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ABSTRACT 

Article History: Parkinson's disease is a neurodegenerative disorder affecting motor abilities, with a 

prevalence of 329 cases per 100,000 individuals. Early diagnosis is crucial to prevent 
complications. This study classifies Parkinson's disease using the Extreme Gradient 

Boosting (XGBoost) algorithm with hyperparameter tuning via Grid Search and Random 

Search. The dataset from Kaggle consists of 2105 records from 2024 and includes 32 

clinical and demographic features such as age, gender, BMI, medical history, and 
Parkinson's symptoms. The XGBoost method effectively manages large and complex data 

and reduces. Tuning was performed with 5-fold cross-validation for result validity. After 

tuning with Grid Search, the model achieved 93.35% accuracy in 44 minutes 51 seconds, 

with optimal parameters gamma=5, max depth=3, learning rate=0.3, n estimators=100, and 
subsample=0.7. Meanwhile, Random Search with 50 iterations achieved 93.97% accuracy 

in 3 minutes 4 seconds with optimal parameters gamma=5, max depth=3, learning 

rate=0.262, n estimators=58, and subsample=0.631. Random Search also shows better time 

efficiency than Grid Search, although with relatively similar accuracy. The results of this 
study confirm that hyperparameter tuning using Random Search not only produces 

competitive accuracy performance but also minimizes computation time, making it a more 

optimal choice for Parkinson's disease classification. 
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1. INTRODUCTION 

Parkinson's disease is a long-term neurodegenerative condition that impacts the motor system by 

damaging the substantia nigra, leading to a reduction in dopamine levels. This results in symptoms such as 

tremors, muscle rigidity, slowed movement, and difficulties with balance [1]. In Indonesia, the number of 

Parkinson's cases is rising alongside the aging population. The 2016 Global Burden of Disease Study 

estimated 117531 to 178755 cases, marking a 217% increase since 1990. By June 2023, Faculty of Medicine 

Universitas Airlangga (FK UNAIR) projected 200000 to 400000 cases, with 1100 deaths recorded, placing 

Indonesia 12th globally and 5th in Asia [2]. Parkinson's commonly affects individuals over 60 years old, with 

men being more susceptible than women, potentially due to genetic and hormonal factors [3]. Early treatment 

involving dopaminergic drugs, physical therapy, and occupational therapy can improve quality of life, though 

long-term costs like brain stimulation pose financial challenges [4]. 

Diagnosing Parkinson's is complex due to varying symptoms among individuals, requiring physical 

examinations and medical tests such as blood analyses and brain imaging [5], [6]. Genetic factors, including 

mutations in genes like LRRK2, GBA, and DJ-1, along with epigenetic influences like lifestyle and medical 

conditions, contribute to Parkinson's risk [7]. In Indonesia, low public awareness of early symptoms and 

limited healthcare infrastructure complicate timely diagnosis and treatment [6]. A case of a 53-year-old 

teacher illustrated these challenges, where overlapping symptoms of hypertension, diabetes, and stroke 

masked Parkinson's indicators, such as an expressionless face without tremors [8]. This highlights the need 

for better medical awareness and access to care, particularly in under-resourced regions.  

Amidst these challenges, research conducted by [9] shows that the application of machine learning 

technology, notably the XGBoost algorithm, can provide innovative solutions in analyzing complex data that 

are difficult to handle by traditional methods. XGBoost works by applying the concept of the boosting 

method. This is done by building the model sequentially and combining all the models for prediction so that 

the new model learns from the mistakes of the previous model [10]. XGBoost combines weak classifiers to 

form stronger models and prevents overfitting [11]. Several methods have been used to classify Parkinson's 

disease. Research has shown that XGBoost outperforms other algorithms in medical classification tasks. A 

study [12], on lung disease classification achieved 93.65% accuracy, surpassing Random Forest (90.75%). 

Similarly, XGBoost demonstrated higher accuracy (95.08%) in heart disease detection [13]. In diabetes 

classification, hyperparameter tuning increased XGBoost's accuracy to 95% [14]. A recent study on celiac 

disease, an autoimmune disorder affecting 0.5%-1% of the population, showed that XGBoost, optimized with 

5-fold cross-validation, improved accuracy from 98.19% to 98.64%, with 98.43% sensitivity and 99.72% 

specificity, confirming the effectiveness of parameter tuning [15]. 

With the increasing number of older adults in Indonesia, Parkinson's cases are predicted to continue to 

grow, demanding further research into the quality of life of patients as well as more accurate classification 

methods [16], [17]. This research offers a breakthrough by applying the XGBoost algorithm, which has been 

proven to excel in handling complex data. Still, it has never been optimized using Grid Search and Random 

Search hyperparameter tuning for Parkinson's classification in Indonesia. Hyperparameter adjustments, such 

as learning rate, gamma, max depth, n estimators, and subsample, will be analyzed to maximize model 

performance. This research aims to measure the impact of hyperparameter tuning on model effectiveness and 

develop a classification system that is more precise and adaptive to patient characteristics in Indonesia [18]. 

This approach is expected to create a more accurate and efficient model optimization strategy in detecting 

Parkinson's disease, making a significant contribution to Indonesia's medical world and research. 

 

2. RESEARCH METHODS 

The research process stages undertaken to achieve the objectives of this study are outlined in the 

research methodology flowchart presented in Figure 1.  
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Figure 1. Research Flowchart 

Figure 1 shows that the analysis process begins with entering the data to be used, followed by 

preprocessing to convert categorical data to numerical form to ensure data integrity. Next, descriptive analysis 

is performed to understand the characteristics of the data before dividing it using K-Fold cross-validation to 

ensure balanced model validation. The XGBoost model was then trained iteratively until it reached the 

optimal depth, followed by testing using test data. Parameter optimization was performed through Grid 

Search and Random Search to find the best configuration. Evaluation of the classification results using a 

confusion matrix helps assess the model's accuracy in distinguishing between positive and negative classes. 

Finally, the classification results are interpreted to understand the implications and draw conclusions based 

on the model predictions.  

 

2.1 Research Data 

This research data is health information that includes demographics, lifestyle, medical history, clinical 

measurements, cognitive assessment, symptoms, and diagnosis indicators. The dataset totaled 2105 with 33 

variables, consisting of 32 independent variables and one dependent variable (target). The dataset is from 

Kaggle, published by Rabie El Kharoua (2024) under a CC BY 4.0 license [19]. From the dataset, 1304 

people were diagnosed with Parkinson's, while 801 people were not. Variable details can be seen in Table 1. 

Table 1. Sample Data  

Age Gender Ethnicity  … SleepDisorders Constipation Diagnosis 

85 0 3  … 0 0 0 

75 0 0  … 1 0 1 

70 1 0  … 0 1 1 

52 0 0  … 0 1 1 

87 0 0  … 1 0 0 

 ⁝  ⁝  ⁝  ⁝  ⁝  ⁝  ⁝ 

87 1 0  … 1 0 0 

67 0 0  … 1 1 1 

65 0 0  … 1 0 1 

61 1 0  … 1 1 1 

56 0 0  … 0 1 0 

Data source: Kaggle 
 

Table 1 shows sample data that includes several variables, such as age, gender, and ethnicity, as well 
as specific health conditions associated with the diagnosis variables, such as sleep disorders and constipation. 
The data shows the distribution of patients with varying ages ranging from 50 to 89 years, as well as 
categorical variables such as gender (0 for male and 1 for female) and ethnicity (expressed in numerical 
codes). In addition, the data shows the pattern of association between specific health conditions and the final 
diagnosis outcome, characterized by a binary value (0 or 1). This information forms the basis for research 
analysis to understand these factors' influence on disease diagnosis. 
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2.2 Research Attributes 

This study utilizes 33 attributes, which include 32 independent attributes and one dependent attribute. 

Details of these attributes are provided in Table 2. 

Table 2. Attribute of Data 

Referring to the independent attributes in Table 2, 18 attributes are categorical and 15 are numerical. 

In this study, the XGBoost algorithm requires transforming categorical data into numerical form, which is 

designed to process only numerical data. 

 

2.3 Classification 

Classification is the process of creating a model to classify objects to predict the class of an unknown 

object [20]. This process consists of two main stages: training and testing. In the training stage, the algorithm 

analyses the data to generate a classification rule in the form of a function 𝑌 = 𝐹(𝑋), where 𝑌 is the predicted 

class and 𝑋 is the features used [21]. After the model is formed, the testing stage is carried out using new data 

to evaluate the accuracy of the model in classifying objects according to the rules made [22]. 

 

Attribute Data Type Value Category 

Age Numeric [50; 90] - 

Gender Categorical [0; 1] 0: Male; 1: Female 

Ethnicity Categorical [0; 1; 2; 3] 0: Caucasian; 1: African 

American; 2: Asian; 3: 

Other 

Education Level 
Categorical [0; 1; 2; 3] 0: None; 1: High School; 

2: Bachelor’s; 3: Higher 

BMI Numeric [15; 40] - 

Smoking Categorical [0; 1] 0: No; 1: Yes 

Alcohol Consumption Numeric [0; 20] - 

Physical Activity Numeric [0; 10] - 

Diet Quality Numeric [0; 10] - 

Sleep Quality Numeric [4; 10] - 

Family History Parkinsons Categorical [0; 1] 0: No; 1: Yes 

Traumatic Brain Injury Categorical [0; 1] 0: No; 1: Yes 

Hypertension Categorical [0; 1] 0: No; 1: Yes 

Diabetes Categorical [0; 1] 0: No; 1: Yes 

Depression Categorical [0; 1] 0: No; 1: Yes 

Stroke Categorical [0; 1] 0: No; 1: Yes 

Systolic BP Numeric [90; 180] - 

Diastolic BP Numeric [60; 120] - 

Cholesterol Total Numeric [150; 300] - 

Cholesterol LDL Numeric [50, 200] - 

Cholesterol HDL Numeric [20; 100] - 

Cholesterol Triglycerides Numeric [50, 400] - 

UPDRS Numeric [0; 199] - 

MoCA Numeric [0; 30] - 

Functional Assessment Numeric [0; 100] - 

Tremor  Categorical [0; 1] 0: No; 1: Yes 

Rigidity Categorical [0; 1] 0: No; 1: Yes 

Bradykinesia Categorical [0; 1] 0: No; 1: Yes 

Postural Instability Categorical [0; 1] 0: No; 1: Yes 

Speech Problems Categorical [0; 1] 0: No; 1: Yes 

Sleep Disorders Categorical [0; 1] 0: No; 1: Yes 

Constipation Categorical [0; 1] 0: No; 1: Yes 

Diagnosis Categorical [0; 1] 0: No; 1: Yes 
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2.4 Boosting 

Boosting was first introduced by Robert Schapire in 1998 [23]. Boosting methods in machine learning 

aim to improve prediction models' performance by combining several less effective models or classifiers into 

one more reliable model. This approach is designed to reduce prediction errors and improve overall accuracy 

by combining models that focus on overcoming data that is difficult to classify [24]. 

 

2.5 Extreme Gradient Boosting 

XGBoost, developed by Dr Tianqi Chen from the University of Washington in 2014, is an extension 

of the gradient boosting method that is well-known for its efficiency and effectiveness in solving 

classification problems [23]. This method is claimed to be 10 times faster than other gradient-boosting 

techniques [11]. XGBoost is efficient in time and memory usage, and is applied in various fields, such as 

medicine and credit risk assessment, with advantages in handling data imbalance [25]. The algorithm is 

designed to handle regression, classification, and ranking problems and prevent overfitting through 

regularization and parameter adjustment [26]. The following is the flowchart of the XGBoost algorithm, 

illustrating the step-by-step process of building the model, as shown in Figure 2. 

 

 

Figure 2. XGBoost Flowcharts 

Based on Figure 2, the step-by-step process of the XGBoost method can be explained as follows [27]. 

The first step in building an XGBoost model is to determine the initial prediction probability using Equation 

(1). Next, the residual is computed as the difference between the actual value and the initial prediction 

probability, as Equation (2) defines. To assess the quality of branch splitting in the decision tree, the 

similarity score is calculated using Equation (3). The gain, which evaluates the effectiveness of a split, is 

then determined by comparing the similarity scores of the root node and its child nodes, as shown in Equation 

(4). Furthermore, the cover value, which measures the probability distribution at each node, is calculated 

using Equation (5). Based on Equation (6), tree pruning is applied to prevent excessive complexity. The 

log-odds transformation is performed using Equation (7), then updating the prediction function described in 

Equation (8). Finally, the output value, which determines the final prediction of the XGBoost model, is 

computed using Equation (9). The binary sigmoid function is a mathematical function that produces values 

between 0 and 1. If the sigmoid value exceeds 0.50, the instance is assigned to class 1, whereas if it is below 

0.50, the instance is categorized as class 0. 

𝑝(𝑖) =
1

𝑛𝑐
, with 𝑖 = 1, 2, … , 𝑛 (1) 

  𝑒(𝑖) = 𝑦(𝑖) − 𝑝(𝑖) (2) 
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𝑆𝑆 =
(∑ 𝑒(𝑖)

𝑛
𝑖=1 )

2

∑ [𝑝(𝑖) × (1 − 𝑝(𝑖))] + 𝜆𝑛
𝑖=1

(3) 

 𝐺 = (𝑆𝑆𝑙𝑒𝑓𝑡 + 𝑆𝑆𝑟𝑖𝑔ℎ𝑡) − 𝑆𝑆𝑟𝑜𝑜𝑡 (4) 

 𝐶𝑜𝑣𝑒𝑟(𝑖) =  ∑[𝑝(𝑖) × (1 − 𝑝(𝑖))] + 𝜆

𝑛

𝑖=1

(5) 

𝐺 − 𝛾 < 0, with 𝛾 default is 0 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑉𝑎𝑙𝑢𝑒 =
(∑ 𝑒(𝑖)

𝑛
𝑖=1 )

∑ [𝑝(𝑖) × (1 − 𝑝(𝑖))] + 𝜆𝑛
𝑖=1

(6) 

Log(𝑂) = log (
𝑝(𝑖)

1 − 𝑝(𝑖)
) (7) 

 𝑓(𝑥𝑖) = log(𝑂) + 𝛼 × 𝑂𝑢𝑡𝑝𝑢𝑡 𝑉𝑎𝑙𝑢𝑒 (8) 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑓(𝑥𝑖))  =
𝑒(𝑓(𝑥𝑖)) 

1 + 𝑒(𝑓(𝑥𝑖)) 
(9) 

with 

𝑝(𝑖): predicted value; 𝑛𝑐: class size 

𝑒(𝑖): residual; 𝑦(𝑖): class value 

𝑆𝑆: similarity score; 𝑆𝑆𝑙𝑒𝑓𝑡: left similarity score; 𝑆𝑆𝑟𝑖𝑔ℎ𝑡: right similarity score 

G: gain 

𝛾: gamma (minimum loss function) 

𝐶𝑜𝑣𝑒𝑟(𝑖): cover value 

𝜆: regularization parameter 

𝑛: total data 

𝑂: odds 

𝑓(𝑥𝑖): new prediction 

𝛼: learning rate 

 

2.6 Hyperparameter Tuning 

Hyperparameter tuning is essential for enhancing the performance of machine learning algorithms. It 

must be determined before the learning process, as it cannot be derived directly from the data. While the 

interaction between hyperparameters and model performance continues to be researched, tuning is often 

computationally expensive, especially on large datasets, and customized settings do not always provide 

significant improvements over default values [28]. The hyperparameters applied in this study include grid 

search and random search. Grid search is a method used to identify the optimal hyperparameter combinations 

in a machine-learning model by testing all specified value ranges. It selects the combination that yields the 

best performance for the optimal model. However, grid search can be time-consuming and resource-intensive, 

especially with many hyperparameters and value ranges [28]. This algorithm tests all combinations in the 

sample space to identify the best hyperparameters based on data processing results [29]. Random Search is a 

hyperparameter method that enables quick adjustments in experimental "resolution," such as adding or 

skipping experiments. It is simple, easy to implement, and allows for parallel execution, maintaining minimal 

efficiency in low-dimensional spaces while significantly improving performance in high-dimensional ones. 

This method samples from the search area using a probability distribution [30]. The combination of 

parameters used in this study is contained in Table 3. 
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Table 3. Combination of Parameters 

Parameter Value 

Gamma 0; 1; 3; 5 

Max depth 3; 4; 5; 6; 7 

Learning rate 0.01; 0.1; 0.2; 0.3 

N estimator 50; 100 

Subsample 0.6; 0.7; 0.8; 0.9 

 

Table 3 shows the parameters used in the hyperparameter tuning process for the XGBoost model. The 

Gamma parameter was tested with 0, 1, 3, and 5 values to control regularization at split nodes. Max depth 

was varied between 3 to 7 to determine the maximum depth of the tree. Learning rate was explored with 

values of 0.01 to 0.3 to control the learning speed of the model. N estimators were tested on 50 and 100 trees, 

while Subsample had values of 0.6 to 0.9 to determine the proportion of data used at each iteration. This 

combination of parameters helps optimize the model's classification performance. 

 

2.7 Performance Evaluation 

Model performance evaluation assesses how well a model predicts or classifies new data by comparing 

its predictions to actual values, utilizing various metrics, including the confusion matrix. This table presents 

the number of correctly and incorrectly classified test data points, enabling an assessment of the classification 

system's accuracy. Despite its simplicity, the confusion matrix serves as an effective tool for measuring 

classification performance [31] and evaluating both accuracy and efficiency in grouping test data [32]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100% (10) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% (11) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦     =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100% (12) 

With: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦: a measure of how often the model gives correct predictions 

𝑆𝑒𝑛𝑐𝑖𝑠𝑡𝑖𝑣𝑖𝑡𝑦: a measure of the model's ability to detect all positive cases 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦: a measure of the model's ability to detect all negative cases while minimizing false 

positives. 

𝑇𝑃: true positive, if the system successfully detects Parkinson's 

𝑇𝑁: true negative, if the system correctly doesn’t detect Parkinson’s in someone who doesn’t have 

it 

𝐹𝑃: false positive, if the system incorrectly detects Parkinson’s in someone who doesn’t have it 

𝐹𝑁: false negative, if the system fails to detect Parkinson’s 

 

3. RESULTS AND DISCUSSION 

3.1 Division of Training Data and Test Data using K-Fold Cross Validation 

In this study, the k-fold cross-validation method is used for data partitioning to evaluate model 

performance, with 𝑘 = 5 and 𝑘 = 10 selected based on [33]. Their study highlights that these values are 

commonly used, as a higher 𝑘 reduces bias but may increase variance, while a lower 𝑘 increases bias. The 

dataset is divided into multiple folds, where each fold serves as test data once, and the rest are used for 

training. The dataset division results are shown in Table 4. 
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Table 4. Division Data  

Fold Training Data Test Data 

5 1684 421 

10 1895 210 

Based on Table 4, experimental results show that the model accuracy is higher at 𝑘 = 5 compared to 

𝑘 = 10, indicating that splitting the data with 𝑘 = 10 results in better generalization for this dataset. 

 

3.2 Manual Calculation of XGBoost Algorithm 

In implementing the XGBoost algorithm, 20 data samples are used as training data and 3 as testing 

data. In this process, the model is trained using 20 training data samples, where each feature in the data is 

analyzed to build a sequential decision tree. The model is then optimized to minimize the prediction error. 

Once the training is complete, the model is tested on three samples of testing data to evaluate its performance, 

such as accuracy and generalization ability. 

1. In this study, the initial prediction probability is set using the following formula: 

𝑝(𝑖) =
1

𝑛𝑐
=

1

2
= 0.5 

2. The residuals for the first instance are computed, and the results are obtained in Table 5. 

𝑒(𝑖) = 𝑦(𝑖) − 𝑝(𝑖) 

 

Table 5. Residuals Data  

 

 

 

 

 

 

 

 

 

 

Table 5 presents residual data showing the relationship between input variables, initial predictions, 

and residuals in the model. Input variables include gender, tremor, rigidity, bradykinesia, and postural 

instability, which are associated with class as the target label. Initial prediction shows the model's initial 

predicted value of 0.5 for all data, while residual is calculated as the difference between the actual value 

(class) and the initial prediction. A positive residual value (0.5) indicates under-prediction, while a negative 

value (-0.5) indicates over-prediction. This table provides an initial overview of the prediction errors that 

form the basis of the model update process.     

3. Compute the similarity score using this formula: 

𝑆𝑆 =
(∑ 𝑒(𝑖)

20
𝑖=1 )

2

∑ [𝑝(𝑖) × (1 − 𝑝(𝑖))] + 𝜆20
𝑖=1

=
((−0.5) + 0.5 + 0.5 + ⋯ + 0.5 + (−0.5) + 0.5)

2

∑[0.5 × (1 − 0.5) + ⋯ + 0.5 × (1 − 0.5)] + 1
= 0.667 

4. The biggest gain value of the first branch is calculated using the formula: 

𝐺 = (0.692 + 3.267) − 0.667 = 3.292 

5. Checking the residuals in the leaves to determine branch separation according to the maximum depth of 

the tree. 

6. Calculate the cover value with the following formula by iterating through each observation in the dataset: 

𝐶𝑜𝑣𝑒𝑟(𝑖) = ∑[0.5 × (1 − 0.5) + 0.5 × (1 − 0.5) + ⋯ + 0.5 × (1 − 0.5)] = 5

20

𝑖=1

 

Gender Tremor Rigidity Bradykinesia 
Postural 

Instability 
Class 

Initial 

Prediction 
Residual 

0 1 0 0 0 0 0.5 -0.5 

1 1 0 0 0 1 0.5 0.5 

0 1 1 1 0 1 0.5 0.5 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

0 1 1 0 0 1 0.5 0.5 

0 1 0 1 0 0 0.5 -0.5 

0 1 0 0 0 1 0.5 0.5 



BAREKENG: J. Math. & App., vol. 19(3), pp. 1609- 1624, September, 2025.  1617 

 

 

7. Performing tree pruning, at this stage, the lowest gain is 0, then: 

𝐺 − 𝛾 < 0, with 𝛾 default is 0 

0 − 0 = 0 

The pruning result is 0, indicating that no pruning occurs on the branch, and therefore, no additional 

gains are achieved. The final tree results after the pruning process are shown in Figure 3. 

 

 
Figure 3. The Final Tree after the Tree Pruning Process 

Figure 3 shows the result of the decision tree representation generated after the cover weighting 

process in the XGBoost algorithm. The decision tree is not pruned because all the gain values in each branch 

are still greater than zero (the lowest gain is 0). The tree structure shows the separation of data based on 

features such as Tremor and Rigidity, with a particular threshold value for each feature. 

8. Furthermore, the calculation of the output value is obtained using Equation (6), which is written in Table 

6 below. 

Table 6. Output Value 
 

 

 

 

 

Table 6 shows the output values based on various features associated with Parkinson's disease, such 

as gender, tremor, rigidity, bradykinesia, and postural instability. In the first row, with a feature value of 1 

for gender and 0 for other conditions, the output value is -2, indicating a class 0 category. In the second row, 

with tremor and rigidity conditions valued at 1, the output value is 2, indicating a class 1. In the third row, 

with feature values all 0, the output value is also 2, indicating a class 0. 

9. Log-odds transformation with the following formula: 

𝑙𝑜𝑔(𝑂) = 𝑙𝑜𝑔 (
𝑝(𝑖)

1 − 𝑝(𝑖)
) = 𝑙𝑜𝑔 (

0.5

1 − 0.5
) = 𝑙𝑜𝑔 (

0.5

0.5
) = 𝑙𝑜𝑔(1) = 0 

10. A new prediction is generated with the value of the learning rate in this study set as the default of 0.3. 

The learning rate is a critical parameter in machine learning algorithms, as it determines how much the 

weights or model parameters are updated during each iteration. The calculation of new predictions is 

carried out based on Equation (8) as follows. 

𝑓(𝑥𝑖) = log(𝑂) + 𝛼 × 𝑂𝑢𝑡𝑝𝑢𝑡 𝑉𝑎𝑙𝑢𝑒 

𝑓(𝑥1) = 0 + 0.3 × −2 = −0.6 

Gender Tremor Rigidity Bradykinesia 
Postural 

Instability 
Class 

Output 

Value 

1 0 0 0 0 0 -2 

1 1 1 0 0 1 2 

0 0 0 0 0 0 2 
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𝑓(𝑥2) = 0 + 0.3 × 2 = 0.6 

𝑓(𝑥3) = 0 + 0.3 × 2 = 0.6 

The binary sigmoid function is a mathematical operation that converts input values to an output 

between 0 and 1. Instances with an output greater than 0.50 are categorized as class 1, while those with an 

output less than 0.50 are classified as class 0.  

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑓(𝑥𝑖)) =
exp(𝑓(𝑥𝑖))

1 + exp (𝑓(𝑥𝑖))
 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑓(𝑥1)) =
exp(−0.6)

1 + exp(−0.6)
= 0.354 < 0.5 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑓(𝑥2)) =
exp(0.6)

1 + exp(0.6)
= 0.6457 > 0.5 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑓(𝑥3)) =
exp(0.6)

1 + exp(0.6)
= 0.6457 > 0.5 

 

Table 7. New Prediction for XGBoost Classification 

Gender Tremor Rigidity Bradykinesia 
Postural 

Instability 
Class 

Output 

Value 

New 

Prediction 
Evaluation 

1 0 0 0 0 0 -2 0 True 

1 1 1 0 0 1 2 1 True 

0 0 0 0 0 0 2 1 False 

 

Table 7 shows the new prediction results for XGBoost classification. Each row presents data with 

gender, tremor, rigidity, bradykinesia, postural instability features, and the model's output value and 

prediction. In the first row, with gender condition one and other features 0, the model predicts a class of 0 

with an output value of -2, corresponding to the actual value, so the evaluation is “True.” In the second row, 

with tremor and rigidity being 1, the output value is 2, and the model prediction also results in a class of 1, 

which is correct (evaluation “True”). In the third row, although the output value is 2, the model predicts a 

class 1, but the actual value is 0, so the evaluation is “False”. 

 

3.3 Grid Search 

The parameter tuning results are summarized in Table 8, providing a detailed overview of the 

performance metrics for each combination of hyperparameters tested. These results highlight the effect of 

various tuning configurations on the model's accuracy, sensitivity, and specificity, and provide insights into 

the most effective parameter settings for optimizing the classification task. 

Table 8. Grid Search Parameter 

Parameter Best Value Time Accuracy Sensitivity Specificity 

Gamma 5 

44’ 51” 93.35% 95.78% 88.14% 

Max depth 3 

Learning rate 0.3 

N estimator 100 

Subsample 0.8 

Table 8 shows the evaluation results of the XGBoost model, which showed an accuracy of 93.35%, 

with a sensitivity of 95.78% and a specificity of 88.14%. This suggests the model is highly effective in 

accurately classifying positive and negative cases. High sensitivity demonstrates the model's capability to 

identify most positive cases, while strong specificity indicates its precision in recognizing negative cases. 

The computation time required to achieve this result is 44 minutes and 51 seconds. The optimal tree results 

of the hyperparameter tuning grid search are in Figure 4. 
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Figure 4. The Optimal Tree Result of Grid Search 

Figure 4 shows that the tree starts with the evaluation UPDRS < 50.617. For a correct Rigidity < 1, 

the tree checks UPDRS < 48.735, resulting in leaf -0.662 (negative class) if correct and leaf -0.100 (negative 

class) otherwise. If Rigidity ≥ 1 is incorrectly evaluated, the tree evaluates Tremor < 1. When Tremor < 1 is 

true, the tree checks PosturalInstability < 1, leading to leaf -0.599 (negative class) if true and leaf -0.188 

(negative class) otherwise. If Tremor ≥ 1 is incorrect, then the tree evaluates FunctionalAssessment < 6.420, 

resulting in leaf 0.309 (positive class) if true and leaf -0.207 (negative class) otherwise. On the main right 

branch (UPDRS ≥ 50.617), when incorrectly evaluated, the tree evaluates Tremor < 1. If correct, the tree 

checks FunctionalAssessment < 5.054, which, if accurate, leads to an evaluation of MoCA < 25.989. If true, 

it results in leaf 0.389 (positive class); if false, it results in leaf -0.349 (negative class). If 

FunctionalAssessment < 5.054 is incorrect, the tree evaluates Bradykinesia < 1, leading to leaf -0.371 

(negative class) if true and leaf -0.302 (negative class) otherwise. If MoCA ≥ 26.212 is correctly evaluated, 

it contributes to a leaf value of 0.420 (positive class). Otherwise, the tree evaluates CholesterolHDL < 74.571, 

resulting in leaf -0.302 (negative class) if true and leaf -0.191 (negative class). The most influential features 

in this classification are UPDRS, Rigidity, Tremor, Functional Assessment, and MoCA. UPDRS, which acts 

as the root node, shows that this feature is the leading indicator in determining the severity of Parkinson's 

disease. Furthermore, Rigidity, Tremor, and Functional Assessment become distinguishing factors at the 

internal node level, which helps the model filter patient characteristics based on more specific symptoms. At 

the final level of classification, MoCA and HDL Cholesterol are used as additional indicators to differentiate 

patient categories in more detail, ensuring more accurate decisions. 

 

3.4 Random Search 

The parameter tuning results using Random Search, which involves sampling hyperparameters from 

predefined probability distributions, are summarized in Table 9. This approach tests various combinations of 

hyperparameters in a random search rather than exhaustively and provides a detailed overview of the 

performance metrics for each configuration.  
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Table 9. Random Search Parameter 

 

Table 9 shows the XGBoost model evaluation results from the 50th iteration of the Random Search 

process, which showed the most optimal performance with an accuracy of 93.97%, sensitivity of 96.63%, 

and specificity of 89.64%. This accuracy reflects the proportion of correct predictions from the overall data, 

while the high sensitivity indicates the model's ability to detect most positive cases. The high specificity also 

confirms that the model can classify negative instances accurately. The tuning process took 3 minutes and 37 

seconds of computing time, indicating good efficiency in achieving optimal results. The optimal tree 

generated through hyperparameter tuning using Random Search is shown in Figure 5.  

 

 
Figure 5. The Optimal Tree Result of Random Search 

 
 

Iteration Parameter Best Value Time Accuracy Sensitivity Specificity 

50 

Gamma 4.736 

3’ 37” 93.97% 96.63% 89.64% 

Max depth 3 

Learning 

rate 

0.262 

N estimator 58 

Subsample 0.631 

100 

Gamma 3.898 

6’ 46” 93.06% 95.86% 88.51% 

Max depth 6 

Learning 

rate 

0.160 

N estimator 53 

Subsample 0.794 

500 

Gamma 4.914 

33’ 29” 93.21% 95.78% 89.01% 

Max depth 5 

Learning 

rate 

0.243 

N estimator 82 

Subsample 0.699 

1000 

Gamma 4.327 

1h 6’ 8” 93.25% 96.40% 89.14% 

Max depth 3 

Learning 

rate 

0.254 

N estimator 69 

Subsample 0.773 
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Figure 5 shows that the tree starts with the evaluation UPDRS < 50.617. For a correct Rigidity < 1, 

the tree checks Bradykinesia < 1, resulting in leaf -0.614 (negative class) if correct and leaf -0.330 (negative 

class) if not. If Rigidity ≥ 1 is incorrectly evaluated, the tree evaluates PosturalInstability < 1, leading to leaf 

-0.331 (negative class) if true and leaf 0.244 (positive class) otherwise. On the main right branch (UPDRS ≥ 

50.617), when incorrectly evaluated, the tree evaluates Tremor < 1. If correct, it checks FunctionalAssessment 

< 5.086, resulting in leaf 0.221 (positive class) if true and leaf -0.214 (negative class) otherwise. If Tremor ≥ 

1 is incorrectly evaluated, the tree next evaluates MoCA < 26.212, resulting in leaf 0.365 (positive class) if 

true and leaf 0.110 (positive class) otherwise. UPDRS acts as the main feature in determining the initial 

classification. At the same time, Rigidity, Bradykinesia, Postural Instability, Tremor, Functional Assessment, 

and MoCA are used as internal nodes to differentiate patients based on their symptom characteristics. At each 

branching, decisions are made based on the values of these features, which ultimately lead to leaf nodes that 

show the final value to determine the patient's class. 

Table 10. Result Comparison of Hyperparameter Tuning, Grid Search, and Random Search 

  
Grid Search 

Random Search 

50 100 500 1000 

Accuracy 93.35% 93.97% 93.06% 93.21% 93.25% 

Sensitivity 95.78% 96.63% 95.86% 95.78% 96.40% 

Spesificity 88.14% 89.64% 88.51% 89.01% 89.14% 

Time 44’ 51” 3’ 37” 6’ 44” 33’ 29” 1h 6’ 8” 

 

Interestingly, from Table 10, Random Search proved to be more optimal than Grid Search in this study. 

Despite Grid Search achieving a comparable accuracy of 93.35% with carefully evaluated parameters, its 44-

minute and 51-second computation time was significantly longer than Random Search, which achieved higher 

accuracy in less time. For instance, with 50 iterations, Random Search attained an accuracy of 93.97%, 

sensitivity of 96.63%, and specificity of 89.64% within just 3 minutes and 37 seconds. This efficiency stems 

from Random Search's ability to explore a broader range of hyperparameter combinations in a shorter time 

frame, as it does not exhaustively test every possible combination like Grid Search. 

These findings suggest important implications for hyperparameter tuning strategies in machine 

learning applications. Given its efficiency and superior performance, Random Search is a more practical 

choice for optimizing complex models, particularly in resource-constrained environments. This is especially 

relevant for medical diagnostics and real-time applications, where minimizing computational overhead is 

crucial for timely decision-making. Moreover, the results highlight the importance of balancing accuracy 

with computational efficiency, reinforcing the need for adaptive search techniques that maximize 

performance while reducing processing time. Future research could explore hybrid approaches that combine 

the strengths of both methods, potentially enhancing hyperparameter tuning strategies for various machine 

learning models. 

4. CONCLUSIONS 

Testing with Random Search for 50 iterations resulted in optimal performance for Parkinson's disease 

classification using the XGBoost method, achieving an accuracy of 93.97%, sensitivity of 96.63%, and 

specificity of 89.64%. Compared to Grid Search, Random Search improved accuracy by 0.62%, sensitivity 

by 0.85%, and specificity by 0.5% while reducing computation time by 41 minutes and 14 seconds. These 

findings indicate that Random Search enhances model-tuning efficiency by exploring a broader range of 

parameter combinations, leading to improved classification accuracy and computational efficiency. 

However, despite these advantages, Random Search has potential limitations. Since it selects 

hyperparameters randomly, there remains a risk of suboptimal parameter tuning, which could lead to 

inconsistent performance across different datasets. Additionally, while XGBoost inherently includes 

regularization techniques to mitigate overfitting, improper hyperparameter selection, especially with 

excessive boosting rounds or an overly complex tree structure, can still lead to overfitting, particularly on 

smaller datasets. 

To address these limitations, future research could explore alternative hyperparameter optimization 

techniques, such as Bayesian Optimization or Tree-structured Parzen Estimators (TPE), which utilize 
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probabilistic models to refine the search process and potentially yield more optimal parameter configurations. 

Additionally, applying this model to more extensive and diverse datasets or extending its use to classify other 

neurological diseases could provide further insights into its generalizability and robustness in medical 

diagnostics. 

In conclusion, while Random Search offers advantages in efficiency and performance, exploring 

alternative optimization strategies and testing the model on broader datasets can provide deeper insights into 

improving machine learning-based disease classification. 
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