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This paper discusses about arc length of circles that connected any two points on a sphere. 

On a sphere, there are infinitely many circles that connect any two points. Using a monotone 

sequence of functions, we can show that the shortest arc length of circle that connect any 

two points on sphere is the circle with its center at the origin. 
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1. INTRODUCTION 

Sequences are among the most interesting topics in mathematics, with applications spanning various 

fields such as analysis, algebra, and statistics. Within analysis, they are studied in real analysis, complex 

analysis, functional analysis, and dynamical systems. The notion of sequences is discussed in references [1], 

[2], [3], and [4]. 

In statistics, discussion about sequence can be found in sources [5], [6], [7], and [8]. [5] discusses a 

weak convergence of the sequence of partial sum processes of residuals (PSPR) when observations obtained 

from a multivariate spatial regression model (SLRM). The result is then used to reconstruct the rejection 

region of an asymptotic test of hypothesis based on a type of Cramer-von Mises functional of the PSPR. [6] 

obtains a generalization of the statistical convergence of asymptotically equivalent sequences via the modulus 

function, yielding a new non-matrix convergence method that intermediates between ordinary convergence 

and statistical convergence. [7] defines the notion of 𝐼-pointwise convergence and 𝐼-uniform convergence of 

a sequence of functions defined on a probabilistic norm space with respect to the probabilistic norm 𝜈. 

Meanwhile, [8] generalizes the concept in probability of rough Cesaro and lacunary in statistics by 

introducing the difference operator △𝛾
𝛼. In this case, 𝛼 is a proper fraction and 𝛾 = (𝛾𝑚𝑛𝑘) is any fixed 

sequence of nonzero real or complex numbers. 

In real analysis and complex analysis, discussions about sequences can be can be found in sources [9], 

[10], and [11]. [9] discusses the so-called generalized Fibonacci sequence, deriving an open domain around 

the origin of the parameter space where the sequence converges to 0.  He analyzed interesting behavior on 

the boundary of that domain. such as convergence to a non-trivial limit, periodic behavior, or quasi-periodic 

behavior. By carefully choosing initial conditions, the sequence converges to the open domain[10] discusses 

the concept of quadratic number fields. He considered the continued fraction expansions, fundamental units, 

and Yokoi invariants Yokoi invariants in terms of Fibonacci sequences.  [11] constructs the existence of a 

completion for a complex valued S-metric space. The completion is constructed using the quotient space of 

Cauchy sequence equivalence classes within a complex valued S-metric space.  

In functional analysis, discussions about sequences can be found in sources [12], [13], [14], and [15]. 

[12] constructs a new Orlicz sequence space by replacing a function in the Orlicz with a wider function. [13] 

introduces the new generalized difference sequences spaces in Banach spaces, which arise from the notion of 

generalized de la Valle Poussins means and the concept of modulus function. [14] establishes a fixed-point 

result for multivalued mappings satisfying a contractive condition of Reich type only for the elements in a 

sequence contained in a closed ball in a complete dislocated metric space. [15] defines some sequence spaces 

on Hilbert space as a domain of triangle Hilbert matrix and studied some inclusion relations concerning these 

spaces. 

In dynamical systems, discussions about sequences can be found in sources [16] and [17]. [16] 

discusses distributional chaos in a sequence and topologically weak mixing for nonautonomous discrete 

dynamical systems. [17] discusses Nakano sequence space of fuzzy numbers, especially in the existence 

solution of the non-linear dynamical system of the Kannan non-expansive type. [18] further explores fixed 

points for Kannan contraction and non-expansive mapping.  

In algebra, discussions about sequences can be found in sources [18] and [19]. [19] investigates the 

characteristic of a rough V-coexact sequence in a rough group. They find that the rough V-coexact sequence 

of the rough group is the generalization of the rough exact sequence of the rough group. On the other hand, 

[20] constructs a perfect magic cube of order 8n for 𝑛 ≥ 1. The entries of the perfect magic cube contain an 

arithmetic sequence. The difference of the sequence is set to find a specific pattern. The algorithm is then 

implemented into the programming language to solve large orders. 

Finally, [11] also discusses the shortest arc length of circles that connect any two places on the Earth. 

To prove the shortest arc length, they use a monotone differentiable function.  By monotone differentiable 

function, they show that the shortest arc length of any two places on Earth is the circle with center at the 

origin. In this paper, we use a monotone sequence of functions to determine the shortest arc length of circles 

connecting any two places on a sphere. 

2. RESEARCH METHODS   
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We begin by considering a sphere with radius 𝑹. Without loss of generalization, let 𝑨 and 𝑩 be any 

two points on the sphere with  𝑨 = (𝑹,𝜷𝟏, 𝝋)  and 𝑩 = (𝑹,𝜷𝟐, 𝝋), 𝟎 ≤ 𝝋 ≤ 𝝅 𝟐⁄ . For simplification, let 

𝑹 = 𝟏, 𝜷𝟏 = 𝟎, and 𝜷𝟐 = 𝜷, 𝟎 ≤ 𝜷 ≤ 𝝅 𝟐⁄ . Thus, in Cartesian coordinates, we can express the coordinates  

𝐴 = (cos𝜑 , 0, sin𝜑),   𝐵 = (cos𝜑 cos𝛽 , cos𝜑 sin𝛽 , sin𝜑) (1) 

 

Figure 1. Position of any Two Points A and B on Sphere  

We can construct a sequence of arc length of the circles that connected 𝑨 and 𝑩,  

Let us define          

𝛼𝑛: = (1 −
1

𝑛
)𝜑 (2) 

Then we have 𝟎 ≤ 𝜶𝒏 ≤ 𝝋. For  𝒏 = 𝟏 we have  𝜶𝒏 = 𝟎. For  𝒏 → ∞, 𝜶𝒏 → 𝝋.  Using this fact, we 

can construct infinitely many circles that passes 𝑨 and 𝑩. 

 
Figure 2. The Polar Coordinates of the Plane R3 

By Figure 3, we can express coordinate of the center 𝐶𝑛 as 

𝑂𝑛 = (0,0, sin𝜑 − cos𝜑 tan𝛼𝑛) (3) 

From Equation (1) and Equation (3) we get vectors   

𝑂𝑛𝐴⃗⃗⃗⃗⃗⃗⃗⃗ = 〈𝑐𝑜𝑠 𝜑 , 0, 𝑐𝑜𝑠 𝜑 𝑡𝑎𝑛 𝛼𝑛〉,   𝑂𝑛𝐵⃗⃗⃗⃗⃗⃗⃗⃗ = 〈𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝛽 , 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝛽 , 𝑐𝑜𝑠 𝜑 𝑡𝑎𝑛 𝛼𝑛〉 (4) 

with 

‖𝑂𝑛𝐴⃗⃗⃗⃗⃗⃗⃗⃗ ‖ = ‖𝑂𝑛𝐵⃗⃗⃗⃗⃗⃗⃗⃗ ‖ = 𝑐𝑜𝑠𝜑 𝑠𝑒𝑐 𝛼𝑛 (5) 

Using dot product of two vectors, Equation (4), and Equation (5), we have the angle of  𝑂𝑛𝐴⃗⃗⃗⃗⃗⃗⃗⃗  and 

𝑂𝑛𝐵⃗⃗⃗⃗⃗⃗⃗⃗ , namely 𝜃𝑛, 

𝜃𝑛 = 𝑐𝑜𝑠−1(𝑐𝑜𝑠 𝛽 (𝑐𝑜𝑠 𝛼𝑛)2 + (𝑠𝑖𝑛 𝛼𝑛)
2) (6) 

We can write Equation (6) as 

𝜃𝑛 = 𝑐𝑜𝑠−1(1 − (𝑐𝑜𝑠 𝛼𝑛)2(1 − 𝑐𝑜𝑠 𝛽)) (7) 
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Figure 3. The Polar Coordinates of the Plane 𝑹𝟑 

Using Equation (5) and Equation (7), arc length of circles 𝐶𝑛, namely 𝐿𝑛, can be written as 

𝐿𝑛 =
𝑐𝑜𝑠 𝜑

𝑐𝑜𝑠 𝛼𝑛
𝑐𝑜𝑠−1(1 − (𝑐𝑜𝑠 𝛼𝑛)2(1 − 𝑐𝑜𝑠 𝛽)) (8) 

So, we have sequence of arc length 𝐿𝑛. From Equation (2), 𝛼𝑛 → 𝜑 for 𝑛 → ∞. Consequently, 

cos𝛼𝑛 → cos𝜑 when 𝑛 → ∞. For 𝜑 = 𝜋 2⁄ , cos𝛼𝑛 → cos𝜋 2⁄ = 0 when 𝑛 → ∞. This condition still valid 

for Equation (8) with 𝐿𝑛 → 0. 

3. RESULTS AND DISCUSSION 

Let 𝑚, 𝑛 ∈ ℕ. Using Equation (8), we have sequence of arc lengths 𝐿𝑚 and 𝐿𝑛 with 

𝐿𝑚 =
𝑐𝑜𝑠 𝜑

𝑐𝑜𝑠 𝛼𝑚
𝑐𝑜𝑠−1(1 − (𝑐𝑜𝑠 𝛼𝑚)2(1 − 𝑐𝑜𝑠 𝛽)) (9) 

𝐿𝑛 =
𝑐𝑜𝑠 𝜑

𝑐𝑜𝑠 𝛼𝑛
𝑐𝑜𝑠−1(1 − (𝑐𝑜𝑠 𝛼𝑛)2(1 − 𝑐𝑜𝑠 𝛽)) (10) 

For simplification, we define 

𝐾𝑚: =
𝑐𝑜𝑠 𝜑

𝑐𝑜𝑠 𝛼𝑚
, 𝐾𝑛: =

𝑐𝑜𝑠 𝜑

𝑐𝑜𝑠 𝛼𝑛

(11) 

and 

𝑀𝑚 ≔ 𝑐𝑜𝑠−1(1 − (𝑐𝑜𝑠 𝛼𝑚)2(1 − 𝑐𝑜𝑠 𝛽)) ,𝑀𝑛 ≔ 𝑐𝑜𝑠−1(1 − (𝑐𝑜𝑠 𝛼𝑛)2(1 − 𝑐𝑜𝑠 𝛽)) (12) 

Lemma 1. Sequence  𝐾𝑛: =
𝑐𝑜𝑠𝜑

𝑐𝑜𝑠𝛼𝑛
 is an increasing sequence. 

Proof. For < 𝑛,  𝛼𝑚 < 𝛼𝑛. So, we get cos𝛼𝑚 > cos𝛼𝑛. Using this result to Equation (10) we have 

𝑐𝑜𝑠 𝜑

𝑐𝑜𝑠 𝛼𝑚
<

𝑐𝑜𝑠𝜑

𝑐𝑜𝑠 𝛼𝑛
(13) 

Using Equation (11) and Equation (13) we have, 𝐾𝑚 < 𝐾𝑛. Then 𝐾𝑛 is an increasing sequence. 

Lemma 2. Sequence 𝑀𝑛: = 𝑐𝑜𝑠−1(1 − (𝑐𝑜𝑠𝛼𝑛)2(1 − 𝑐𝑜𝑠𝛽)) is a decreasing sequence. 

Proof. Since 𝛼𝑚 < 𝛼𝑛, then cos𝛼𝑚 > cos𝛼𝑛. 

We obtain, 

(𝑐𝑜𝑠 𝛼𝑚)2 > (𝑐𝑜𝑠 𝛼𝑛)2 
−(𝑐𝑜𝑠 𝛼𝑚)2 < −(𝑐𝑜𝑠 𝛼𝑛)2 

(1 − (𝑐𝑜𝑠 𝛼𝑚)2) < (1 − (𝑐𝑜𝑠 𝛼𝑛)2) 
(1 − 𝑐𝑜𝑠 𝛽)(1 − (𝑐𝑜𝑠 𝛼𝑚)2) < (1 − 𝑐𝑜𝑠 𝛽)(1 − (𝑐𝑜𝑠 𝛼𝑛)

2) 
𝑐𝑜𝑠−1(1 − 𝑐𝑜𝑠 𝛽)(1 − (𝑐𝑜𝑠 𝛼𝑚)2) > 𝑐𝑜𝑠−1(1 − 𝑐𝑜𝑠 𝛽)(1 − (𝑐𝑜𝑠 𝛼𝑛)2) (14) 
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Then we have, 𝑀𝑚 > 𝑀𝑛. So, 𝑀𝑛 is a decreasing sequence.  

Since 𝐿𝑛 = 𝐾𝑛𝑀𝑛, 𝐾𝑛 an increasing sequence, and 𝑀𝑛 is a decreasing sequence, we can’t get a 

conclusion about this sequence. We have no regularity about this sequence. This sequence is an increasing 

sequence or a decreasing sequence. So, we try the other way to solve this problem. 

Theorem 1. Sequence 𝐿𝑛 =
𝑐𝑜𝑠𝜑

𝑐𝑜𝑠𝛼𝑛
𝑐𝑜𝑠−1(1 − (𝑐𝑜𝑠𝛼𝑛)2(1 − 𝑐𝑜𝑠𝛽))  is a decreasing sequence. 

Proof. First, we define 

𝑓(𝛽):= 𝐿𝑚(𝛽) − 𝐿𝑛(𝛽),𝑚, 𝑛 ∈ ℕ,𝑚 < 𝑛 (15) 

where 

𝐿𝑚(𝛽) =
𝑐𝑜𝑠𝜑

𝑐𝑜𝑠 𝛼𝑚
𝑐𝑜𝑠−1(1 − (𝑐𝑜𝑠 𝛼𝑚)2(1 − 𝑐𝑜𝑠 𝛽)) (16) 

and 

𝐿𝑛(𝛽) =
𝑐𝑜𝑠𝜑

𝑐𝑜𝑠 𝛼𝑛
𝑐𝑜𝑠−1(1 − (𝑐𝑜𝑠 𝛼𝑛)2(1 − 𝑐𝑜𝑠 𝛽)) (17) 

If we differentiate Equation (15) respect to 𝛽 on both sides, we obtain  

𝑑𝑓(𝛽)

𝑑𝛽
=

𝑑(𝐿𝑚(𝛽) − 𝐿𝑛(𝛽))

𝑑𝛽
(18) 

Let  

𝜃𝑚 = 𝑐𝑜𝑠−1(1 − (𝑐𝑜𝑠 𝛼𝑚)2(1 − 𝑐𝑜𝑠 𝛽)) (19) 

Then we have 

𝑐𝑜𝑠 𝜃𝑚 = (1 − (𝑐𝑜𝑠 𝛼𝑚)2(1 − 𝑐𝑜𝑠 𝛽)) (20) 

If we differentiate Equation (20) respect to 𝛽 on both sides, we obtain 

𝑑(𝑐𝑜𝑠 𝜃𝑚)

𝑑𝛽
=

𝑑(1 − (𝑐𝑜𝑠 𝛼𝑚)2(1 − 𝑐𝑜𝑠 𝛽))

𝑑𝛽
 

−𝑠𝑖𝑛 𝜃𝑚

𝑑𝜃𝑚

𝑑𝛽
= −(𝑐𝑜𝑠 𝛼𝑚)2

𝑑(1 − 𝑐𝑜𝑠 𝛽)

𝑑𝛽
 

𝑑𝜃𝑚

𝑑𝛽
=

𝑠𝑖𝑛 𝛽(𝑐𝑜𝑠 𝛼𝑚)2

𝑠𝑖𝑛 𝜃𝑚

(21) 

From Equation (20) we obtain  

𝑠𝑖𝑛 𝜃𝑚 = √1 − (1 − (𝑐𝑜𝑠 𝛼𝑚)2(1 − 𝑐𝑜𝑠 𝛽))
2

 

𝑠𝑖𝑛 𝜃𝑚 = √2(1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑚)2 − (1 − 𝑐𝑜𝑠 𝛽)2(𝑐𝑜𝑠 𝛼𝑚)4 

𝑠𝑖𝑛 𝜃𝑚 = √(1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑚)2(2 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑚)2) 

𝑠𝑖𝑛 𝜃𝑚 = 𝑐𝑜𝑠 𝛼𝑚 √(1 − 𝑐𝑜𝑠 𝛽)(2 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑚)2) (22) 

Using Equation (21) and Equation (22) we obtain  

𝑑𝜃𝑚

𝑑𝛽
=

𝑠𝑖𝑛 𝛽(𝑐𝑜𝑠 𝛼𝑚)2

𝑐𝑜𝑠 𝛼𝑚 √(1 − 𝑐𝑜𝑠 𝛽)(2 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑚)2)
 

𝑑𝜃𝑚

𝑑𝛽
=

√(𝑠𝑖𝑛 𝛽)2 𝑐𝑜𝑠 𝛼𝑚

√(1 − 𝑐𝑜𝑠 𝛽)(2 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑚)2)
 

𝑑𝜃𝑚

𝑑𝛽
=

√1 − (𝑐𝑜𝑠 𝛽)2 𝑐𝑜𝑠 𝛼𝑚

√(1 − 𝑐𝑜𝑠 𝛽)(2 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑚)2)
 

𝑑𝜃𝑚

𝑑𝛽
=

√(1 − 𝑐𝑜𝑠 𝛽)(1 + 𝑐𝑜𝑠 𝛽) 𝑐𝑜𝑠 𝛼𝑚

√(1 − 𝑐𝑜𝑠 𝛽)(2 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑚)2)
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𝑑𝜃𝑚

𝑑𝛽
=

√(1 + 𝑐𝑜𝑠 𝛽) 𝑐𝑜𝑠 𝛼𝑚

√(2 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑚)2)
(23) 

Let                                           

𝜃𝑛 = 𝑐𝑜𝑠−1(1 − (𝑐𝑜𝑠 𝛼𝑛)2(1 − 𝑐𝑜𝑠 𝛽)) (24) 

Then we obtain 

𝑐𝑜𝑠 𝜃𝑛 = (1 − (𝑐𝑜𝑠 𝛼𝑛)2(1 − 𝑐𝑜𝑠 𝛽)) (25) 

If we differentiate Equation (25) respect to 𝛽 on both sides, we obtain 

𝑑(𝑐𝑜𝑠 𝜃𝑛)

𝑑𝛽
=

𝑑(1 − (𝑐𝑜𝑠 𝛼𝑛)2(1 − 𝑐𝑜𝑠 𝛽))

𝑑𝛽
 

−𝑠𝑖𝑛 𝜃𝑛

𝑑𝜃𝑛

𝑑𝛽
= −(𝑐𝑜𝑠 𝛼𝑛)2

𝑑(1 − 𝑐𝑜𝑠 𝛽)

𝑑𝛽
 

𝑑𝜃𝑛

𝑑𝛽
=

𝑠𝑖𝑛 𝛽(𝑐𝑜𝑠 𝛼𝑛)2

𝑠𝑖𝑛 𝜃𝑛
(26) 

Using Equation (25) we obtain 

𝑠𝑖𝑛 𝜃𝑛 = √1 − (1 − (𝑐𝑜𝑠 𝛼𝑛)2(1 − 𝑐𝑜𝑠 𝛽))
2

(27) 

With the similar way as Equation (22), we can simplify Equation (27) in the form  

𝑠𝑖𝑛 𝜃𝑛 = 𝑐𝑜𝑠 𝛼𝑛 √(1 − 𝑐𝑜𝑠 𝛽)(2 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑛)2) (28) 

Using Equation (26) and Equation (28) we obtain 

𝑑𝜃𝑛

𝑑𝛽
=

𝑠𝑖𝑛 𝛽(𝑐𝑜𝑠 𝛼𝑛)2

𝑐𝑜𝑠 𝛼𝑛 √(1 − 𝑐𝑜𝑠 𝛽)(2 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑛)2)
(29) 

Using the same way as Equation (23) we obtain 

𝑑𝜃𝑛

𝑑𝛽
=

√(1 + 𝑐𝑜𝑠 𝛽) 𝑐𝑜𝑠 𝛼𝑛

√(2 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑛)2)
(30) 

Using Equation (15), Equation (19) and Equation (13), we obtain 

𝑓(𝛽) =
(𝑐𝑜𝑠𝜑)𝜃𝑚

𝑐𝑜𝑠 𝛼𝑚
−

(𝑐𝑜𝑠𝜑)𝜃𝑛

𝑐𝑜𝑠 𝛼𝑛
(31) 

If we differentiate Equation (31) on both side respect to 𝛽, we obtain 

𝑑𝑓(𝛽)

𝑑𝛽
=

𝑐𝑜𝑠 𝜑

𝑐𝑜𝑠 𝛼𝑚

𝑑𝜃𝑚

𝑑𝛽
−

𝑐𝑜𝑠𝜑

𝑐𝑜𝑠 𝛼𝑛

𝑑𝜃𝑛

𝑑𝛽
 

𝑑𝑓(𝛽)

𝑑𝛽
= 𝑐𝑜𝑠 𝜑 (

1

𝑐𝑜𝑠 𝛼𝑚

𝑑𝜃𝑚

𝑑𝛽
−

1

𝑐𝑜𝑠 𝛼𝑛

𝑑𝜃𝑛

𝑑𝛽
) (32) 

For simplification, lets define  

𝑃:=
1

𝑐𝑜𝑠 𝛼𝑚

𝑑𝜃𝑚

𝑑𝛽
−

1

𝑐𝑜𝑠 𝛼𝑛

𝑑𝜃𝑛

𝑑𝛽
(33) 

Using Equation (23), Equation (29), and Equation (33), we obtain 

𝑃 =
1

𝑐𝑜𝑠 𝛼𝑚

√(1 + 𝑐𝑜𝑠 𝛽) 𝑐𝑜𝑠 𝛼𝑚

√(2 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑚)2)
−

1

𝑐𝑜𝑠 𝛼𝑛

√(1 + 𝑐𝑜𝑠 𝛽) 𝑐𝑜𝑠 𝛼𝑛

√(2 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑛)2)
 

𝑃 = √(1 + 𝑐𝑜𝑠 𝛽) (
1

√(2 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑚)2)
−

1

√(2 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑛)2)
) (34) 
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For simplification, we define 

𝑄 ≔
1

√(2 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑚)2)
−

1

√(2 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑛)2)
(35) 

For 𝑚 < 𝑛, we obtain 𝛼𝑚 < 𝛼𝑛. Consequently, cos𝛼𝑚 > cos𝛼𝑛. Then, 

(cos 𝛼𝑚)2 > (cos 𝛼𝑛)2 

(1 − cos 𝛽)(cos 𝛼𝑚)2 > (1 − cos𝛽)(cos 𝛼𝑛)2 

−(1 − cos 𝛽)(cos 𝛼𝑚)2 < −(1 − cos 𝛽)(cos 𝛼𝑛)2 

(2 − (1 − cos𝛽)(cos 𝛼𝑚)2) < (2 − (1 − cos𝛽)(cos 𝛼𝑛)2) 

√(2 − (1 − cos𝛽)(cos 𝛼𝑚)2) < √(2 − (1 − cos 𝛽)(cos 𝛼𝑛)2) 
1

√(2 − (1 − cos𝛽)(cos 𝛼𝑚)2)
>

1

√(2 − (1 − cos 𝛽)(cos 𝛼𝑛)2)
(36) 

Finally, using Equation (35) and Equation (36), we obtain 

𝑄 =
1

√(2 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑚)2)
−

1

√(2 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑛)2)
> 0 (37) 

 

Since √(1 + cos𝛽) > 0 for 0 ≤ 𝛽 ≤ 𝜋 2⁄ , using Equation (34) and Equation (37) we obtain 

𝑃 = √(1 + 𝑐𝑜𝑠 𝛽)𝑄 > 0 (38) 

Using Equation (32), Equation (33), and Equation (38) we obtain 

𝑑𝑓(𝛽)

𝑑𝛽
= 𝑐𝑜𝑠 𝜑 (

1

𝑐𝑜𝑠 𝛼𝑚

𝑑𝜃𝑚

𝑑𝛽
−

1

𝑐𝑜𝑠 𝛼𝑛

𝑑𝜃𝑛

𝑑𝛽
) > 0 (39) 

Consequently, 𝑓(𝛽) is an increasing function. Then, for 𝛽1 < 𝛽2, we have 𝑓(𝛽1) < 𝑓(𝛽2). Using Equation 

(15), 𝛽1 = 0 and 𝛽2 = 𝛽 > 0, we obtain 

𝑓(0) = 𝐿𝑚(0) − 𝐿𝑛(0) < 𝐿𝑚(𝛽) − 𝐿𝑛(𝛽) = 𝑓(𝛽) (40) 

Using Equation (16) and 𝛽 = 0, we obtain 

𝐿𝑚(0) =
𝑐𝑜𝑠𝜑

𝑐𝑜𝑠 𝛼𝑚
𝑐𝑜𝑠−1(1 − (𝑐𝑜𝑠 𝛼𝑚)2(1 − 𝑐𝑜𝑠 0)) (41) 

Since cos0 = 1, from Equation (41) we obtain 

𝐿𝑚(0) =
𝑐𝑜𝑠 𝜑

𝑐𝑜𝑠 𝛼𝑚
𝑐𝑜𝑠−1(1) = 0 (42) 

With the similar way, we obtain 

𝐿𝑛(0) =
𝑐𝑜𝑠 𝜑

𝑐𝑜𝑠 𝛼𝑛
𝑐𝑜𝑠−1(1) = 0 (43) 

Using Equation (40), Equation (42), and Equation (43) we obtain 

0 < 𝐿𝑚(𝛽) − 𝐿𝑛(𝛽) 

Then, for any 𝛽, 0 ≤ 𝛽 ≤ 𝜋 2⁄ , and 𝑚 < 𝑛,𝑚, 𝑛 ∈ ℕ, we obtain 

𝐿𝑛(𝛽) < 𝐿𝑚(𝛽) (44) 

As a result, 𝐿𝑛 is a decreasing sequence.  

Furthermore, we will show boundedness of 𝐿𝑛 sequence. 

Theorem 2. Sequence 𝐿𝑛 =
𝑐𝑜𝑠𝜑

𝑐𝑜𝑠𝛼𝑛
𝑐𝑜𝑠−1(1 − (𝑐𝑜𝑠𝛼𝑛)2(1 − 𝑐𝑜𝑠𝛽)) is bounded. 

Proof. Let’s define  

𝐾𝑛 ≔
𝑐𝑜𝑠 𝜑

𝑐𝑜𝑠 𝛼𝑛
(45) 
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Since 0 ≤ 𝛼𝑛 ≤ 𝜑, then we have  

1 ≥ 𝑐𝑜𝑠 𝛼𝑛 ≥ 𝑐𝑜𝑠𝜑 (46) 

Using this result, we have  

1 ≤
1

𝑐𝑜𝑠 𝛼𝑛
≤

1

𝑐𝑜𝑠𝜑
(47) 

If we multiply each term of Equation (47) by cos𝜑 we get  

𝑐𝑜𝑠 𝜑 ≤
𝑐𝑜𝑠 𝜑

𝑐𝑜𝑠 𝛼𝑛
= 𝐾𝑛 ≤ 1 (48) 

Consequently, 𝐾𝑛 is a bounded sequence. 𝐾𝑛 is bounded below by cos𝜑 and bounded above by 1. 

Furthermore, let’s define  

𝑀𝑛 ≔ 𝑐𝑜𝑠−1(1 − (𝑐𝑜𝑠 𝛼𝑛)2(1 − 𝑐𝑜𝑠 𝛽)) (49) 

sing Equation (46) we obtain  

𝑐𝑜𝑠 𝜑 ≤ 𝑐𝑜𝑠 𝛼𝑛 ≤ 1 
(𝑐𝑜𝑠 𝜑)2 ≤ (𝑐𝑜𝑠 𝛼𝑛)2 ≤ 1 

(1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝜑)2 ≤ (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑛)
2 ≤ (1 − 𝑐𝑜𝑠 𝛽) 

−(1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝜑)2 ≥ −(1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑛)2 ≥ −(1 − 𝑐𝑜𝑠 𝛽) 
1 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝜑)2 ≥ 1 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑛)2 ≥ 1 − (1 − 𝑐𝑜𝑠 𝛽) 
1 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝜑)2 ≥ 1 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑛)2 ≥ (𝑐𝑜𝑠 𝛽) 

𝑐𝑜𝑠−1(1 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝜑)2) ≤ 𝑐𝑜𝑠−1(1 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑛)2) ≤ 𝑐𝑜𝑠−1(𝑐𝑜𝑠 𝛽) 
𝑐𝑜𝑠−1(1 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝜑)2) ≤ 𝑐𝑜𝑠−1(1 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝛼𝑛)2) ≤ 𝛽 (50) 

So, we have 𝑀𝑛 is a bounded sequence. 𝑀𝑛 bounded below by cos−1(1 − (1 − cos𝛽)(cos𝜑)2) and 

bounded above by 𝛽.  

From Equation (17), Equation (45), and Equation (49) we can write 𝐿𝑛 as  

𝐿𝑛 = 𝐾𝑛𝑀𝑛 (51) 

Using Equation (48), Equation (50), and Equation (51) we have  

𝑐𝑜𝑠 𝜑 (𝑐𝑜𝑠−1(1 − (1 − 𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 𝜑)2)) ≤ 𝐿𝑛 ≤ 𝛽 (52) 

As a result, 𝐿𝑛 is a bounded sequence. 𝐿𝑛 is bounded below by cos𝜑 (cos−1(1 − (1 −

cos𝛽)(cos𝜑)2)) and bounded above by 𝛽.  

We have shown that 𝐿𝑛 is decreasing and bounded. Furthermore, we will show convergence of 𝐿𝑛. 

Theorem 3. Sequence 𝐿𝑛 =
𝑐𝑜𝑠𝜑

𝑐𝑜𝑠𝛼𝑛
𝑐𝑜𝑠−1(1 − (𝑐𝑜𝑠𝛼𝑛)2(1 − 𝑐𝑜𝑠𝛽))  is convergent. Its convergence to its 

infimum. 

Proof. From Equation (45) and Equation (48) we know that 𝐾𝑛 is bounded and increasing. So, 𝐾𝑛 is 

convergent. From definition of 𝛼𝑛, 𝛼𝑛 → 𝜑 for 𝑛 → ∞. As a result, 𝐾𝑛 → 1 for 𝑛 → ∞. Furthermore, from 

Equation (49) and Equation (50) 𝑀𝑛 is bounded and decreasing. Consequently, 𝑀𝑛 convergent. From 

Equation (49), Equation (50), and using the fact that 𝛼𝑛 → 𝜑 for 𝑛 → ∞, 𝑀𝑛 converge to 

cos−1(1 − (1 − cos𝛽)(cos𝜑)2). Finally, using the fact 𝐾𝑛 and 𝑀𝑛 convergent and 𝐿𝑛 = 𝐾𝑛𝑀𝑛, then 𝐿𝑛 

convergent. Using Theorem 1  and Theorem 2 , 𝐿𝑛 is decreasing and bounded. So, 𝐿𝑛 converge to 

cos−1(1 − (1 − cos𝛽)(cos𝜑)2). This is the infimum of 𝐿𝑛. Thus, the shortest arc length of circles passes 

any two points on sphere is cos−1(1 − (1 − cos𝛽)(cos𝜑)2), which is the arc length of circle with the center 

at the origin. 
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4. CONCLUSIONS 

Using a monotone sequence of functions, we show that the shortest arc length of the circles that connect 

any two points on a sphere is the circle with its center at the origin.  
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