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ABSTRACT

Let G be a nontrivial simple connected graph, ab be an edge of G and m be an integer
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different color. A vertex-colored graph is said to be rainbow-vertex connected if for every
pair of vertices there exists a rainbow-vertex path connecting them. The rainbow- vertex
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1. INTRODUCTION

Mathematics is a fundamental discipline that holds significant importance due to its extensive and close
application in everyday life [1]. One area of mathematics that has extensive applications in everyday life is
graph theory. Graph theory garners significant attention due to its practical applications in everyday life, such
as scheduling transportation departures [2], organizing course timetables [3], determining the shortest routes
[4] cyber security [5] and many other uses [6].

Diestel [7] defines a graph G as a pair of two sets (V(G), E(G)) where V(G) is called the set of vertices
inG and E(G) € [V(6)]? = {{x,y}|x,y € V(G),x # y} is the set of edges in G. An edge e = {x, y} can be
written as xy. The number of vertices of a graph G, denoted by |V (G)], is its order and the number of edges,
denoted by |E(G)|, is its size.

The distance from vertex u to vertex v, denoted by d (u, v), is the length of the shortest path connecting
u and v if there exists a path connecting them, or infinity if there are no paths connecting u and v. The
diameter of G, denoted by diam(G), is max {d(u, v)|u,v € V(G)}.

One of the topics in graph theory is graph colorings, which involves associating vertices, edges, or
faces with a set of natural numbers [8]. This problem is known as an NP-complete problem and has various
real-world applications [9] such as register allocation, scheduling, and frequency assignment in
telecommunications, where it is used to model and solve problems involving the assignment of limited
resources to conflicting tasks or entities, often represented as nodes and edges in a graph [10].

There are many types of graph colorings. One of which is a rainbow-vertex coloring of graph. It was
introduced by [11]. Rainbow coloring, a concept in graph theory where each edge of a graph is assigned a
distinct color, has found applications in the study of Hamilton cycles in edge-colored graphs. A Hamilton
cycle is a cycle that visits each vertex of the graph exactly once [12]. Recent research has shown that under
certain conditions, randomly colored graphs almost surely admit rainbow Hamilton cycles, which are
Hamilton cycles where each edge has a different color. These findings provide insights into the structural
properties and characteristics of complex networks and graphs [12].

In addition to its theoretical applications, rainbow coloring has also been applied in the domain of data
visualization, particularly in the design of effective colormaps for graphical inference tasks [13]. Studies have
demonstrated that colormaps featuring a wide range of uniquely nameable colors, such as those found in
rainbow colormaps, can enhance cognitive performance in tasks that require model-based judgments and
decision-making. This suggests that leveraging the principles of rainbow coloring in the creation of data
visualizations can facilitate more accurate interpretation and understanding of complex datasets [13]. By
assigning distinct colors to different elements or categories within a visualization, rainbow coloring can help
users quickly identify patterns, relationships, and anomalies, ultimately leading to improved comprehension
and decision-making based on the visualized information.

A path in a vertex-colored graph is said to be rainbow-vertex path if every internal vertex in the path
has different color [14]. A vertex-colored graph is said to be rainbow-vertex connected if for every pair of
vertices there exists a rainbow-vertex path. The rainbow-vertex connection number of G, denoted by rvc(G),
is the minimum colors needed to make G rainbow-vertex connected. In this paper, we determine the rainbow-
vertex connection numbers of G} -shield graphs where G are wheels.

2. RESEARCH METHODS

This research employs a literature study approach (library research), the axiomatic deductive method,
and pattern recognition. The axiomatic deductive method involves the use of deductive proofs that are
applicable in mathematical logic [15]. The study involves examining books, textbooks, journals, and
scientific articles on the number of rainbow vertex connections.

We used several definitions, lemmas, and observations in order to prove the theorems. The definitions,
lemmas, and observations are as follows.

Definition 1. [16] Let n be a natural number with n > 3. A wheel with n + 1 vertices, denoted by W, isa
graph which vertices and edges can be defined by
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V(W) = {v,v;|i € [1,n]}and
EW,) = {vv; li € [1,n]}U {vvipqli € [1,n—1]} U {v v, ]}, respectively,
The vertex v is called the hub of W, see Figure 1.

V.

2 V3

112

Figure 1. A Wheel with Order 4 (W,)

LLemma 1. [17] Let G be a non-trivial connected graph with order n and diam(G) be the diameter of G, then
diam(G) — 1 < rve(G) < n — 2.

LLemma 2. [17] [18] Let G be a non-trivial connected graph and ¢ be the number of cut vertices in G, then
rve(G) = ¢

Theorem 1. [17] Letn = 3 and C,, be a cycle graph with order n, then

”g] ~2,  ifne(s9);
rvc(C,) = 1 [%] ~1, ifne(3,467810,11,12,13,15);

ug] ifn =14 0rn > 16.

3. RESULTS AND DISCUSSION

Graph operation is a technique for generating a new graph by merging two existing graphs [19]. There
are various types of operations, such as joint, corona, comb, shackle, and amalgamation [20] In this paper,
the shield graph is obtained by combining two graphs in different way from those operations.

Let G be a nontrivial simple connected graph, ab be an edge of G, and m be an integer at least 3. A
path of order m, denoted by B,,, is a graph whose vertices can be labelled by v,, v,, ..., v, such that E(B,,) =
{v vy, V3, ..., V1V }. A GJp-shield graph is a graph obtained by P,, and m — 1 copies of G such that the
ab edge of i-th G embedded to i-th edge of B,, by embedding a to v; and b to v;, 4.

3.1 Wheel-Shield Graphs

Let m and n be two natural numbers at least 3, W, be a wheel with order n + 1, and ab € E(W,,). There
are two types of wheel-shield graphs, namely:

1. A wheel-shield graph where neither a nor b is the hub of W, denoted by Sh(m,W,,ab), see
Figure 2 for the example;

Figure 2. A Wheel-Shield Graph Sh(5, W3, ab)

2. A wheel-shield graph where a is the hub of 1, denoted by Sh(m, W, ab), see Figure 3 for the
example.
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Figure 3. A Wheel-Shield Graph Sh(4, W ,, ab)

Definition 2. Let m and n be two natural numbers at least 3. A wheel-shield graph Sh(m, W,,, ab) as shown
in Figure 4 is a graph with the vertex set and the edge set defined as follows, respectively.

V(Sh(m, Wy, ab)) = {p;li € [L, m]} U {v;|j € [L,m — 1]} U {vy;lk € [LLn — 2],j € [1,m — 1]} and
E(Sh(m, W, ab))
={pipirali € [Lm =1} U {vpy, vjpi4e [i € [, m —1],j € [1,m —1],i = j}
U{vjve ik € [Ln—2]j € [1L,m—1]} U{vyvksrj|k € [1,n—3],j € [1,m— 1]}
U {v1,jDi, Vn—z,jPis1]i € [L,m —1],j € [1,m — 1],i = j}.

V2,1 V31 V2,2 V3,2 V2,m—1 V3,m—1

Figure 4. A Wheel-Shield Graph Sh(m, W, ab)

Theorem 2. Let m and n be two natural numbers at least 3, then the rainbow-vertex connection humber of
Sh(m, W, ab), a wheel-shield graph where neither a nor b is the hub of W}, is
m-— 2, forn = 3;
m+1, for (evenn > 8 andm € [3,n — 4] ) or
(oddn =9andm € [3,n — 5]);
m, for others m and n.

rvc(Sh(m, W, ab)) =

Proof. We divide the proof into nine cases as follows.
Casel.Forn=3
(i) 1twill be shown that rvc(Sh(m, Wy, ab)) = m — 2. Based on Lemma 1, rvc(Sh(m, Wy, ab)) =
diam (Sh(m,Ws,ab)) —1=m—-1-1=m—2.

(i) Conversely, it will be shown that rvc(Sh(m, Ws, ab)) < m — 2. Define a vertex (m — 2)-
coloring c: V(Sh(m, Ws,ab)) - [1,m — 2] as follows:

c(x) ={

For every x,y € V(Sh(m,Ws,ab)) there exist p;,p; € V(Sh(m, W3, ab)) with xp;,p;y €
E(Sh(m, W3, ab)) so that the path x, p;, p;.+1, Di+2, -, Pj, ¥ b€ a vertex rainbow path. Based on (i)
and (ii), rvc(Sh(m, Wy, ab)) = m — 2. An illustration of this proof can be seen in Figure 5.

i—1, if x = p; foreveryi € [2,m — 1];
1, otherwise.
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V1,m—1

Figure 5. A rainbow-vertex (m — 2)-coloring of Sh(m, W3, ab)

Case 2. Forn =4

(i) It will be shown that rvc(Sh(m, W,, ab)) = m. Based on Lemma 1, rvc(Sh(m, W, ab)) =
diam (Sh(m, W4,ab)) —1=m+1-1=m.
(if) Conversely, it will be shown that rvc(Sh(m, w,, ab)) < m. Define a vertex m-coloring
c:V(Sh(m,W,,ab)) - [1,m] as follows:
(i if x = p; forevery i € [1,m];
() = {1, otherwise.

For every x,y € V(Sh(m,W,,ab)) there exist p;,p; € V(Sh(m,W,,ab)) with xp;,p;y €
E(Sh(m, W,, ab)) so that the path x, p;, Di+1, Pi+2, -, P;, ¥ be a rainbow-vertex path. Based on
(i) and (ii), rvc(Sh(m, W,, ab)) = m. The illustration of this proof can be seen in Figure 6.

Vi,m—1 V2,m—1

Figure 6. A Rainbow-Vertex m-Coloring of Sh(m, W4, ab)

Case3.Forn=5
(i) 1t will be shown that rvc(Sh(m, Ws,ab)) = m. Based on Lemma 1, rvc(Sh(m, Ws,ab)) =
diam (Sh(m, W5,ab)) —1=m+1—-1=m.
(i) Conversely, it will be shown that rvc(Sh(m, Ws, ab)) < m. Define a vertex m-coloring
c:V(Sh(m, Ws, ab)) - [1,m] as follows:
i, if x = p; forevery i € [1,m];
@ j+1, ifx = v, j foreveryj € [1,m — 1];
c(x) = .
I3 ifx = vy jforeveryj € [1,m — 1];
1, otherwise.
By this coloring, for every two vertices in Sh(m, Wy, ab), there exists a rainbow-vertex path that
connects the two vertices. The rainbow-vertex path can be seen in Table 1.

Table 1. x — y Rainbow-Vertex Paths in Sh(m, W5, ab)

Cases Rainbow Vertex Paths
XDi» p}y € E(Sh(m, WSi ab)) X, Di» Di+1, Pit2y -+» pj! y
XDi, p}y ¢ E(Sh(m, WS' ab)) X, A, Diy Pi+1 Pi+2s o++» pj: b: y

x.pi} € N(a)
and {p;y} € N(b)
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For another case, there exists a rainbow-vertex path which is a subpath of one of rainbow-vertex
paths in Table 1. Based on (i) and (ii), rvc(Sh(m, Ws, ab)) = m.

Case4.Forn=6

(i) It will be shown that rvc(Sh(m, Wg, ab)) = m. Based on Lemma 1, rvc(Sh(m, Wg,ab)) =
diam (Sh(m, W, ab)) —1=m+1—-1=m.

(i) Conversely, it will be shown that rvc(Sh(m, W6,ab)) < m. Define a vertex m-coloring
c:V(Sh(m, Wy, ab)) - [1,m] as follows:

( 1, ifx =vy;
m-—1, ifx = v; foreveryi € [2,m — 2];
m, ifx =vy,_q;
c(x) = i, if x = p; forevery i € [1,m];

(i +j) mod m, if x
(j —1) mod m, if x = vy foreveryj € [2,m —1];
\ J, if x = vy j foreveryj € [1,m — 1].

By this coloring, for every two vertices in Sh(m, Wy, ab), there exists a rainbow-vertex path that
connects the two vertices. The rainbow-vertex path can be seen in Table 2.

v;jforeveryi € [1,2]andj € [1,m —1];

Table 2. x — y Rainbow-Vertex Paths in Sh(m, W, ab) = H
Notes

Cases

Rainbow Vertex Paths

d(x,y) =diam H
xp;, p;y € E(H)

X, V1,02, 03, -, Pm-1Vm-1,Y
X Pis Pi+1) Pi+2s - Pjr Y

xp;, p;y € E(H) a,ay,b1by, xaq,a;p;, by, by € E(H)

For another cases, there exist a rainbow-vertex path which is a subpath of one of rainbow-vertex
paths in Table 2. Based on (i) and (ii), rvc(Sh(m, W, ab)) =m.

Case5.Forn=7

(i) 1t will be shown that rvc(Sh(m, W, ab)) = m. Based on Lemma 1, rvc(Sh(m, Wy, ab)) =
diam (Sh(m, W7,ab)) —1=m+1—-1=m.

(i) Conversely, it will be shown that rvc(Sh(m, W7,ab)) < m. Define a vertex m-coloring
c:V(Sh(m, W, ab)) - [1,m] as follows:

[ tm—1
i+j, foreveryi € [1,2] andj € |1, [T”'
Com—1
j—i+7, foreveryi € [4,5] and j € 1[T”
s e ) = :m+1
e(vij) = j—1i, foreveryi€ [1,2]andj € T,m—l],
:m+1
j+i—5, foreveryi € [4,5] and j € — ,m—l],
\ 1, foreveryi =3 andj € [1,_m—1].
m—1
i, foreveryi € [1, [T”'
ci) =1 m+1
i+1, foreveryi € HT],m — 1].

c(p) =1, for everyi € [1,m].

By this coloring, for every two vertices in Sh(m, W-, ab), there exists a rainbow-vertex path that
connects the two vertices. The rainbow-vertex path can be seen in Table 3.
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Table 3. v;; — v, Rainbow-Vertex Paths in Sh(m, W, ab)
Cases Rainbow Vertex Paths

m — 177 m—1 Vi iV, Djs1r Pjs2s - P Vi Vo1 V
= 1, l ,l € [1'[ ”,k € 1,3 , i<l Ljp Y Pj+1 Pj+2, - P Y1, V2,0 V3,1
J [ ] — [1,3],)

m — 117 m—1 vi,j!vjt pj+1! pj+2' Pl pl+1'U5,l! 174-,1
jE€E [1, T] ,LE [1[T”k € [4,5],j <

m + 1]

T m+1 V2,i»V1,j»Pjs Pj+1r Pj+2s o+ Puo Vi Vil
j € [ 5 ,m—1|,l€ HT],m—l],ie [1,2],j <1

m4+ 17 1 m+1 U3,j) V4,j> Vs, jy Pj+1s Pj+2s = P1r Vi Vg 1
jE€E [ 5 ,m—1|,l€ HT],m—l],ie [3,5],j <1
m—1 m+1 Vi,j»ViyPj+1) Pj+25 = Pu Vi Vit
reluf=| e[ m 1]

For another case, there exists a rainbow-vertex path which is a subpath of one of rainbow-vertex
paths in Table 3. Based on (i) and (ii), rvc(Sh(m, W, ab)) = m.

Case 6. Forevennumbern>8 and3<m<n-4

(i) 1twill be shown that rvc(Sh(m, Wy, ab)) = m + 1. Suppose rvc(Sh(m, Wy, ab)) < m. Without

loss of generality, give a color for vy, p,, P, ..., Pm—1, Vm—1 With 1, 2, ..., m, respectively, so the

vn-2, —vn . -path becomes a rainbow-vertex path as shown in Figure 7.
2’ 2’

Uiy Tzl k) Yy e za vy

b P2 Prazy Py

Prugs) Prin-1 P

Figure 7. Sh(m,W,,ab) withevenn >8 and3 <m<n-—-4
AUnz, —Vn [m]-path with d(vn-z, — vn [m]) < m must go through v[m]- Because the colors
2’ 2’ 2 2’ 2’ 2 2

1,2, .., [%] have been used, the colors that can be used to color vjm are [an] , [mTH] ), @S
2

shown in Figure 8.

Ve m—1

Preg2) Pm—1 Pm

Figure 8. Sh(m,W,,ab) withevenn >8 and3 <m<n—4

Now, the vn-2 e vn ., -path with d(vn-2 m = vn ) also must go through v[ﬂl, as shown
2’2 2’ 2’2 2’ 2
in Figure 9. Since the colors [mT”] , [mTH] , ..., m have been used, then the colors that can be used

to color V[m] are 1,2, ..., [%] This means there is no color that can be used to color V[m]- So,
2 2
rvc(P(m, W, ab)) >m+ 1.
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”m P2 Prmen Py Pz Pm—1 Pm

Figure 9. Sh(m,W,, ab) withevenn >8 and3 <m<n-—4

(i) Conversely, it will be shown that rvc(Sh(m, W, ab)) <m + 1. Define a vertex (m + 1)-
coloring c: V(Sh(m, Ws,ab)) — [1,m + 1] as follows:

( S [, n—2] o rLm
[(G+j)modm] + 1, foreveryi € |1, 3 andj € |1, [?”,
. m : CLom
[(—i+n)modm]+1, foreveryi € _E,n— 2] andj € _1, [7”,
c(vij) =4 o . [ n—2 . [m+2
[G—i)modm] + 1, foreveryi € |1, > andj € — ,m—1];
P . n _ . m + 2
jti+2-—mn, foreveryi € E,n—z]and]e — ,m—l].

m—2
i foreveryi € [ ”

c(v)=<{m+1, for everyi = [ ]

. . m+ 2
Ll+1, foreveryi € [ ] m—l]
c(p;) =i foreveryi € [1,m].
By this coloring, for every two vertices in Sh(m, W,,, ab) there exists a rainbow-vertex path that
connects the two vertices. The rainbow- vertex path can be seen in Table 4.

Table 4. v;; — v, Rainbow-Vertex Paths in Sh(m, W, ab) withevenn >8 and3<m<n-4

Cases Rainbow Vertex Path
je [1 [ ” le [1 [ B 2” ke [1 ] i<l Vij» Uiy Pj+1s Pj+2s =1 P V11 V21 ooy Vil
m — n+?2 Vi,j»VjrPj+1 Pj+25 = Pu Pi+1, Vn—2,00
jefu e L[| e [ n 2] i< st
2 2 n-3,10 nT‘l
m+ 2 m+2 n—2 Un_—z'j,vn_—zl-'j,...,Uljj,pj,pj_'_l,pj_'_z, ey
je[ ]m 1]16” ]m ]ie[l,—,j<l 2 2
2 P, V1, Vg 1
Coqm+2 m+2 .M . Ve Vnt2 s Un=2,j> Pj+ 1, Pjs2r -+
J € [ 2 ]'m_ 1]’l € H 2 ]’m_ 1]” € [E'"_Z]'] <! DL V1 Vicy

Ui,j! vj! pj+1! pj+2! = PL VL Vg

e[ 52 ee ln

For another cases, there exist a rainbow-vertex path which is a subpath of one of rainbow-vertex
paths in Table 4. Based on (i) and (ii), rvc(Sh(m, Wy, ab)) = m + 1.

Case 7. Foreven numbern >8 andm >n — 3

(i) It will be shown that rvc(Sh(m, W, ab)) = m. Based on Lemma 1, rvc(Sh(m, Wy, ab)) =
diam (Sh(m, W, ab)) —1l=m+1-1=m

(i) Conversely, it will be shown that rvc(Sh(m, Wn,ab)) < m. Define a vertex m-coloring
C: V(Sh(m, Wm,ab)) - [1,m] as follows:
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[ n—2 m—1
i+7j, foreveryi € |1, > ]andje[l,[T”;

n m-—1
(j —i+n)modm, foreveryi € E,n—Z] andje[l,[—];

e(vij) =1 o o [ .n—=2 . _[m+1
(j — i) mod m, foreveryi € |1, > ]and]EH ]m ]

nm m+1
j+i+2—n, foreveryi € E,n—Z],jEHT],m—l].

m—1
i foreveryi € [1 ”
c(v;) =

m+ 1
i+1, foreveryi € [[T],m—l].
c(p) =1, for everyi € [1,m].

By this coloring, for every two vertices in P(m, W, ab) there exist rainbow-vertex path that
connects the two vertices. The rainbow-vertex path can be seen in Table 5.

Table 5. v;; — v, Rainbow-Vertex Paths in Sh(m, W, ab) withevenn > 8 andm >n -3

Cases Rainbow Vertex Paths
P e e T P e
] ’ 2 ) ) 2 ) ) vJ ...,U%l
m—1 m — n+2 Ui,j! vj' pj+1! pj+2' -~ Pu Pi+1s
jE [1 ” le [1 [ ] ke [ ,n— 2],j <l Vn-2.1 Vn—31r ...,vnTJrz’l
m+1 T m+1 Un=2 ,Vn=4 ., -, V1,j, P Pj+1s
]EH ],m—l,le” ],m—]lE[ ]]<l 2 2
2 ] 2 Pj+2, s PV Vil
m+1 - m+1 . n . U‘rzlj UnT-i—ZJ, ...,Un_ZJ', pj+1’pj+2’ ey
J € H 2 ]’m_l_'l € ” 2 ]'m_l]’l € [E’n_z]’] <! DL V1, Vi
m— 1 m4+1 Viji»VisPj+1 Pj+2s -« Pu Vi Vgt
relufF e[ m -]

For another cases, there exist a rainbow-vertex path which is a subpath of one of rainbow-vertex
paths in Table 5. Based on (i) and (ii), rvc(Sh(m, Wy, ab)) = m.

Case 8. Forodd numbern=>9and3<m<n-5

(i) 1twill be shown that rvc(Sh(m, Wy, ab)) = m + 1. Suppose rvc(Sh(m, Wy, ab)) < m. Without
loss of generality, give a color for vy, p,, P3, -, Pm—1, Vm—1 With 1, 2, ..., m, respectively, so the
Un-1, — vn-1 o -path becomes rainbow vertex path as shown in Figure 10.
, =

2

'Un_—l(’m_—]“

Vim-1’ \Un—2,m—1

L 4 @ 9
.’P[% Pm—1 Pm

Figure 10. Sh(m,W,,ab) withoddn >9and3 <m<n-5
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The vn-1, — Vn-1m-11-path with d(vn-1, — va-1m-17) < m must go through vm-1;. Because
the colors 1,2, ..., [mT_l] have been used, then the colors that can be used to color U[m] are
2

[m“] ["”3] ...,m as shown in Figure 11.

U%,,’m)—]“ Un;ll

Vnid, [mot) Yrgtm—1 Vnd 1

v -
\Up—21 L[4 7 \7'7111—2.[’“2 1 V1m-1/ \Vn-2m-1

]

}Jp-“;q Prmin Dmn—1 5"..

Figure 11. Sh(m,W,,ab) withoddn >9and3 <m<n-5
Now, the Un_—l [m__ll - UnT—l'm_ ,-path with d(vnglr[mT_l] - ‘UnT—l'm_ ,) also must go through v[mT—ll

as shown in Figure 12. Since the colors [m;rl] ) [mTH]

can be used to color V[m] arel,2,..., [T] This means there is no color that can be used to color
2

v[m_—ll So, rvc(Sh(m, W, ab)) >m+ 1.
2

, ..., mhave been used, then the colors that

Figure 12. Sh(m,W,,ab) withoddn >9and3 <m<n-5

(i) Conversely, it will be shown that rvc(Sh(m, W, ab)) <m + 1. Define a vertex (m + 1)-
coloring c: V(Sh(m, W3, ab)) - [1,m + 1] as follows:

( (i+j)modm+1, foreveryi € _1,n ; 3] andj € [1, [%”

(G—i+n)modm+1, foreveryi € -nzl,n—Z] andj € [1,[%”:

.. . [.n—3 . m+ 2
C(vi,j)=< (j—i)modm+1, foreveryi € |1, > ]and]EHT],m—l];

L o m+1 ) m+ 2
jH+i+2—n, foreveryi € > ,n—Z] and]E”T],m—l];

n—1

L 1, foreveryi =
( . m-—2
i, foreveryi € [1 [ ”

c(v) =<{m+1, foreveryi = [?] ;

. . m+ 2
L i+1, foreverylEHT],m—l].
c(p) =1, foreveryi € [1,m].

and j € [1,m —1].
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By this coloring, for every two vertices in Sh(m, W,,, ab) there exists a rainbow-vertex path that
connects the two vertices. The rainbow-vertex path can be seen in Table 6.

Table 6. v;; — vy, Rainbow-Vertex Paths in Sh(m, W,,, ab) withoddn > 9and3 <m <n-5

Cases Rainbow Vertex Paths
) 1 m—2 ] 1 m— 2 i 1 n—1 . I Vi,j» Vj, pj+1: pj+2! = Pu V1, V21
€ == L€ =],k € ) <
e IR e R B
m-—2 m 2 n+ 1 Ui,]'! le pj+1! P1+2: PP+
jefu2 | e [P e [ n 2] i< o i,
==
m+ 2 m+ 2 n—1 Vot pVns jp s V1o Pjp Pjtr
e[ m ] e [ - e [ < 2
2 2 2 Pj+2s--P0L Vi Vit
m+ 2 m+ 2 n+1 VRl p Vnds jp oo Un-2,j, Pj1s
e[| e [ ] e [ -] < B
2 2 2 pj+2' = P VL Vgt

Vij»VisPj+1) Pj+2) = Pu Vi Vgt

pep 5 e 3

For another cases, there exist a rainbow-vertex path which is a subpath of one of rainbow-vertex
paths in Table 6. Based on (i) and (ii), rvc(Sh(m, Wy, ab)) = m + 1.

Case 9. For odd numbern >9 andm>n—4

(i) It will be shown that rvc(Sh(m, W, ab)) = m. Based on Lemma 1, rvc(Sh(m, Wy, ab)) =
diam (Sh(m, Wy, ab)) —1=m+1—-1=m

(i) Conversely, it will be shown that rvc(Sh(m,W,,ab)) < m. Define a vertex m-coloring
c:V(Sh(m, Wy, ab)) - [1,m] as follows:

L . [ n—3] _ m-—1
(i +j) mod m, foreveryi € |1, 3 andj € 1[ ]

- R SN B

(j—i+n)modm, foreveryi € 5= 2| andj € [1, [T”'

_ L . =3 _, [rm+ 1
C(vi,j)—< (j —i) mod m, foreveryi € |1, 5 andj € T,m—l];

L . n+1 T
jti+2-—mn, foreveryi € ,n—2 and]EH ,m— 1],

| 2

n
1, foreveryi =

i, foreveryi € [1 [ ”

and j € [1,m —1].

c(vy) =+

m+ 1
i+1, foreveryi € HT],m — 1].
c(p;)) =i,i€[1,m].

By this coloring, for every two vertices in Sh(m, W,,, ab) there exist a rainbow-vertex path that
connects the two vertices. The rainbow-vertex path can be seen in Table 7.

Table 7. v;; — vy, Rainbow-Vertex Paths in P(m, W, ab) withoddn >9 andm >n — 4

Cases Rainbow Vertex Paths
i m—1 m—1 n—1 i vi,j! Uj! pj+1! pj+2! = Pu VL V20
e [ e | e P bty

2

m—1 n+1 17i,j' Uj! pj+1' pj+2! = Pu Py
jE€E [1 [ ” le [1 ” k€ [ ,n— 2] j<l Un—2,0 Vn-3,1s =) Vn+1,
>
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Cases Rainbow Vertex Paths
m+1 m+1 n—1 Vn-1.,Vn=3 ., V1 Pjr Pj+1s
rel[Fplm-a) e [Ffm -] et < e
2 Dj+2, 1 Pu V1L Vg,
m+1 m+1 n+1 o] i< VRtL p Vnds o oo Un-2,j> Pj+1 P
E -~ | - ] - )
yel[Flma)ve[Frf -] e [Fmn-2]. <

Vi,jt U]-, pj+1' pj+2! = P VL Vg

<[zl [P m-

For another case, there exists a rainbow-vertex path which is a subpath of one of rainbow-vertex
paths in Table 6. Based on (i) and (ii), rvc(Sh(m, Wy, ab)) = m.m

Definition 3. Let m and n be two natural numbers at least 3. A wheel-shield graph Sh(m, W,,, ab) as shown
in Figure 13 is a graph with the vertex set and the edge set defined as follows, respectively.

V(Sh(m, Wy, ab)) = {p;li € [1, m]} U {vy;|k € [L,n—1],j € [1,m — 1]} and
E(Sh(m, Wy, ab)) = {pipi1 li € [Lm — 1]} U {vyj,pi|i € [Lm —1],j € [Lm — 1],k € [1,n — 1]}
U {vy i, vn—qpi|i =j +1,i € [2,m],j € [1,m —1]}.

V11 Vi,m-1

NN

Figure 13. A wheel-Shield Graph Sh(m,W,, ab)

Theorem 3. Let m and n be two natural numbers at least 3, then the rainbow-vertex connection number of
Sh(m, W, @b), a wheel-shield graph where a is the hub of W,,, is rvc(Sh(m, Wy, ab)) = m — 1.

Proof.
(i) Itwill be shown that rvc(Sh(m, Wy, ab)) = m — 1. Based on Lemma 1, rvc(Sh(m, Wy, ab)) =
diam (Sh(m, W, ab)) —1=m — 1.
(i) Conversely, it will be shown that rvc(Sh(m, W, ab)) <m — 1. Define a vertex (m —1)-
coloring c: V(Sh(m, W, ab)) - [1,m — 1] as follows:
c(x)={i' ifx=pl.foreveryie[1,m—1];
For every x,y € V(Sh(m,W,,ab)), there exist p;,p; € V(Sh(m,W,,ab)) with xp;, pjy €
E(Sh(m, W, ab)) such that x, p;, D41, Pi+2, -, Pj, ¥ is @ rainbow-vertex path, see Figure 14.
Based on (i) and (ii), rvc(Sh(m, Wy, ab)) =m — 1.m

1, otherwise.



BAREKENG: J. Math. & App., vol. 19(4), pp. 2377- 2390, December, 2025. 2389

Figure 14. A rainbow-vertex (m — 1)-coloring of Sh(m, W,,, ab)
For example, rvc(Sh(4, W,, ab)) = 3, see Figure 15.

=N
=N
-

1 2 3 1
Figure 15. A Rainbow-Vertex 3-coloring of Sh(4, W ,, ab)

4. CONCLUSION

Based on the results and discussion, it can be concluded that the rainbow-vertex connection number
for wheel-shield graphs varies from m — 2 to m + 1 depending on the order of the wheel.
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