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ABSTRACT                                                                                                 

Article History: The common method used in population dynamics is optimal control, which employs 

Pontryagin’s minimum principle. This method minimizes costs, with the constraint function 

being the model dynamics. Unfortunately, if the main objective of the control function is to 

modify the population’s behavior to follow a specific pattern, this method is challenging to 

apply. This article introduces a control function to the predator-prey model for the tracking 

problem using the backstepping method. The control function drives the population from 

the initial value towards the given trajectory. The goal is to maintain the balance between 

predator and prey populations in the habitat, with the chosen trajectory being the 

equilibrium point. The application of backstepping to the predator-prey model is combined 

with input-output feedback linearization to obtain a normal form, enabling the 

implementation of backstepping. Simulation results show that the controller successfully 

drives the predator-prey populations toward the equilibrium point with a relatively small 

control function and excellent performance. 
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1. INTRODUCTION 

The interaction between predators and prey is one of ecosystems’ most fundamental ecological 

dynamics, reflecting the complex reciprocal relationships between species. Predator-prey mathematical 

models such as the Lotka-Volterra model, developed by Alfred J. Lotka and Vito Volterra in the early 20th 

century, have long been used as an effective analytical tool to understand the population fluctuation patterns 

of these two types of organisms [1], [2]. This model illustrates typical population cycles and provides insights 

into ecosystem stability, the impact of environmental interventions, and the potential for chaos in population 

dynamics. By integrating biological parameters such as prey growth rates, predation rates, and predator 

energy efficiency, this model is an essential foundation for developing conservation strategies and sustainable 

natural resource management. 

The predator-prey model has been widely studied and developed. Developments include the use of 

interaction schemes between populations, the application of fractional models, or even the use of partial 

differential equations to accommodate population movement. In [3], it discusses a predator-prey model in the 

form of difference equations. The research develops a Ricker-type predator-prey model by changing the step 

size to an arbitrary constant step size. In [4], the predator-prey model uses partial differential equations. The 

predation process, which involves hunting prey, is accommodated in the form of an equation that represents 

the movement of the prey, which simultaneously causes the movement of the predators. The movement of 

the predators is also assumed to be uneven due to competition among predators within the same population, 

leading to the spread of hunting areas depending on the competition abilities. [5] discusses the predator-prey 

model using a system of partial differential equations. The use of partial differential equations is intended to 

accommodate the movement of the predator population. This occurs because the prey population is not evenly 

distributed, requiring predators to gather in areas where sufficient prey is available. [6] uses fractional 

differential equations to discuss a predator-prey model with one predator and two prey species.  

One of the prey species has food that also serves as additional food for the predator, allowing for 

competition to occur. In [7], [8] discuss predator-prey models with Holling Type II response and the presence 

of protection. In [7], protection is provided for the prey population, while in [8], protection is provided for 

the predator population, and cannibalism is added as a factor within the predator population. Cannibalism in 

the predator population can reduce the predator population and decrease the predation rate, as the predators’ 

needs are partly met through cannibalistic behavior. Still using the Holling Type II response function, [9] 

modified the predator-prey model into a food chain model involving three populations. The model formed 

was also developed by involving competition between predators and predator harvesting as a form of control. 

[10] and [11] discuss predator-prey models involving food sharing. In [10], it is assumed that there is fear 

between predator populations due to their ability to secrete toxins. The prey in this model is food sharing 

because both predator populations live in the same environment. [11] discusses a time-dependent model for 

the predator-prey problem with food sharing and time budgeting. The developed model divides the predator 

population into two categories with different capabilities: adult predators, which are capable of hunting and 

reproducing, and young predators, which are not yet able to hunt or reproduce. This food sharing occurs 

between the adult and young predator populations, as the young population still depends on the adult 

population. In [12], a predator-prey model was developed with the presence of an infected population. The 

existence of an infected population makes the prey more susceptible to predation, necessitating a treatment 

scheme, either care or vaccination, to enhance immunity. 

The predator-prey model is a system of nonlinear differential equations. Control design for nonlinear 

systems is still challenging and heavily depends on the specific model [13]. One method that is quite popular 

for nonlinear systems is the backstepping method. Backstepping is widespread in various problems, such as 

in [14] for electrical induction in photovoltaic generators. In [15], [16], [17], backstepping is used to design 

control for transportation systems, implemented in the problem of quadrotor unmanned aerial vehicles 

(UAVs). Backstepping can also be applied in the healthcare field, such as in brain tumor treatment, as done 

in [18]. In [19], backstepping was used to determine the control function for treating the spread of COVID-

19, which occurred in early 2020, and was modeled using the SIRD model. In [20], backstepping was applied 

to control the spread of COVID-19 with a vaccination scheme to keep the population at a certain threshold 

level. Backstepping is also very effective in addressing systems that involve uncertainty. In [21], [22], [23], 

[24], the use of backstepping is specifically discussed for systems that involve disturbance functions or 

uncertain parameters, combined with the input-output feedback linearization method to transform the 

nonlinear system into normal form. 
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In this article, we discuss the predator-prey model controlled using nonlinear control. The nonlinear 

control used is the backstepping method. Applying the backstepping method to the predator-prey model is 

combined with input-output feedback linearization to form a strict feedback form. The goal of the control 

design in this article is to bring the system output from the initial value to a chosen trajectory. It is assumed 

that the control strategy is a conservation measure for the predator population, which typically has a smaller 

population size. It is also known that prey is the primary source of life for the predator population, so its 

availability needs to be monitored. Therefore, the control function is applied to the predator population, while 

the sensor for detecting the output is placed on the prey population. 

The contribution of this article lies in the application of nonlinear control to the predator-prey model. 

The control typically used in population models is optimal, as seen in [12], [25], [26], [27], [28], [29], and 

[30]. Our article applies nonlinear control using the backstepping method. The optimal control used in 

population or epidemiological models, such as in [31], [32], [33], and [34], aims at the stabilization problem. 

This is less relevant to the predator-prey problem, as stabilizing a population, which essentially means making 

the population extinct, would lead to ecosystem damage. In this article, we apply control to conserve the 

population by bringing it to a specific point, representing a tracking problem. 

This article is organized as follows. The second section presents the research methods, which include 

the predator-prey model, the input-output feedback linearization method, and the backstepping method. The 

discussion section presents the control design for both the stabilization problem and the tracking problem. 

Numerical simulations complement the discussion to compare the controlled system and examine the effect 

of parameter variations on the controller. The final section of the article provides a summary. 

2. RESEARCH METHODS 

2.1 Problem Formulation 

The predator-prey model is given by: 
 

{
�̇�(𝑡) = −𝛼1𝑚(𝑡)𝑝(𝑡) + 𝛽𝑚(𝑡)

�̇�(𝑡) = 𝛼2𝑚(𝑡)𝑝(𝑡) − 𝛾𝑝(𝑡)
 (1) 

 

where 𝑚(𝑡)[individual] is the prey population in the habitat at time 𝑡, 𝑝(𝑡)[individual] is the predator 

population in the same habitat at time 𝑡, 𝛼1[individual−1time−1] , 𝛼2[individual−1time−1] is the predation 

rate constant resulting from the interaction between predators and prey, 𝛽[time−1] is the prey growth rate 

constant in the absence of predators, and 𝛾[time−1] is the predator mortality rate constant in the absence of 

prey. All variables and parameters are assumed to be positive. 

The equilibrium points of the predator-prey model are (𝑚∗ = 0, 𝑝∗ = 0) and (𝑚∗ =
𝛾

𝛼2
, 𝑝∗ =

𝛽

𝛼1
). The 

stability of the model can be analyzed locally using the Jacobian matrix. The Jacobian matrix of Equation 
(1) is: 

 

𝐀 = [
−𝛼1𝑝(𝑡) + 𝛽 −𝛼1𝑚(𝑡)

𝛼2𝑝(𝑡) 𝛼2𝑚(𝑡) − 𝛾
] (2) 

 

Substitute equilibrium (𝑚∗ = 0, 𝑝∗ = 0) into (2) to obtain the Jacobian matrix for the first equilibrium point, 

𝐀1 = [
𝛽 0
0 −𝛾

], with eigenvalues 𝜆 = {𝛽, −𝛾}. This means that the equilibrium point (𝑚∗ = 0, 𝑝∗ = 0) is an 

unstable equilibrium point. The Jacobian matrix for the second equilibrium point is 𝐀2 = [
0 −𝛾
𝛽 0

], with 

eigenvalues 𝜆 = ±√𝛾𝛽𝐼. The second equilibrium point is stable equilibrium. 

Control action refers to the intervention applied to the population. In this article, the control function 

is applied to the predator population, as it is generally the predator population that is more vulnerable and 

scarcer compared to the prey population. Thus, the control function here serves as a conservative measure for 

the predator population. Since the only resource relied upon for the growth of the predator population is the 
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adequate supply of the prey population, the sensor for this problem is placed on the prey population. 

Therefore, Equation (1) is subsequently written as 
 

{

�̇�(𝑡) = −𝛼1𝑚(𝑡)𝑝(𝑡) + 𝛽𝑚(𝑡)

�̇�(𝑡) = 𝛼2𝑚(𝑡)𝑝(𝑡) − 𝛾𝑝(𝑡) + 𝑢(𝑡)

𝑦(𝑡) = 𝑚(𝑡)
 (3) 

 

where 𝑦(𝑡) ∈ ℝ is the measurable output of the model, and 𝑢(𝑡) ∈ ℝ is the control function. In this article, 

the goal of the control 𝑢(𝑡) is to maintain the predator-prey populations stable. The target stability condition 

for the control is population conservation, so the desired control trajectory is the second equilibrium point 

(𝑚∗ =
𝛾

𝛼2  
, 𝑝∗ =

𝛽

𝛼1
). 

2.2 Input-Output Feedback Linearization 

Given a single-input, single-output (SISO) nonlinear control system: 
 

{
�̇�(𝑡) = 𝐟(𝐱(𝑡)) + 𝐠(𝐱(𝑡))𝑢(𝑡)  

𝑦(𝑡) = ℎ(𝐱(𝑡))
 (4) 

 

Nonlinear control systems remain a challenging problem to solve. One proposed solution is to 

transform the system into a linear system. Input-output feedback linearization (IOFL) can convert a nonlinear 

control system into a linear one. Unlike linearization using the Jacobian, IOFL is a coordinate transformation, 

meaning it does not have the limitations of Jacobian linearization, which depends on the linearization point. 

The coordinate transformation is performed by modifying the system while considering the relative degrees 

of the system. 

Definition 1. The relative degree, denoted by 1 ≤ 𝜌 ≤ 𝑛, is a natural number that represents the number of 

derivatives required on the system output Equation (4) until the control function 𝑢(𝑡) appears explicitly. 

This is expressed as 

{
𝐿𝐠𝐿𝐟

𝑘−1ℎ(𝐱) = 0 , 𝑘 = 1,2, … , 𝜌 − 1   

𝐿𝐠𝐿𝐟
ρ−1

ℎ(𝐱) ≠ 0 ,
 (5) 

 

𝐿𝐟ℎ(𝐱) in Equation (5) is Lie derivative defined as 𝐿𝐟ℎ(𝐱) = ∇ℎ 𝐟(𝐱), and ∇ℎ = [
𝜕ℎ

𝜕𝑥1

𝜕ℎ

𝜕𝑥2
⋯

𝜕ℎ

𝜕𝑥𝑛
]. 

This article is limited to the case 𝜌 = 𝑛. The coordinate transformation for the nonlinear control system 

𝐳 = 𝑇(𝐱) is expressed as 
 

𝑧𝑖 = 𝐿𝐟
𝑖−1ℎ(𝐱), 𝑖 = 1,2, … , 𝑛 (6) 

 

The derivative of 𝑧𝑖(𝑡) in Equation (6) with respect to 𝑡 results in   
 

�̇�(𝑡) = 𝐀𝐳(𝑡) + 𝑩𝜈(𝑡) (7) 

 

where 𝐳 = 〈𝑧1, 𝑧2, … , 𝑧𝑛〉 and 𝜈(𝑡) = 𝐿𝐟
𝑛ℎ(𝐱) + 𝐿𝐠𝐿𝐟

𝑛−1ℎ(𝐱)𝑢(𝑡). The control function 𝜈(𝑡) in Equation (7) 

is the control function applicable to the transformed system 𝐳(𝑡), which can be designed using linear control 

theory. The relation between 𝑢(𝑡) and 𝜈(𝑡) is given by 
 

𝑢(𝑡) =
𝜈(𝑡) − 𝐿𝐟

𝑛ℎ(𝐱)

𝐿𝐠𝐿𝐟
𝑛−1ℎ(𝐱)

 (8) 

 

The control function 𝑢(𝑡) in Equation (8) will then be used in nonlinear control Equation (4) and the 

predator-prey model in Equation (3). 
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2.2 Backstepping 

Backstepping is a control design method based on Lyapunov stability, achieved through an integrator 

process. 

 
Figure 1. The Block Diagram of the Control System that Stabilizes the Nonlinear System Equation (4) 

 

Assume there exists a control 𝜑(𝐱) that stabilizes Equation (4) and a Lyapunov function that satisfies: 
 

�̇�(𝐱) =
𝜕𝑉

𝜕𝐱
[𝐟(𝐱) + 𝐠(𝐱)𝜑(𝐱)] ≤ −𝑊(𝐱) < 0 

(9) 

 

where 𝑊(𝐱) is a continuous and positive function. 

 
Figure 2. The Block Diagram of the Control System with an Integrator in the Backstepping Method  

for the Nonlinear System Equation (4) 

The nonlinear control system Equation (4) can be extended with an integrator, as shown in Figure 2, 

resulting in: 
 

{
�̇�(𝑡) = 𝐟(𝐱(𝑡)) + 𝐠(𝐱(𝑡)) 𝜀(𝑡)  

𝜀̇(𝑡) = 𝑢(𝑡)
 (10) 

 

𝜀(𝑡)  in the first equation in Equation (10) represents the control function, while it is a state variable in the 

second equation. We have assumed that Equation (10) is stabilized by 𝜑(𝐱), so we express 𝜀(𝑡) as a virtual 

control function. 

Define the difference between the virtual control and the control 𝜑(𝐱) as: 
 

𝑤(𝑡) = 𝜀(𝑡) − 𝜑(𝐱) (11) 

 

Differentiate Equation (11) and modify the system Equation (10) in terms of the variable 𝑤(𝑡) to obtain  
 

{
�̇�(𝑡) = 𝐟(𝐱) + 𝐠(𝐱) 𝜑(𝐱) + 𝐠(𝐱)[𝜀(𝑡) − 𝜑(𝐱)]  

�̇�(𝑡) = 𝑢(𝑡) − �̇�(𝐱)
 (12) 

 

The term 𝐟(𝐱) + 𝐠(𝐱) 𝜑(𝐱) in Equation (12) has been stabilized by the control 𝜑(𝐱). Define the Lyapunov 

function as: 
 

𝑉(𝐱, 𝑤) = 𝑉(𝐱) +
1

2
𝑤(𝑡)2 (13) 

 

The derivative of Equation (13) with respect to 𝑡 and using Equation (9) results in: 
 

�̇�(𝐱, 𝑤) = �̇�(𝐱) + 𝑤�̇� ≤ −𝑊(𝐱) + 𝑤 [
𝜕𝑉

𝜕𝐱
𝐠(𝐱) + 𝑢(𝑡) −

𝜕𝜑

𝜕𝐱
(𝐟(𝐱) + 𝐠(𝐱)𝜑(𝐱) + 𝐠(𝐱)𝑤)] (14) 
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The control 𝑢(𝑡) that stabilizes the system is the one that ensures �̇�(𝐱, 𝑤) < 0, which can be chosen as: 

 

𝑢(𝑡) = −𝑟𝑤𝑤(𝑡) −
𝜕𝑉

𝜕𝐱
𝐠(𝐱) +

𝜕𝜑

𝜕𝐱
[𝐟(𝐱) + 𝐠(𝐱)𝜑(𝐱) + 𝐠(𝐱)𝑤(𝑡)] (15) 

 

with 𝑟𝑤 ∈ ℝ+ and the Lyapunov function Equation (14) then becomes: 
 

�̇� ≤ −𝑊(𝐱) − 𝑟𝑤𝑤2(𝑡) < 0 (16) 

 

Equation (16) indicates that control 𝑢(𝑡) in Equation (15) stabilizes the system in Equation (10) 
asymptotically. 

3. RESULTS AND DISCUSSION 

The discussion begins by transforming the predator-prey model into its normal form, specifically the 

strict feedback form. This form is ideal for applying the backstepping method. Subsequently, control designs 

are presented to solve the stabilization and tracking problems. Illustrations are then provided to demonstrate 

the control’s performance.  

3.1 The Normal Form of a Predator-Prey Model with Control in Prey and Output in Prey 

Before determining the control function, we must transform the predator-prey model into a normal 

form because backstepping requires a strict feedback form. The process flow in the control design is shown 

in Figure 3. The predator-prey model is transformed into a normal form, a linear control system that forms a 

strict feedback form. The transformation to the normal form is a linearization transformation. This 

linearization process cannot use Jacobian but must use IOFL because we want to control the system output 

to follow a given trajectory in the system we are studying. Using the normal form, the control function is 

designed using backstepping. The obtained control function is then applied to the predator-prey model 

utilizing the inverse of the IOFL transformation. 

 
Figure 3. Diagram of Control Design using Backstepping on Predator-Prey 

 

Theorem 1. Consider the system in Equation (3). Using the output 𝑦(𝑡)  =  𝑚(𝑡), Equation (3) can be 

exactly linearized. 

Proof. Consider Equation (3). Define 𝐱 = ⟨𝑚, 𝑝⟩. Since 𝑦(𝑡) = 𝑚(𝑡), the output can be rewritten as 𝑦(𝑡) =
𝐡𝐱(𝑡), where 𝐡𝑇 = ⟨1, 0⟩. Equation (3) can be expressed in the form of a nonlinear control system as �̇�(𝑡) =
𝐟(𝐱) + 𝐠(𝐱)𝑢(𝑡)  with  
 

𝐟(𝐱) = (
−𝛼1 𝑚(𝑡)𝑝(𝑡) + 𝛽 𝑚(𝑡)

𝛼2 𝑚(𝑡)𝑝(𝑡) − 𝛾 𝑝(𝑡)
) , 𝐠(𝐱) = (

0
1

) (17) 

 

The first derivative of 𝑦(𝑡) with respect to 𝑡 and using Equation (17) result in: 
 

�̇�(𝑡) =
𝜕𝑦

𝜕𝐱
�̇� = 𝐡�̇� = −𝛼1𝑚(𝑡)𝑝(𝑡) + 𝛽𝑚(𝑡) (18) 

 

Predator 
- Prey

IOFL

Normal 
Form

Backstepp
ing

IOFL 
Invers
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The second derivative of 𝑦(𝑡) using Equation (18) produce 

 
𝑑�̇�

𝑑𝑡
=

𝜕�̇�

𝜕𝐱
�̇� = −𝛼1𝑚(𝑡)𝑢(𝑡) + 𝑚(𝑡)[−𝛼1𝛼2𝑚(𝑡)𝑝(𝑡) + 𝛼1

2𝑝2(𝑡) − 2𝛼1𝛽𝑝(𝑡) + 𝛼1𝛾𝑝(𝑡) + 𝛽2] (19) 

 

Since the control 𝑢(𝑡) appears in the second derivative of the output 𝑦(𝑡) in Equation (19), the relative 

degree of Equation (3) with the output 𝑦(𝑡) = 𝑚(𝑡) is 𝜌 = 2. Based on [35], the system can be exactly 

linearized. ∎ 

Corollary 1. Consider Equation (3) with the output 𝑦(𝑡) = 𝑚(𝑡) having a relative degree of 𝜌 = 2. A 

change of variables is defined as 𝒛 = 𝑇(𝒙), where:   

 

{
𝑧1(𝑡) = ℎ(𝐱)

𝑧2(𝑡) = 𝐿𝐟ℎ(𝐱)
 (20) 

 

The derivative of Equation (20) with respect to 𝑡 yields 
 

{
�̇�1(𝑡) = 𝑧2(𝑡)

�̇�2(𝑡) = 𝜈(𝑡)
 (21) 

 

where 𝜈(𝑡) is the control function in the transformed system, expressed as: 
 

 𝜈(𝑡) = −𝛼1𝑚(𝑡)𝑢(𝑡) + 𝑚(𝑡)[−𝛼1𝛼2𝑚(𝑡)𝑝(𝑡) + 𝛼1
2𝑝2(𝑡) − 2𝛼1𝛽𝑝(𝑡) + 𝛼1𝛾𝑝(𝑡) + 𝛽2] (22) 

 

Control 𝑢(𝑡) using the predator-prey model in Equation (3) is obtained from Equation (22) using the 

relation between 𝑢(𝑡) and 𝑣(𝑡) in (8).  

Theorem 2. Consider Equation (3) with the output 𝑦(𝑡) = 𝑚(𝑡), which is transformed into Equation (21). 

Equation (21) is a system that can be controlled using 𝜈(𝑡). 

 Proof. Equation (21) is expressed in the form �̇�(𝑡) = 𝐀𝐳(𝑡) + 𝐛𝜈(𝑡), with 𝐳 = 〈𝑧1, 𝑧2〉, and 

 

𝐀 = [
0 1
0 0

] , 𝐛 = (
0
1

) (23) 

 

The controllability matrix 𝐌 for a second-order linear system is 𝐌 = [𝐛 𝐀𝐛]. Using the values of 𝐀 

and 𝐁 from Equation (23), it is obtained that 𝐌 = [
0 1
1 0

], which has rank(𝐌) = 2. Therefore, the system 

Equation (21) is controllable. ∎ 

3.2 Control Design for Stabilization Problem  

Consider Equation (21) The block diagram illustrating the application of the integrator backstepping 

method for the stabilization problem is shown in Figure 4. 

 
Figure 4. The Block Diagram of the Backstepping Method for Stabilizing Equation (21) 

 

Assumption 1. There exists a control 𝜑(𝑧1) that stabilizes 𝑧1(𝑡) = 𝜑(𝑧1), and there exists a Lyapunov 

function 𝑉(𝑧1) that satisfies 
 

�̇�(𝑧1) =
𝑑𝑉(𝑧1)

𝑑𝑧1
𝜑(𝑧1) ≤ −𝑊(𝑧1) < 0 (24) 

 

with 𝑊(𝑧1) being a positive, continuous, and bounded function. 
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Theorem 3. Given Equation (21) that satisfies Assumption 1, the control 𝜈(𝑡) that stabilizes Equation (21) 

using backstepping is  

𝜈(𝑡) = −𝑧1(𝑡)(1 + 𝑟1𝑟2) − 𝑧2(𝑡)(𝑟1 + 𝑟2) (25) 

 

where 𝑟1, 𝑟2 ∈ ℝ+ are the backstepping control parameters. 

Proof. Let 𝜑(𝑧1) be a feedback control that stabilizes 𝑧1(𝑡) = 𝜑(𝑧1). Here, we can choose 𝜑(𝑧1) = −𝑟1𝑧1(𝑡) 

with 𝑟1 ∈ ℝ+. The candidate Lyapunov function for 𝑧1(𝑡) is defined as  

 

𝑉(𝑧1) =
1

2
𝑧1(𝑡)2 (26) 

 

The derivative of Equation (26) with respect to 𝑡, using the control 𝜑(𝑧1), results in 
 

�̇�(𝑧1) = 𝑧1(𝑡)�̇�1(𝑡) = −𝑟1𝑧1
2 < 0 (27) 

 

Based on Equation (27), we can conclude that 𝑊(𝑧1) = 𝑟1𝑧1
2, which is a positive function. The diagram in 

Figure 4 shows that 𝑧2(𝑡) is the control function for �̇�1(𝑡), which is the result of the integrator. Therefore, 

𝑧2(𝑡) is a virtual control that approximates 𝜑(𝑧1), so the difference between 𝜑(𝑧1) and the virtual control 

𝑧2(𝑡) can be defined as  
 

𝑤(𝑡) = 𝑧2(𝑡) − 𝜑(𝑧1) = 𝑧2(𝑡) + 𝑟1𝑧1(𝑡) (28) 

 

Using the value of 𝑤(𝑡) in the dynamics of 𝑧1 to obtain  
 

�̇�1(𝑡) = 𝑤(𝑡) − 𝑟1𝑧1(𝑡) (29) 

 

The derivative of 𝑤(𝑡) in Equation (28) with respect to 𝑡, using Equation (21) and Equation (29), will 

result in 
 

�̇�(𝑡) = 𝜈(𝑡) + 𝑟1𝑤(𝑡) − 𝑟1
2𝑧1(𝑡) (30) 

 

The second step is stabilizing 𝑤(𝑡) using the control 𝜈(𝑡). Choose a candidate Lyapunov function to 

determine the stability of 𝑤(𝑡), which combines with the Lyapunov function for 𝑧1(𝑡), given by 
 

𝑉(𝑤, 𝑧1) = 𝑉(𝑧1) +
1

2
𝑤(𝑡)2 (31) 

 

The derivative of Equation (31) with respect to 𝑡 results in 
 

�̇�(𝑤, 𝑧1) =
𝜕𝑉(𝑧1)

𝜕𝑧1
𝜑(𝑧1) + 𝑤(𝑡) [

𝜕𝑉(𝑧1)

𝜕𝑧1
+ �̇�(𝑡)] (32) 

 

Use Assumption 1 and the values in Equation (24) and Equation (30) so that Equation (32) becomes 
 

�̇�(𝑤, 𝑧1) ≤ −𝑊(𝑧1) + 𝑤(𝑡)[𝜈(𝑡) + 𝑧1(𝑡) + 𝑟1𝑤(𝑡) − 𝑟1
2𝑧1(𝑡)] (33) 

Using the control function 𝜈(𝑡) in Equation (25), then Equation (33) becomes  
 

�̇�(𝑤, 𝑧1) ≤ −𝑊(𝑧1) − 𝑟2𝑤(𝑡)2 (34) 

 

Since 𝑊(𝑧1) is a positive function and 𝑟2𝑤(𝑡)2 > 0, we have Equation (34) satisfy �̇�(𝑤, 𝑧1) < 0, which 

implies that the system is asymptotically stable. ∎ 
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3.3 Control Design for Tracking Output to The Equilibrium  

Theorem 4. Given Equation (21) that satisfies Assumption 1, the control 𝜈(𝑡) that drives the output 𝑦(𝑡) =
𝑚(𝑡) to follow the smooth trajectory 𝑦𝑑(𝑡) using backstepping is 

 

𝜈(𝑡) = �̈�𝑑(𝑡) + (𝑟1
2 − 1)𝑒1(𝑡) − (𝑟1 + 𝑟2)𝑒2(𝑡) (35) 

 

with 𝑒1(𝑡) = 𝑧1(𝑡) − 𝑦𝑑(𝑡), 𝑒2(𝑡) = 𝑧2(𝑡) − �̇�𝑑(𝑡) + 𝑟1𝑒1(𝑡), and  𝑟1, 𝑟2 ∈ ℝ+ are the control parameters. 

Proof. The difference between the system output and the trajectory 𝑦𝑑(𝑡) is  

 

𝑒1(𝑡) = 𝑦(𝑡) − 𝑦𝑑(𝑡) (36) 

 

The derivative of Equation (36) with respect to 𝑡 is 
 

�̇�1(𝑡) = 𝑧2(𝑡) − �̇�𝑑(𝑡) (37) 

 

Define the candidate Lyapunov function 
 

𝑉(𝑒1) =
1

2
𝑒1(𝑡)2 (38) 

 

The derivative of Equation (38) with respect to 𝑡 dan using Equation (37) will obtain 
 

�̇�(𝑒1) = 𝑒1(𝑡)[𝑧2(𝑡) − �̇�𝑑(𝑡)] (39) 

 

For 𝑒1(𝑡) to be asymptotically stable, Equation (39) must satisfy �̇�(𝑒1) < 0, which is fulfilled by assuming 

�̇�(𝑒1) = −𝑟1𝑒1(𝑡)2, leading to 
 

𝑧2(𝑡) − �̇�𝑑(𝑡) = −𝑟1𝑒1(𝑡) (40) 

 

A new state variable is defined from Equation (40) as  
 

𝑒2(𝑡) = 𝑧2(𝑡) − �̇�𝑑(𝑡) + 𝑟1𝑒1(𝑡) (41) 

 

The derivative of Equation (41) with respect to 𝑡, using Equation (21) and Equation (37), results in  
 

�̇�2(𝑡) = 𝜈(𝑡) − �̈�𝑑(𝑡) + 𝑟1𝑒2(𝑡) − 𝑟1
2𝑒1(𝑡) (42) 

 

The next step is stabilizing 𝑒2(𝑡) using the control 𝜈(𝑡). Choose a candidate Lyapunov function that 

involves the Lyapunov function from the previous process in the form of 
 

𝑉(𝑒2, 𝑒1) = 𝑉(𝑒1) +
1

2
𝑒2(𝑡)2 (43) 

 

Take the derivative of Equation (43) with respect to 𝑡, using Equation (39) and Equation (42), then 

apply it together with Equation (41) to Equation (39), resulting in 
 

�̇�(𝑒2, 𝑒1) = −𝑟1𝑒1(𝑡)2 + 𝑒2(𝑡)[𝑒1(𝑡) + 𝜈(𝑡) − 𝑦𝑑(𝑡) + 𝑟1𝑒2(𝑡) − 𝑟1
2𝑒1(𝑡)] (44) 

 

Using the control 𝜈(𝑡) in Equation (35) and applying it to Equation (44), we obtain  
 

�̇�(𝑒2, 𝑒1) = −𝑟1𝑒1(𝑡)2 − 𝑟2𝑒2(𝑡)2 < 0 (45) 

 

which results in the system being asymptotically stable. ∎ 
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Corollary 2. It has been obtained that using the control 𝜈(𝑡), the system can be asymptotically stabilized, 

and a Lyapunov function is obtained that satisfies 
 

�̇�(𝑒2, 𝑒1) = −𝑟1𝑒1(𝑡)2 − 𝑟2𝑒2(𝑡)2 (46) 

 

From Equation (45), since 𝑉(𝑒2, 𝑒1) ≤ −𝑊(𝐞), where 𝑊(𝐞) = 𝑟1𝑒1(𝑡)2 + 𝑟2𝑒2(𝑡)2 is a positive and 

continuous function, based on the LaSalle-Yoshizawa theorem [22], it can be concluded that   

 

lim
𝑡→∞

𝑊(𝐞) = 0 (47) 

 

𝑊(𝐞) = 𝑒1(𝑡)2 + 𝑒2(𝑡)2 = 0  will be satisfied only by 𝑒1(𝑡) = 𝑒2(𝑡) = 0. Since 𝑒1(𝑡) = 𝑦(𝑡) −
𝑦𝑑(𝑡), it can be concluded that the tracking error goes to zero, resulting in perfect tracking. As a consequence 

of the LaSalle-Yoshizawa theorem, it can be concluded that the predator-prey model Equation (3) controlled 

using backstepping Equation (35) is uniform globally asymptotically stable [36]. 

3.4 Numerical Simulation 

Table 1 shows the data required for the simulation. The simulation is performed using a fourth-order 

Runge-Kutta scheme. The numerical simulation is carried out with several scenarios, including comparing 

the predator-prey dynamics without control and with controlled dynamics, comparing the predator-prey 

dynamics and control performance for various control parameter variations, and testing the relationship 

between control parameters and control performance. We also compare our proposed method with the 

optimum control method to bring the system to its equilibrium point. 

Table 1. Data Parameter for 5 

No Parameter Value Description 

1 𝛼1 0.2 The rate at which prey decrease in population due to predation of predator 

2 𝛼2 0.1 The rate at which predators increase in population due to the consumption of prey 

3 𝛽 0.6 The natural growth rate of the prey population in the absence of predators 

4 𝛾 0.3 The natural death rate of the predator population in the absence of prey 

5 𝑟1 0.5,5,7 Parameter controls for backstepping 

6 𝑟2 0.1,3,15 Parameter controls for backstepping 

7 𝑚(0) 3 The initial value for prey 

8 𝑝(0) 5 The initial value for predator 

9 𝑡 [0,20] Time domain for simulation 

10 𝑦𝑑(𝑡) 𝑥𝑒 Trajectory for tracking 

11 ℎ 1𝑒 − 3 Time step size 

The first simulation compares the predator-prey model’s dynamics without control and with control 

using backstepping. The values of the backstepping control parameters used are {𝑟1 = 0.5, 𝑟2 = 0.1}. The 

trajectory to be followed by the system output is the equilibrium point, which is  

𝐱𝑒 = (𝑚∗ = 3, 𝑝∗ = 3) (48) 

Using {𝑟1 = 0.5, 𝑟2 = 0.1} from Table 1, the control function that drives the output to the equilibrium 

point in Equation (48) is  
 

𝜈(𝑡) = (𝑟1
2 − 1)𝑒1(𝑡) − (𝑟1 + 𝑟2)𝑒2(𝑡) (49) 

Figure 5 illustrates the dynamics of the predator and prey populations. It moves the controlled predator 

and prey populations from the initial values toward the equilibrium point. Oscillations occur between the 

initial point and the target point, which is possible because the control parameters used are relatively small. 

Figure 6 shows a comparison between the controlled and uncontrolled populations and the control profile 
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required to drive the population to the equilibrium point. The controlled population moves in a centered spiral 

pattern, consistent with the simulation results shown in Figure 5. Figure 6 indicates that the control profile 

needed to stabilize the population at the equilibrium point is relatively small. Negative values in the control 

profile represent actions to reduce the predator population. This can be achieved through harvesting, hunting, 

or relocating individuals from the observed habitat. Positive values in the control profile indicate the need to 

increase the predator population in the observed habitat. This can be accomplished by releasing additional 

individuals into the wild or implementing artificial breeding programs.  

Controlling predator populations can cause problems if it is related to the status of the predator 

population, especially in animals that are vulnerable to extinction. However, suppose the predator population 

is not controlled. In that case, the large number that is not comparable to the availability of food sources has 

the potential to disrupt the growth of the population itself. The growth rate of the predator population is 

influenced by the value of 𝛼2, which indicates the success of predation and is converted into new population 

growth. The number of predator populations that are too abundant will reduce the value of 𝛼2 due to high 

competition. It needs to be added, as in [8]  and [30], is the presence of a cannibalistic predator population. 

An abundant population, few food sources, and a cannibalistic population are a good combination for 

damaging the population as a whole. Therefore, direct control of the predator population is one strategy that 

can be taken to maintain the population while still paying attention to the methods used. In [37], it is explained 

that one of the methods in population management is to relocate the population to another area. Relocating 

to an area that provides better life support for several types of animals has positive results in improving the 

condition of the population that are vulnerable to extinction. 

  
(a)    (b) 

Figure 5. The Controlled Population Dynamics: (a) Prey Population, (b) Predator Population. 

  
(a)   (b) 

Figure 6. The Dynamics of the Population Comparison Between Uncontrolled and Controlled Scenarios, along 

with the Control Profile: (a) Comparison of Dynamics, (b) Control Profile (49) 

The following simulation examines the effect of control parameters on the stability rate in the 

controlled system. For this purpose, several variations are used: {(𝑟1 = 0.5, 𝑟2 = 0.1), (𝑟1 = 5, 𝑟2 = 3), (𝑟1 =
7, 𝑟2 = 15)}. Figure 7 shows the dynamics of prey and predator populations for variations in the 

backstepping control parameters. It can be observed that the backstepping control parameters affect the 
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stability rate and the stability’s dynamic nature. Small control parameters result in oscillations in the 

population during its journey toward the equilibrium point. Meanwhile, increasing the values of the 

backstepping control parameters transforms the stability into exponential stability. It is also evident from 

Figure 8 that more extensive control parameters lead to faster stabilization of the population but has a 

significant spike in the predator population as a consequence. 

     
(a)         (b) 

Figure 7. The Effect of Variations in Backstepping Control Parameters on the Controlled System:   

(a) Prey Population, (b) Predator Population 

Figure 8 compares control profiles and population dynamics on a parametric curve due to backstepping 

control parameter value variations. Smaller parameters allow the population to oscillate, while more extensive 

control parameters force the population to move toward the desired equilibrium point. Regarding the control 

profile, the third variation of the backstepping control parameter exhibits a very high spike at the beginning 

of the simulation. Compared to the second variation, the control profile of the third variation converges 

earlier. This indicates that the population under the third variation achieves stability earlier than under the 

first and second variations. 

  
(a)      (b) 

Figure 8. The Impact of Variations in the Backstepping Control Parameter on:   

(a) Population Dynamics, and (b) Control Profiles.   

It is important to note that the second and third variations differ in their values and the relationship 

between the parameters. In the second variation, the control parameters satisfy 𝑟1 > 𝑟2, while in the third 

variation, 𝑟1 < 𝑟2. The next step is to examine the relationship between the backstepping control parameters 

𝑟1, 𝑟2, and control performance. Based on Theorem 4, the entire system can be asymptotically stabilized to 

equilibrium. Thus, we can randomly select values for 𝑟1 and  𝑟2 then compare them using a criterion that 

evaluates control performance. In this study, we use the integral absolute error, expressed as 
 

IAE = ∫ |𝑦𝑑(𝑡) − 𝑦(𝑡)| 𝑑𝑡

𝑡𝑓

𝑡0

 

 

 

with 𝑡0 and 𝑡𝑓 representing the initial and final observation times, respectively; these times do not necessarily 

coincide with the simulation duration because the system output may require additional time to reach the 

specified trajectory. Referring to Figure 7 (a), we can choose the starting point for the output to follow the 
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trajectory at 𝑡0 = 1. The final observation time is set equal to the simulation duration, 𝑡𝑓 = 20. In this 

simulation, we use 𝛼1 = 𝛼2 = 0.2 and the rest use Table 1. The selected parameter controller variations are 

𝑟1 ∈  [1, 10] and 𝑟2 ∈  [1, 10], partitioned into 37 points. Consequently, there are 1369 combinations of 

(𝑟1, 𝑟2) and their corresponding impacts on the IAE (Integral Absolute Error) values. Control performance 

improves as the IAE value decreases, indicating that the output closely follows the trajectory. The simulation 

results, showing the IAE values for each combination of 𝑟1 and 𝑟2, are presented in Figure 9. 

  
Figure 9. The 3D Curve of IAE Values Against Variations in 𝒓𝟏 = [𝟏, 𝟏𝟎] and 𝒓𝟐 = [𝟏, 𝟏𝟎],  

Partitioned into 1369 Points  

Figure 9 shows that the IAE values fluctuate when the combinations of 𝑟1 or  𝑟2 are pretty extreme. 

Meanwhile, when both values are relatively small, the IAE values are pretty high, whereas the IAE values 

are very low when 𝑟1 and 𝑟2 are combined at more significant values. To examine the relationship between 

𝑟1, 𝑟2, and IAE values, a Spearman correlation test was conducted, with the results displayed in Table 2. 

Furthermore, the influence weights of 𝑟1 and 𝑟2 on IAE variations are presented as a linear function, calculated 

using multiple linear regression, with the results also shown in Table 2. The correlation test results indicate 

a strong relationship between the increase in the control parameters 𝑟1 and 𝑟2 and control performance. An 

increase in 𝑟1 and 𝑟2 leads to decreased IAE values, signifying improved control performance. Unfortunately, 

the influence weight of the changes in control parameters is relatively small, at only 0.01507. 

Table 2. Correlation and Linear Regression Results  

Parameter Correlation Regression 

𝑟1 −0.61058 −0.01507 

𝑟2 −0.61057 −0.01507 

Intercept  0.23215 

The last simulation compares our proposed method with the optimum control given in [27]. Although 

the control context given is different from the model we studied, both models control the population to its 

equilibrium point. In optimum control, a strategy is used in the form of using an exchange point that separates 

the uncontrolled system and the fully controlled system. For the simulation parameters, we follow the 

parameter values given in [27], namely {𝛼1 = 1, 𝛼2 = 1, 𝛽 = 1, 𝛾 = 1, 𝑏1 = 0.5}. For the backstepping 

control, the parameters used are {𝑟1 = 3, 𝑟2 = 5}. The simulation was carried out with two different initial 

values : {𝑚0 = 3, 𝑝0 = 5} and {𝑚0 = 0.8, 𝑝0 = 4}. Figure 10 shows the simulation results in the form of a 

comparison of predator-prey behavior with two different initial values and Figure 11 shows the control 

profile used to bring the predator-prey to move towards its equilibrium point.  

The simulation results show that both control methods successfully bring the predator-prey to its 

equilibrium point. However, the system's behavior controlled using backstepping tends to be more direct 

towards the trajectory, while the system controlled using optimal control moves along the trajectory until the 

exchange point. The control profile used to bring the system to the equilibrium point also has very different 

behavior. In the optimal control method, the system is not controlled at the beginning of the simulation 

because the system has not reached the exchange point; then, the system is fully controlled. Meanwhile, the 

system is controlled using the backstepping method; the control function works from the beginning so that 

the result of the system moves directly to the intended point, and the control stops when the goal has been 

achieved. 
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Figure 11shows that backstepping control can work directly at the beginning of the simulation so that 

the population can be controlled directly from the start. However, Figure 11 (a) shows that backstepping 

control requires a more significant control value than optimum control. From a real-life perspective, this is 

often irrelevant. The control function as an external action to modify system behavior requires resources and 

costs that are generally limited. Large control in backstepping results in a fast stability rate, but in real-world 

applications, this is difficult to do because of resource limitations. Therefore, in the context of real-world 

applications, it is necessary to adjust the control parameters to suit the existing resources, or it is necessary 

to develop a control design in the form of a combination with an optimum control method to provide control 

value limits to suit real-life conditions. 

    
(a)                                        (b) 

Figure 10. Comparison of Controlled System using Optimal Control and Backstepping: (a) {𝒎𝟎 = 𝟑, 𝒑𝟎 = 𝟓}, 

and (b) {𝒎𝟎 = 𝟎. 𝟖, 𝒑𝟎 = 𝟎. 𝟒}.  Red Circle is Equilibrium Point and Blue Circle is Initial Point 

    
(a)                                        (b) 

Figure 11. Comparison of Optimal Control and Backstepping in Order to Drive  

State into the Equilibrium Point: (a) {𝒎𝟎 = 𝟑, 𝒑𝟎 = 𝟓}, and (b) {𝒎𝟎 = 𝟎. 𝟖, 𝒑𝟎 = 𝟎. 𝟒}.   

4. CONCLUSIONS 

This article discusses the application of nonlinear control using the backstepping method in a predator-

prey model. The controlled population consists of predators, generally more vulnerable to extinction. 

Observation sensors are focused on the prey population to ensure their numbers remain sufficient to meet the 

predators’ needs. The technical design of the backstepping control is combined with input-output feedback 

linearization to form a strict feedback form. Input-output feedback linearization is used because an output 

system needs to be controlled to follow a particular trajectory. Using input-output feedback linearization will 

transform the system with output into a regular dynamical, linear control system. It has also been 

demonstrated that the control design can drive the prey population from its initial value to the equilibrium 

point. Computational results show that both populations can be successfully brought from their initial values 

to the equilibrium point with a constrained control profile. Correlation and regression tests to examine the 

relationship between control parameters and performance, evaluated using the Integral Absolute Error (IAE), 

indicate that increasing the control parameter values leads to improved control performance. 
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The research in this article still focuses on the use of synthetic data. We have not validated the 

simulation results produced using real data. In addition, the model used in this article is the most basic 

predator-prey model, so it is still possible to do a lot of development. A model closer to natural phenomena 

can be developed in further research, such as using a spatial model to accommodate growth and interaction 

based on position. Development can also be done by considering the uncertainty factor in uncertain 

parameters and external disturbances, so adaptive control design is needed to adapt to uncertain state 

conditions. In control design, nonlinear control still assumes that the control quantity is not limited. This is 

less relevant than real life, so a combination of nonlinear control design and optimum control needs to be 

developed. 
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