌈
𝑚

2
⌉
, as shown 

in Figure 9. Since the colors ⌈
𝑚+2

2
⌉ , ⌈

𝑚+4

2
⌉ , … ,𝑚  have been used, then the colors that can be used 

to color 𝑣
⌈
𝑚

2
⌉
 are 1, 2, … , ⌈

𝑚

2
⌉. This means there is no color that can be used to color 𝑣

⌈
𝑚

2
⌉
. So, 

𝑟𝑣𝑐(𝑃(𝑚,𝑊𝑛 , 𝑎𝑏)) ≥ 𝑚 + 1. 
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Figure 9. 𝑺𝒉(𝒎,𝑾𝒏, 𝒂𝒃) with 𝐞𝐯𝐞𝐧 𝒏 ≥ 𝟖  𝐚𝐧𝐝 𝟑 ≤ 𝒎 ≤ 𝒏 − 𝟒 

(ii) Conversely, it will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛, 𝑎𝑏)) ≤ 𝑚 + 1. Define a vertex (𝑚 + 1)-

coloring 𝑐: 𝑉(𝑆ℎ(𝑚,𝑊3, 𝑎𝑏)) → [1,𝑚 + 1] as follows: 

𝑐(𝑣𝑖,𝑗) =

{
 
 
 

 
 
 [(𝑖 + 𝑗)mod 𝑚] + 1, for every 𝑖 ∈ [1,

𝑛 − 2

2
]  and 𝑗 ∈ [1, ⌈

𝑚

2
⌉] ;

[(𝑗 − 𝑖 + 𝑛) mod 𝑚] + 1, for every 𝑖 ∈ [
𝑛

2
, 𝑛 − 2] and 𝑗 ∈ [1, ⌈

𝑚

2
⌉] ;

[(𝑗 − 𝑖) mod 𝑚] + 1, for every 𝑖 ∈ [1,
𝑛 − 2

2
]  and 𝑗 ∈ [⌈

𝑚 + 2

2
⌉ ,𝑚 − 1] ;

𝑗 + 𝑖 + 2 − 𝑛, for every 𝑖 ∈ [
𝑛

2
, 𝑛 − 2] and 𝑗 ∈ [⌈

𝑚 + 2

2
⌉ ,𝑚 − 1] .

 

𝑐(𝑣𝑖) =

{
 
 

 
 𝑖, for every 𝑖 ∈ [1, ⌈

𝑚 − 2

2
⌉] ;

𝑚 + 1, for every 𝑖 = ⌈
𝑚

2
⌉ ;

𝑖 + 1, for every 𝑖 ∈ [⌈
𝑚 + 2

2
⌉ ,𝑚 − 1] .

 

𝑐(𝑝𝑖) = 𝑖, for every 𝑖 ∈ [1,𝑚]. 

By this coloring, for every two vertices in 𝑆ℎ(𝑚,𝑊𝑛 , 𝑎𝑏) there exists a rainbow-vertex path that 

connects the two vertices. The rainbow- vertex path can be seen in Table 4. 

Table 4. 𝒗𝒊,𝒋 − 𝒗𝒌,𝒍 Rainbow-Vertex Paths in 𝑺𝒉(𝒎,𝑾𝒏, 𝒂𝒃) with 𝐞𝐯𝐞𝐧 𝒏 ≥ 𝟖  𝐚𝐧𝐝 𝟑 ≤ 𝒎 ≤ 𝒏 − 𝟒 

Cases Rainbow Vertex Path 

𝑗 ∈ [1, ⌈
𝑚 − 2

2
⌉] , 𝑙 ∈ [1, ⌈

𝑚 − 2

2
⌉] , 𝑘 ∈ [1,

𝑛

2
] , 𝑗 < 𝑙 

𝑣𝑖,𝑗, 𝑣𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, … , 𝑝𝑙 , 𝑣1,𝑙 , 𝑣2,𝑙 , … , 𝑣𝑘,𝑙 

𝑗 ∈ [1, ⌈
𝑚 − 2

2
⌉] , 𝑙 ∈ [1, ⌈

𝑚 − 2

2
⌉] , 𝑘 ∈ [

𝑛 + 2

2
, 𝑛 − 2] , 𝑗 < 𝑙 

𝑣𝑖,𝑗 , 𝑣𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, … , 𝑝𝑙 , 𝑝𝑙+1, 𝑣𝑛−2,𝑙 , 

𝑣𝑛−3,𝑙 , … , 𝑣𝑛+2
2 ,𝑙

 

𝑗 ∈ [⌈
𝑚 + 2

2
⌉ ,𝑚 − 1] , 𝑙 ∈ [⌈

𝑚 + 2

2
⌉ ,𝑚 − 1] , 𝑖 ∈ [1,

𝑛 − 2

2
] , 𝑗 < 𝑙 

𝑣𝑛−2
2 ,𝑗

, 𝑣𝑛−4
2 ,𝑗

, … , 𝑣1,𝑗 , 𝑝𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, …, 

𝑝𝑙 , 𝑣𝑙 , 𝑣𝑘,𝑙 

𝑗 ∈ [⌈
𝑚 + 2

2
⌉ ,𝑚 − 1] , 𝑙 ∈ [⌈

𝑚 + 2

2
⌉ ,𝑚 − 1] , 𝑖 ∈ [

𝑛

2
, 𝑛 − 2] , 𝑗 < 𝑙 

𝑣𝑛
2,𝑗
, 𝑣𝑛+2

2
,𝑗
, … , 𝑣𝑛−2,𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, …, 

𝑝𝑙 , 𝑣𝑙 , 𝑣𝑘,𝑙 

𝑗 ∈ [1, ⌈
𝑚 − 2

2
⌉] , 𝑙 ∈ [⌈

𝑚

2
⌉ ,𝑚 − 1] 

𝑣𝑖,𝑗 , 𝑣𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, … , 𝑝𝑙 , 𝑣𝑙 , 𝑣𝑘,𝑙 

For another cases, there exist a rainbow-vertex path which is a subpath of one of rainbow-vertex 

paths in Table 4. Based on (i) and (ii), 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛 , 𝑎𝑏)) = 𝑚 + 1. 

Case 7. For even number 𝒏 ≥ 𝟖  𝐚𝐧𝐝 𝒎 ≥ 𝒏 − 𝟑 

(i) It will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛, 𝑎𝑏)) ≥ 𝑚. Based on Lemma 1, 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛 , 𝑎𝑏)) ≥

𝑑𝑖𝑎𝑚 (𝑆ℎ(𝑚,𝑊𝑛 , 𝑎𝑏)) − 1 = 𝑚 + 1 − 1 = 𝑚. 

(ii) Conversely, it will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛, 𝑎𝑏)) ≤ 𝑚. Define a vertex 𝑚-coloring 

𝑐: 𝑉(𝑆ℎ(𝑚,𝑊𝑚 , 𝑎𝑏)) → [1,𝑚] as follows: 
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𝑐(𝑣𝑖,𝑗) =

{
 
 
 
 

 
 
 
 𝑖 + 𝑗, for every 𝑖 ∈ [1,

𝑛 − 2

2
]  and 𝑗 ∈ [1, ⌈

𝑚 − 1

2
⌉] ;

(𝑗 − 𝑖 + 𝑛) mod 𝑚, for every 𝑖 ∈ [
𝑛

2
, 𝑛 − 2]  and 𝑗 ∈ [1, ⌈

𝑚 − 1

2
⌉] ;

(𝑗 − 𝑖) mod 𝑚, for every 𝑖 ∈ [1,
𝑛 − 2

2
]  and 𝑗 ∈ [⌈

𝑚 + 1

2
⌉ ,𝑚 − 1] ;

𝑗 + 𝑖 + 2 − 𝑛, for every 𝑖 ∈ [
𝑛

2
, 𝑛 − 2] , 𝑗 ∈ [⌈

𝑚 + 1

2
⌉ ,𝑚 − 1] .

 

𝑐(𝑣𝑖) = {
𝑖, for every 𝑖 ∈ [1, ⌈

𝑚 − 1

2
⌉] ;

𝑖 + 1, for every 𝑖 ∈ [⌈
𝑚 + 1

2
⌉ ,𝑚 − 1] .

 

𝑐(𝑝𝑖) = 𝑖,          for every 𝑖 ∈ [1,𝑚]. 

By this coloring, for every two vertices in 𝑃(𝑚,𝑊𝑛 , 𝑎𝑏) there exist rainbow-vertex path that 

connects the two vertices. The rainbow-vertex path can be seen in Table 5. 

Table 5. 𝒗𝒊,𝒋 − 𝒗𝒌,𝒍 Rainbow-Vertex Paths in 𝑺𝒉(𝒎,𝑾𝒏, 𝒂𝒃) with 𝐞𝐯𝐞𝐧 𝒏 ≥ 𝟖  𝐚𝐧𝐝 𝒎 ≥ 𝒏 − 𝟑 

Cases Rainbow Vertex Paths 

𝑗 ∈ [1, ⌈
𝑚 − 1

2
⌉] , 𝑙 ∈ [1, ⌈

𝑚 − 1

2
⌉] , 𝑘 ∈ [1,

𝑛

2
] , 𝑗 < 𝑙 

𝑣𝑖,𝑗 , 𝑣𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, … , 𝑝𝑙 , 𝑣1,𝑙 , 𝑣2,𝑙 , 

… , 𝑣𝑛
2,𝑙

 

𝑗 ∈ [1, ⌈
𝑚 − 1

2
⌉] , 𝑙 ∈ [1, ⌈

𝑚 − 1

2
⌉] , 𝑘 ∈ [

𝑛 + 2

2
, 𝑛 − 2] , 𝑗 < 𝑙 

𝑣𝑖,𝑗 , 𝑣𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, … , 𝑝𝑙 , 𝑝𝑙+1, 

𝑣𝑛−2,𝑙 , 𝑣𝑛−3,𝑙 , … , 𝑣𝑛+2
2 ,𝑙

 

𝑗 ∈ [⌈
𝑚 + 1

2
⌉ ,𝑚 − 1] , 𝑙 ∈ [⌈

𝑚 + 1

2
⌉ ,𝑚 − 1] , 𝑖 ∈ [1,

𝑛 − 2

2
] , 𝑗 < 𝑙 

𝑣𝑛−2
2 ,𝑗

, 𝑣𝑛−4
2 ,𝑗

, … , 𝑣1,𝑗 , 𝑝𝑗 , 𝑝𝑗+1, 

𝑝𝑗+2, … , 𝑝𝑙 , 𝑣𝑙 , 𝑣𝑘,𝑙 

𝑗 ∈ [⌈
𝑚 + 1

2
⌉ ,𝑚 − 1] , 𝑙 ∈ [⌈

𝑚 + 1

2
⌉ ,𝑚 − 1] , 𝑖 ∈ [

𝑛

2
, 𝑛 − 2] , 𝑗 < 𝑙 

𝑣𝑛
2,𝑗
, 𝑣𝑛+2

2 ,𝑗
, … , 𝑣𝑛−2,𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, …, 

𝑝𝑙 , 𝑣𝑙 , 𝑣𝑘,𝑙 

𝑗 ∈ [1, ⌈
𝑚 − 1

2
⌉] , 𝑙 ∈ [⌈

𝑚 + 1

2
⌉ ,𝑚 − 1] 

𝑣𝑖,𝑗 , 𝑣𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, … , 𝑝𝑙 , 𝑣𝑙 , 𝑣𝑘,𝑙 

For another cases, there exist a rainbow-vertex path which is a subpath of one of rainbow-vertex 

paths in Table 5. Based on (i) and (ii), 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛 , 𝑎𝑏)) = 𝑚. 

Case 8. For odd number 𝒏 ≥ 𝟗 𝐚𝐧𝐝 𝟑 ≤ 𝒎 ≤ 𝒏− 𝟓 

(i) It will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛, 𝑎𝑏)) ≥ 𝑚 + 1. Suppose 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛, 𝑎𝑏)) ≤ 𝑚. Without 

loss of generality, give a color for 𝑣1, 𝑝2, 𝑝3, … , 𝑝𝑚−1, 𝑣𝑚−1 with 1, 2, … ,𝑚, respectively, so the 

𝑣𝑛−1
2
,1
− 𝑣𝑛−1

2
,𝑚−1

-path becomes rainbow vertex path as shown in Figure 10. 

 
Figure 10. 𝑺𝒉(𝒎,𝑾𝒏, 𝒂𝒃) with odd 𝒏 ≥ 𝟗 𝐚𝐧𝐝 𝟑 ≤ 𝒎 ≤ 𝒏 − 𝟓 
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The 𝑣𝑛−1
2
,1
− 𝑣𝑛−1

2
,⌈
𝑚−1

2
⌉
-path with 𝑑(𝑣𝑛−1

2
,1
− 𝑣𝑛−1

2
,⌈
𝑚−1

2
⌉
) ≤ 𝑚 must go through 𝑣

⌈
𝑚−1

2
⌉
. Because 

the colors 1, 2, … , ⌈
𝑚−1

2
⌉ have been used, then the colors that can be used to color 𝑣

⌈
𝑚

2
⌉
 are 

⌈
𝑚+1

2
⌉ , ⌈

𝑚+3

2
⌉ , … ,𝑚  as shown in Figure 11. 

 
Figure 11. 𝑺𝒉(𝒎,𝑾𝒏, 𝒂𝒃) with odd 𝒏 ≥ 𝟗 𝐚𝐧𝐝 𝟑 ≤ 𝒎 ≤ 𝒏 − 𝟓 

Now, the 𝑣𝑛−1
2
,⌈
𝑚−1

2
⌉
− 𝑣𝑛−1

2
,𝑚−1

-path with 𝑑(𝑣𝑛−1
2
,⌈
𝑚−1

2
⌉
− 𝑣𝑛−1

2
,𝑚−1

) also must go through 𝑣
⌈
𝑚−1

2
⌉
 

as shown in Figure 12. Since the colors ⌈
𝑚+1

2
⌉ , ⌈

𝑚+3

2
⌉ , … ,𝑚  have been used, then the colors that 

can be used to color 𝑣
⌈
𝑚

2
⌉
 are 1, 2,… , ⌈

𝑚−1

2
⌉. This means there is no color that can be used to color 

𝑣
⌈
𝑚−1

2
⌉
. So, 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛 , 𝑎𝑏)) ≥ 𝑚 + 1. 

 
Figure 12. 𝑺𝒉(𝒎,𝑾𝒏, 𝒂𝒃) with odd 𝒏 ≥ 𝟗 𝐚𝐧𝐝 𝟑 ≤ 𝒎 ≤ 𝒏 − 𝟓 

(ii) Conversely, it will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛, 𝑎𝑏)) ≤ 𝑚 + 1. Define a vertex (𝑚 + 1)-

coloring 𝑐: 𝑉(𝑆ℎ(𝑚,𝑊3, 𝑎𝑏)) → [1,𝑚 + 1] as follows: 

𝑐(𝑣𝑖,𝑗) =

{
 
 
 
 
 

 
 
 
 
 (𝑖 + 𝑗) 𝑚𝑜𝑑 𝑚 + 1, for every 𝑖 ∈ [1,

𝑛 − 3

2
]  and 𝑗 ∈ [1, ⌈

𝑚

2
⌉] ;

(𝑗 − 𝑖 + 𝑛) 𝑚𝑜𝑑 𝑚 + 1, for every 𝑖 ∈ [
𝑛 + 1

2
, 𝑛 − 2]  and 𝑗 ∈ [1, ⌈

𝑚

2
⌉] ;

(𝑗 − 𝑖) 𝑚𝑜𝑑 𝑚 + 1, for every 𝑖 ∈ [1,
𝑛 − 3

2
]  and 𝑗 ∈ [⌈

𝑚 + 2

2
⌉ ,𝑚 − 1] ;

𝑗 + 𝑖 + 2 − 𝑛, for every 𝑖 ∈ [
𝑛 + 1

2
, 𝑛 − 2]  and 𝑗 ∈ [⌈

𝑚 + 2

2
⌉ ,𝑚 − 1] ;

1, for every 𝑖 =
𝑛 − 1

2
 and  𝑗 ∈ [1,𝑚 − 1].

 

𝑐(𝑣𝑖) =

{
 
 

 
 𝑖, for every 𝑖 ∈ [1, ⌈

𝑚 − 2

2
⌉] ;

𝑚 + 1, for every 𝑖 = ⌈
𝑚

2
⌉ ;

𝑖 + 1, for every 𝑖 ∈ [⌈
𝑚 + 2

2
⌉ ,𝑚 − 1] .

 

𝑐(𝑝𝑖) = 𝑖, for every 𝑖 ∈ [1,𝑚]. 
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By this coloring, for every two vertices in 𝑆ℎ(𝑚,𝑊𝑛 , 𝑎𝑏) there exists a rainbow-vertex path that 

connects the two vertices. The rainbow-vertex path can be seen in Table 6. 

Table 6. 𝒗𝒊,𝒋 − 𝒗𝒌,𝒍 Rainbow-Vertex Paths in 𝑺𝒉(𝒎,𝑾𝒏, 𝒂𝒃) with odd 𝒏 ≥ 𝟗 𝐚𝐧𝐝 𝟑 ≤ 𝒎 ≤ 𝒏− 𝟓 

Cases Rainbow Vertex Paths 

𝑗 ∈ [1, ⌈
𝑚 − 2

2
⌉] , 𝑙 ∈ [1, ⌈

𝑚 − 2

2
⌉] , 𝑘 ∈ [1,

𝑛 − 1

2
] , 𝑗 < 𝑙 

𝑣𝑖,𝑗, 𝑣𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, … , 𝑝𝑙 , 𝑣1,𝑙 , 𝑣2,𝑙 , 

… , 𝑣𝑛−1
2 ,𝑙

 

𝑗 ∈ [1, ⌈
𝑚 − 2

2
⌉] , 𝑙 ∈ [1, ⌈

𝑚 − 2

2
⌉] , 𝑘 ∈ [

𝑛 + 1

2
, 𝑛 − 2] , 𝑗 < 𝑙 

𝑣𝑖,𝑗 , 𝑣𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, … , 𝑝𝑙 , 𝑝𝑙+1, 

𝑣𝑛−2,𝑙 , 𝑣𝑛−3,𝑙 , … , 𝑣𝑛+1
2 ,𝑙

 

𝑗 ∈ [⌈
𝑚 + 2

2
⌉ ,𝑚 − 1] , 𝑙 ∈ [⌈

𝑚 + 2

2
⌉ ,𝑚 − 1] , 𝑖 ∈ [1,

𝑛 − 1

2
] , 𝑗 < 𝑙 

𝑣𝑛−1
2 ,𝑗

, 𝑣𝑛−3
2 ,𝑗

, … , 𝑣1,𝑗 , 𝑝𝑗 , 𝑝𝑗+1, 

𝑝𝑗+2,…,𝑝𝑙 , 𝑣𝑙 , 𝑣𝑘,𝑙 

𝑗 ∈ [⌈
𝑚 + 2

2
⌉ ,𝑚 − 1] , 𝑙 ∈ [⌈

𝑚 + 2

2
⌉ ,𝑚 − 1] , 𝑖 ∈ [

𝑛 + 1

2
, 𝑛 − 2] , 𝑗 < 𝑙 

𝑣𝑛+1
2 ,𝑗

, 𝑣𝑛+3
2 ,𝑗

, … , 𝑣𝑛−2,𝑗 , 𝑝𝑗+1, 

𝑝𝑗+2, … , 𝑝𝑙 , 𝑣𝑙 , 𝑣𝑘,𝑙 

𝑗 ∈ [1, ⌈
𝑚 − 2

2
⌉] , 𝑙 ∈ [⌈

𝑚

2
⌉ ,𝑚 − 1] 

𝑣𝑖,𝑗 , 𝑣𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, … , 𝑝𝑙 , 𝑣𝑙 , 𝑣𝑘,𝑙 

For another cases, there exist a rainbow-vertex path which is a subpath of one of rainbow-vertex 

paths in Table 6. Based on (i) and (ii), 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛 , 𝑎𝑏)) = 𝑚 + 1. 

Case 9. For odd number 𝒏 ≥ 𝟗  𝐚𝐧𝐝 𝒎 ≥ 𝒏 − 𝟒 

(i) It will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛, 𝑎𝑏)) ≥ 𝑚. Based on Lemma 1, 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛 , 𝑎𝑏)) ≥

𝑑𝑖𝑎𝑚 (𝑆ℎ(𝑚,𝑊𝑛 , 𝑎𝑏)) − 1 = 𝑚 + 1 − 1 = 𝑚. 

(ii) Conversely, it will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛, 𝑎𝑏)) ≤ 𝑚. Define a vertex 𝑚-coloring 

𝑐: 𝑉(𝑆ℎ(𝑚,𝑊𝑚 , 𝑎𝑏)) → [1,𝑚] as follows: 

𝑐(𝑣𝑖,𝑗) =

{
 
 
 
 
 

 
 
 
 
 (𝑖 + 𝑗) 𝑚𝑜𝑑 𝑚, for every 𝑖 ∈ [1,

𝑛 − 3

2
]  and 𝑗 ∈ [1, ⌈

𝑚 − 1

2
⌉] ;

(𝑗 − 𝑖 + 𝑛) 𝑚𝑜𝑑 𝑚, for every 𝑖 ∈ [
𝑛 + 1

2
, 𝑛 − 2]  and 𝑗 ∈ [1, ⌈

𝑚 − 1

2
⌉] ;

(𝑗 − 𝑖) 𝑚𝑜𝑑 𝑚, for every 𝑖 ∈ [1,
𝑛 − 3

2
]  and 𝑗 ∈ [⌈

𝑚 + 1

2
⌉ ,𝑚 − 1] ;

𝑗 + 𝑖 + 2 − 𝑛, for every 𝑖 ∈ [
𝑛 + 1

2
, 𝑛 − 2]   and 𝑗 ∈ [⌈

𝑚 + 1

2
⌉ ,𝑚 − 1] ;

1, for every 𝑖 =
𝑛 − 1

2
  and  𝑗 ∈ [1,𝑚 − 1].

 

𝑐(𝑣𝑖) = {
𝑖, for every 𝑖 ∈ [1, ⌈

𝑚 − 1

2
⌉] ;

𝑖 + 1, for every 𝑖 ∈ [⌈
𝑚 + 1

2
⌉ ,𝑚 − 1] .

 

𝑐(𝑝𝑖) = 𝑖, 𝑖 ∈ [1,𝑚]. 

By this coloring, for every two vertices in 𝑆ℎ(𝑚,𝑊𝑛 , 𝑎𝑏) there exist a rainbow-vertex path that 

connects the two vertices. The rainbow-vertex path can be seen in Table 7.  

Table 7. 𝒗𝒊,𝒋 − 𝒗𝒌,𝒍 Rainbow-Vertex Paths in 𝑷(𝒎,𝑾𝒏, 𝒂𝒃) with 𝐨𝐝𝐝 𝒏 ≥ 𝟗  𝐚𝐧𝐝 𝒎 ≥ 𝒏 − 𝟒 

Cases Rainbow Vertex Paths 

𝑗 ∈ [1, ⌈
𝑚 − 1

2
⌉] , 𝑙 ∈ [1, ⌈

𝑚 − 1

2
⌉] , 𝑘 ∈ [1,

𝑛 − 1

2
] , 𝑗 < 𝑙 

𝑣𝑖,𝑗 , 𝑣𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, … , 𝑝𝑙 , 𝑣1,𝑙 , 𝑣2,𝑙 , 

… , 𝑣𝑛−1
2 ,𝑙

 

𝑗 ∈ [1, ⌈
𝑚 − 1

2
⌉] , 𝑙 ∈ [1, ⌈

𝑚 − 1

2
⌉] , 𝑘 ∈ [

𝑛 + 1

2
, 𝑛 − 2] , 𝑗 < 𝑙 

𝑣𝑖,𝑗 , 𝑣𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, … , 𝑝𝑙 , 𝑝𝑙+1, 

𝑣𝑛−2,𝑙 , 𝑣𝑛−3,𝑙 , … , 𝑣𝑛+1
2 ,𝑙
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Cases Rainbow Vertex Paths 

𝑗 ∈ [⌈
𝑚 + 1

2
⌉ ,𝑚 − 1] , 𝑙 ∈ [⌈

𝑚 + 1

2
⌉ ,𝑚 − 1] , 𝑖 ∈ [1,

𝑛 − 1

2
] , 𝑗 < 𝑙 

𝑣𝑛−1
2 ,𝑗

, 𝑣𝑛−3
2 ,𝑗

, … , 𝑣1,𝑗 , 𝑝𝑗 , 𝑝𝑗+1, 

𝑝𝑗+2, … , 𝑝𝑙 , 𝑣𝑙 , 𝑣𝑘,𝑙 

𝑗 ∈ [⌈
𝑚 + 1

2
⌉ ,𝑚 − 1] , 𝑙 ∈ [⌈

𝑚 + 1

2
⌉ ,𝑚 − 1] , 𝑖 ∈ [

𝑛 + 1

2
, 𝑛 − 2] , 𝑗 < 𝑙 

𝑣𝑛+1
2 ,𝑗

, 𝑣𝑛+3
2 ,𝑗

, … , 𝑣𝑛−2,𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, 

… , 𝑝𝑙 , 𝑣𝑙 , 𝑣𝑘,𝑙 

𝑗 ∈ [1, ⌈
𝑚 − 1

2
⌉] , 𝑙 ∈ [⌈

𝑚 + 1

2
⌉ ,𝑚 − 1] 

𝑣𝑖,𝑗 , 𝑣𝑗 , 𝑝𝑗+1, 𝑝𝑗+2, … , 𝑝𝑙 , 𝑣𝑙 , 𝑣𝑘,𝑙 

For another case, there exists a rainbow-vertex path which is a subpath of one of rainbow-vertex 

paths in Table 6. Based on (i) and (ii), 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛 , 𝑎𝑏)) = 𝑚.∎ 

Definition 3.  Let 𝑚 and 𝑛 be two natural numbers at least 3. A wheel-shield graph 𝑆ℎ(𝑚,𝑊𝑛 , 𝑎̅𝑏) as shown 

in Figure 13 is a graph with the vertex set and the edge set defined as follows, respectively. 

𝑉(𝑆ℎ(𝑚,𝑊𝑛 , 𝑎̅𝑏)) = {𝑝𝑖|𝑖 ∈ [1,𝑚]} ∪ {𝑣𝑘,𝑗|𝑘 ∈ [1, 𝑛 − 1], 𝑗 ∈ [1,𝑚 − 1]} and 

𝐸(𝑆ℎ(𝑚,𝑊𝑛 , 𝑎̅𝑏)) = {𝑝𝑖𝑝𝑖+1 |𝑖 ∈ [1,𝑚 − 1]} ∪ {𝑣𝑘,𝑗 , 𝑝𝑖|𝑖 ∈ [1,𝑚 − 1], 𝑗 ∈ [1,𝑚 − 1], 𝑘 ∈ [1, 𝑛 − 1]}  

∪ {𝑣1,𝑗𝑝𝑖 , 𝑣𝑛−1,𝑗𝑝𝑖,|𝑖 = 𝑗 + 1, 𝑖 ∈ [2,𝑚], 𝑗 ∈ [1,𝑚 − 1]}. 

 

Figure 13. A wheel-Shield Graph  𝑺𝒉(𝒎,𝑾𝒏, 𝒂̅𝒃)  

Theorem 3. Let 𝑚 and 𝑛 be two natural numbers at least 3, then the rainbow-vertex connection number of  

𝑆ℎ(𝑚,𝑊𝑛, 𝑎̅𝑏), a wheel-shield graph where 𝑎 is the hub of 𝑊𝑛, is 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛, 𝑎̅𝑏)) = 𝑚 − 1. 

Proof. 

(i) It will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛, 𝑎̅𝑏)) ≥ 𝑚 − 1. Based on Lemma 1, 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛 , 𝑎̅𝑏)) ≥

𝑑𝑖𝑎𝑚 (𝑆ℎ(𝑚,𝑊𝑛 , 𝑎̅𝑏)) − 1 = 𝑚 − 1. 

(ii) Conversely, it will be shown that 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛, 𝑎̅𝑏)) ≤ 𝑚 − 1. Define a vertex (𝑚 − 1)-

coloring 𝑐: 𝑉(𝑆ℎ(𝑚,𝑊𝑛 , 𝑎̅𝑏)) → [1,𝑚 − 1] as follows: 

𝑐(𝑥) = {
𝑖, if 𝑥 = 𝑝𝑖 for every 𝑖 ∈ [1,𝑚 − 1];

1, otherwise.
 

For every 𝑥, 𝑦 ∈ 𝑉(𝑆ℎ(𝑚,𝑊𝑛, 𝑎̅𝑏)), there exist 𝑝𝑖 , 𝑝𝑗 ∈  𝑉(𝑆ℎ(𝑚,𝑊𝑛 , 𝑎̅𝑏)) with 𝑥𝑝𝑖 , 𝑝𝑗𝑦 ∈

𝐸(𝑆ℎ(𝑚,𝑊𝑛 , 𝑎̅𝑏)) such that 𝑥, 𝑝𝑖 , 𝑝𝑖+1, 𝑝𝑖+2, … , 𝑝𝑗 , 𝑦 is a rainbow-vertex path, see Figure 14. 

Based on (i) and (ii), 𝑟𝑣𝑐(𝑆ℎ(𝑚,𝑊𝑛 , 𝑎̅𝑏)) = 𝑚 − 1.∎ 
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Figure 14. A rainbow-vertex  (𝒎 − 𝟏)-coloring of 𝑺𝒉(𝒎,𝑾𝒏, 𝒂̅𝒃)   

For example, 𝑟𝑣𝑐(𝑆ℎ(4,𝑊4, 𝑎̅𝑏)) = 3, see Figure 15. 

 
Figure 15. A Rainbow-Vertex  𝟑-coloring of 𝑺𝒉(𝟒,𝑾𝟒, 𝒂̅𝒃) 

4. CONCLUSION 

Based on the results and discussion, it can be concluded that the rainbow-vertex connection number 

for wheel-shield graphs varies from 𝑚− 2 to 𝑚 + 1 depending on the order of the wheel. 
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