
September 2025     Volume 19 Issue 3 Page 2069-2082 

BAREKENG: Journal of Mathematics and Its Applications 

P-ISSN: 1978-7227   E-ISSN: 2615-3017 

 
          https://doi.org/10.30598/barekengvol19iss3pp2069-2082 

  
 

2069 
     

MODEL APPROACH OF AGGREGATE RETURN VOLATILITY: 

GARCH(1,1)-COPULA VS GARCH(1,1)-BIVARIATE NORMAL 

 Asysta Amalia Pasaribu 1*, Anang Kurnia2  
 

1,2Statistics and Data Science Department, School of Data Science, Mathematics and Informatics,  

IPB University 

Jln. Meranti Wing 22 level 4, Dramaga, Bogor, 16680, Indonesia, 

1Statistics Department, School of Computer Science, Binus University 

Jln. Raya Kb. Jeruk, Kemanggisan, Jakarta Barat, 11530, Indonesia 

Corresponding author’s e-mail: * asysta.amalia@binus.ac.id  

 
ABSTRACT                                                                                                 

Article History: Aggregate risk is an aggregation of single risks that are both independent and 
interdependent. In this study, aggregate risk is constructed from two interdependent random 

risk variables. The dependence between two random variables can be determined through 

the size of dependence and joint distribution properties. However, not all distributions have 

joint distribution properties; the joint distributions may be unknown, so motivating the use 
of the Copulas in this study is needed. Sometimes, the Copula model is introduced to 

construct joint distribution properties. The Copula model in this research is used in financial 

policies such as investment. In the investment sector, the aggregate risk comes from the sum 

of the single risks and returns. The model used in aggregate return is the Generalized 
Autoregressive Conditionally Heteroscedastic (GARCH) model. The data used in this study 

is the closing price data for Apple and Microsoft stocks from January 01, 2010, to January 

01, 2024. The best model selection is the model with the GARCH-Bivariate Normal approach 

with the smallest MSE value. Model GARCH(1,1)-Bivariate Normal is the best model for the 
volatility model of aggregate return. 
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1. INTRODUCTION 

Risk is defined as the potential for an event to occur, which can cause losses. Risks can occur in various 

fields, including the financial sector. One of the risks in the financial sector is the risk that occurs when 

investing. In investment, Tandelilin and Marlius [𝟏] stated that risk is the possibility of a difference between 

the actual return received and the expected return. An investment will always be related to the level of risk. 

The level of risk is defined as something inherent in every investment alternative. Therefore, a company must 

have several strategies for making decisions to make investments. These decisions affect the value of the 

company through their influence on the expected profit level and risk level factors. The level of profit for 

shareholders is uncertain, so it needs to be considered. 

In every investment decision, returns and volatility play an important role. Volatility plays an important 

role in the field of financial econometrics as a risk indicator [2]. Several studies related to the return model 

with GARCH and Copula have been conducted because returns can be modeled using the Generalized 

Autoregressive Conditional Heteroscedastic (GARCH) volatility model. The findings from [3] state the 

prediction of virtual currency with the GARCH and Stochastic Volatility models, [2] compares the volatility 

characteristics of returns with the GARCH, GARCH-M, GJR-GARCH, and Log-GARCH models. The 

impact of cryptocurrency on inflation volatility in India, with the application of the BEKK-GARCH bivariate 

model, was developed by [4]. Furthermore, [5] compared linear and non-linear GARCH models to estimate 

volatility in selected emerging countries. [6] researched on exploring the relationship between global 

economic policies and crude oil futures volatility with GARCH-MIDA two-factor analysis.  In practice, the 

risks that occur do not only involve single risks, but rather aggregate risks, which are an aggregation of risks 

that may occur. These can be independent or dependent on the risks. In this study, aggregate risk is the 

aggregate of two random risk variables that are not independent of each other. So, there is dependence 

between random risk variables. One method that can be used to analyze the dependence between two random 

variables is the Copula approach. 

Several studies to analyze the dependence between two random variables using the Copula approach 

have been carried out. They conducted an empirical study on four Indices from the Chinese Stock Market, so 

that the results show that Copula pairs can better characterize the structure of interdependence between assets 

for portfolio optimization [7]. In addition, [5] explained that investing in Dogecoin significantly reduces the 

risk due to the significant correlation between Litecoin, Bitcoin, and Binance, with the standard GARCH(1,1) 

model being the best model in identifying the dependence between virtual currencies against other currencies. 

Furthermore, [8] stated that the impact of extreme risks posed by international commodities on maritime 

markets using the GARCH-Copula-CoVaR approach, [9] carried out dependency modeling and portfolio risk 

estimation using the GARCH-Copula approach, [10] carried out the dependence and risk structure of the 

Malaysian foreign exchange rate portfolio using Bayesian GARCH, EVT, and Copula models. According to 

[11], they show a copula approach to market volatility and technology stock dependency. According to [12], 

they analyzed the uncertainty of crude oil prices and stock markets in Gulf corporate countries using the Var-

GARCH Copula model. Findings from [13] indicate that all time series exhibit fat tail shapes, leverage effects, 

and capture volatility that tend to cluster. Then, both constant and time-varying Copula models show that 

conditional dependence is similar in most countries. Therefore, this research aims to examine the concept and 

definition of Copula, examine aggregate risk models with GARCH, and determine the best model for 

modeling aggregate risk volatility using the GARCH-Copula and the GARCH-Bivariate Normal approach. 

 

2. RESEARCH METHODS 

Generally, risk is defined as the potential for an event to occur, whether predictable or unpredictable. 

Risk in the investment sector is the risk of loss. Risks that occur to investors are not only caused by one cause, 

but there will be more than one risk, which is called aggregate risk. These risks may have dependencies on 

each other. This dependency can be determined from the multivariate model. One of the multivariate models 

that can be used is Copula. The same Copula approach was also used by [14] in their research to analyze the 

relationship between economic factors that influence the IHSG. Furthermore, [15] explores the analysis of 

value-at-risk on a blue chip stock portfolio using the Gaussian Copula.  
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2.1 The Definition of Copula   

A copula is a multivariate model that comes from the joint distribution function of random variables 

with a uniform distribution (0,1). The definition of Copula in Definition 1 and Sklar’s Theorem in Theorem 

1 was introduced by Nelson [16].  

Definition 1. The d-variabel copula is the distribution function of C of the vector U with each component 𝑼𝒌  

for 𝒌 = 𝟏, 𝟐,… , 𝒅 have a Uniform(0,1) distribution.    

𝑪(𝒖𝟏, 𝒖𝟐, … , 𝒖𝒅) = 𝑷( 𝑼𝟏 ≤ 𝒖𝟏, 𝑼𝟐 ≤ 𝒖𝟐, … , 𝑼𝒅 ≤ 𝒖𝒅)  ∊  [𝟎, 𝟏]
𝒅 (1) 

Let (𝑿𝟏, 𝑿𝟐, … , 𝑿𝒅) denotes  a vector of random variables with a distribution function of 

𝑯(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒅) = 𝑷( 𝑿𝟏 ≤ 𝒙𝟏, 𝑿𝟐 ≤ 𝒙𝟐, … , 𝑿𝒅 ≤ 𝒙𝒅) and marginal distribution functions 

𝑭𝑿𝟏(𝒙𝟏),… , 𝑭𝑿𝒅(𝒙𝒅). Define 𝑿 with the distribution function of 𝑭𝑿(𝒙), so  𝑭𝑿(𝒙) ~ 𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎,𝟏) if and 

only if 𝑿 is a continuous random variable. Vectors (𝒖𝟏, 𝒖𝟐, … , 𝒖𝒅) = (𝑭𝑿𝟏(𝒙𝟏), … , 𝑭𝑿𝒅(𝒙𝒅)) will have a 

uniform distribution (0,1). The random variable used is the amount of loss of a continuous investment. The 

multivariate distribution function of these random variables can be written as a Copula. 

𝑯(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒅) = 𝑪(𝒖𝟏, 𝒖𝟐, … , 𝒖𝒅)  (2) 

The copula used in this research consists of two dimensions of two random variables, 𝑿 and 𝒀. 

Theorem 1. (Sklar’s Theorem). Let X and Y be random variables with a distribution function of 𝑭𝑿(𝒙) and 

a function of 𝑭𝒀(𝒚).  Let 𝑯 is a bivariate distribution function, so there will be C: [𝟎, 𝟏]𝟐 → [𝟎, 𝟏] so that for 

all 𝒙, 𝒚 in ℝ as follows  

𝑯(𝒙, 𝒚) = 𝑪(𝑭𝑿(𝒙),𝑭𝒀(𝒚)) = 𝑪(𝒖,𝒗) (3) 

with 𝒖 =  𝑭𝑿(𝒙) and 𝒗 =  𝑭𝒀(𝒚). Based on the bivariate distribution function of two random variables, the 

probability function of 𝒇𝑿,𝒀(𝒙, 𝒚) is stated as follows  

𝒇𝑿,𝒀(𝒙, 𝒚) =  
𝝏𝟐𝑯(𝒙, 𝒚)

𝝏𝒙 𝝏𝒚
= 𝒄(𝒖,𝒗)𝒇𝑿(𝒙)𝒇𝒀(𝒚) (4) 

with 𝒄(𝒖,𝒗) is the probability function for Copula. Copulas can be modeled with bivariate functions, 

including Copulas from the Elliptical family and the Archimedean family. 

 

2.2 Copula Families   

The Copula Family consists of two types, the Elliptical Family and the Archimedean Family. The 

Copula family used in this research is the Elliptical Copula Family. The Elliptical Copula family consists of 

the Gaussian Copula and the Student-t Copula. Copula can be used to capture dependency structure and can 

accommodate symmetric tail distributions. An example is the Normal and Student-t distributions. The 

following is the Copula function and probability function for the Gaussian Copula and Student-t.  

2.2.1 Copula Gaussian  

Gaussian Copula (Normal) is a Copula that has a bivariate Normal distribution function, which is 

defined as follows. 

𝐶𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝑢, 𝑣; 𝜌) = 𝜙𝜌 (𝜙
−1(𝑢),𝜙−1(𝑣)) = ∫ ∫

1

2𝜋√1− 𝜌2
exp(

2𝜌𝑠𝑡 − 𝑠2 − 𝑡2

2(1 − 𝜌2)
) 𝑑𝑠 𝑑𝑡

𝜙−1(𝑣)

−∞

𝜙−1(𝑢)

−∞

(5) 

with the function of  𝜙𝜌  is the joint distribution of the standard Normal distribution with a correlation 

coefficient of  𝜌 and the inverse function of 𝜙−1 is the normal standard distribution for the Gaussian Copula.  

𝑪𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏 (𝒖, 𝒗; 𝝆) =   
𝟏

√𝟏 − 𝝆𝟐
𝐞𝐱𝐩 (

𝟐𝝓−𝟏(𝒖)𝝓−𝟏(𝒗)𝝆 −  𝝆(𝝓−𝟏(𝒖)𝟐 + 𝝓−𝟏(𝒗)𝟐)

𝟐(𝟏 − 𝝆𝟐)
) (6) 
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Figure 1. Gaussian Copula Data with Several Parameter Values  

Source: Software RStudio  

Gaussian copulas are constructed from multivariate normal distributions. Based on Figure 1, it can be 

seen that the parameter values 𝝆𝟏 = −𝟎. 𝟗 and 𝝆𝟑 = −𝟎. 𝟑. The parameter value of 𝝆 is negative, which 

indicates that the increase in the value of the variable 𝒚 is not in line with the variable 𝒙. An increase in the 

value of one variable causes a decrease in the value of its counterpart. There is a strong negative correlation 

for the parameter value 𝝆𝟏 = −𝟎. 𝟗 , while the correlation is negative for the parameter value  𝝆𝟑 = −𝟎. 𝟑. 

By contrast with these parameters at 𝝆𝟐 = 0.9 and 𝝆𝟒= 0.3. The value of the 𝝆 parameter is positive, which 

indicates that the increase in the value of the variable 𝒚 is in line with the variable 𝒙. If the 𝒙 value increases, 

then the 𝒚 value also increases. 

 

2.2.2 Copula Student-t 

Copula 𝑡 is based on bivariate 𝑡 which is the same as the Gaussian Copula based on the bivariate 

Normal. The Copula 𝑡 formula is defined as  

𝐶𝑆𝑡𝑢𝑑𝑒𝑛𝑡−𝑡(𝑢, 𝑣; 𝜌, 𝑑) = 𝑡𝜌,𝑑 (𝑡𝑑
−1(𝑢), 𝑡𝑑

−1(𝑣)) = ∫ ∫
1

2𝜋√1 − 𝜌2
(1 +

𝑠2 + 𝑡2 − 2𝜌𝑠𝑡 

𝑑(1 − 𝜌2)
) 𝑑𝑠 𝑑𝑡

𝑡𝑑
−1(𝑣)

−∞

𝑡𝑑
−1(𝑢)

−∞

(7) 

with 𝑑 is the degrees of freedom for the Student-t distribution. The Copula 𝑡 probability function is 

𝐶𝑆𝑡𝑢𝑑𝑒𝑛𝑡−𝑡(𝑢, 𝑣;  𝜌, 𝑑) =   𝜌
1
−2
Γ (
𝑑 + 2
2 )Γ (

𝑑
2)

Γ (
𝑑 + 2
2 )

2

(1 + 
𝑡𝑑
−1(𝑢)2 + 𝑡𝑑

−1(𝑣)2 − 2 𝜌 𝑡𝑑
−1(𝑢)𝑡𝑑

−1(𝑣)
𝑑(1 − 𝜌2)

)

(1 + 
𝑡𝑑
−1(𝑢)2

𝑑
)
−
(𝑑+2)
2
 (1 + 

𝑡𝑑
−1(𝑣)2

𝑑
)
−
(𝑑+2)
2

 (8) 

 



BAREKENG: J. Math. & App., vol. 19(3), pp. 2069- 2082, September, 2025 2073 

 

 

 

Figure 2. Student 𝒕 Copula with Several Parameter Values 

Source: Software RStudio 

Student 𝒕 copulas are constructed from multivariate Student 𝒕 distributions. Based on Figure 2, it can 

be seen that the parameter values 𝝆𝟐 = −𝟎. 𝟗 and 𝝆𝟑 = −𝟎. 𝟑 . The parameter value 𝝆 is negative, a negative 

correlation indicates that the variable of  𝒚 is higher, so the variable of 𝒙 is lower.  

An increase in the value of one variable causes a decrease in the value of its counterpart. There is a 

strong negative correlation for the parameter value 𝝆𝟐 = −𝟎. 𝟗, while the correlation is negative for the 

parameter value 𝝆𝟑 = −𝟎. 𝟑. This should happen at 𝝆𝟏 = 0.9 and 𝝆𝟒 = 0.3. The value of the 𝝆 parameter is 

positive, which indicates that the increase in the value of the variable 𝒚 is in line with the variable 𝒙. If the 𝒙 

value increases, then the 𝒚 value also increases. 

 

2.3 The GARCH(1,1) Aggregate Risk Model 

Let 𝑋𝑡 denotes risk random variables in time 𝑡. The risk considered in this research is the return on 

share prices. Return is the rate of stock prices.  Define 𝑃𝑡 is the price of time 𝑡 and 𝑃𝑡−1 is the price of time 

𝑡 − 1. The formula of return is as follows: 

𝑋𝑡 = −𝑙𝑛 (
𝑃𝑡
𝑃𝑡−1

) (9) 

Mathematically, return has two condition values , which are expressed as follows 

𝑋𝑡 = {
𝑋𝑡
+;             𝑋𝑡  ≤ 0
𝑋𝑡
−;           𝑋𝑡 > 0

 (10) 

The variable 𝑋𝑡
+ represents positive returns (profits), while 𝑋𝑡

+ denotes negative returns (losses). If an 

investor buys two types of assets (for example, stocks and bonds), then the investment can be called an 

investment portfolio or asset portfolio. In statistics, an asset portfolio can be denoted as aggregate risk. 

Investors have a strategy to gain more profits, for example, they buy several stock products. When large 

profits are obtained, so large losses will also be followed. Losses resulting from the aggregation of several 

stocks are denoted as aggregate risk. Let 𝑋𝑡 and 𝑌𝑡 be the first and second return random variables, 

respectively, in time 𝑡. Random variables of 𝑋𝑡 and 𝑌𝑡 can be modeled with the GARCH(1,1) volatility model 
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𝑋𝑡 = 𝜎𝑡;𝑋𝜀𝑡 (11) 

with the conditional variance expressed as 

𝜎𝑡;𝑋
2 = 𝜎0;𝑋 + 𝜎1;𝑋𝑋𝑡−1

2 + 𝛽1;𝑋𝜎𝑡−1;𝑋
2  (12) 

and random variables 

𝑌𝑡 = 𝜎𝑡;𝑌𝜀𝑡 (13) 

with the conditional variance as follows. 

𝜎𝑡;𝑌
2 = 𝜎0;𝑌 + 𝜎1;𝑌𝑌𝑡−1

2 + 𝛽1;𝑌𝜎𝑡−1;𝑌
2 (14) 

with innovation 𝜀𝑡 ~ 𝑁(0,1). Aggregate risk follows a stochastic process denoted by 𝑆𝑡 which is modeled 

by 

𝑆𝑡 = 𝑋𝑡 + 𝑌𝑡 (15) 

Random variables of 𝑋𝑡 has a Normal distribution with parameter 𝜇𝑋𝑡 and 𝜎𝑋𝑡
2  and 𝑌𝑡 has a Normal distribution 

with parameter 𝜇𝑌𝑡  and  𝜎𝑌𝑡
2 , so 𝑋𝑡 and 𝑌𝑡 has a probability distribution function as follows 

𝒇𝑿𝒕 ,𝒀𝒕(𝒙𝒕, 𝒚𝒕) =  
𝟏

𝟐𝝅𝝈𝑿𝒕𝝈𝒀𝒕√𝟏− ⍴
𝟐
𝐞𝐱𝐩

{
 
 

 
 

−
𝟏

𝟐(𝟏 − 𝝆𝟐)

[
 
 
 
 (
𝒙𝒕 − 𝝁𝑿𝒕
𝝈𝑿𝒕

)

𝟐

−𝟐𝝆(
𝒙𝒕 − 𝝁𝑿𝒕
𝝈𝑿𝒕

)(
𝒚𝒕 − 𝝁𝒀𝒕
𝝈𝒀𝒕

)

+(
𝒚𝒕 − 𝝁𝒀𝒕
𝝈𝒀𝒕

)

𝟐

]
 
 
 
 

}
 
 

 
 

; (16) 

−∞ < 𝒙𝒕 <  ∞ 𝐚𝐧𝐝  − ∞ < 𝒚𝒕 <  ∞ 

The parameter of 𝝆 is a correlation coefficient that shows the linear dependence between risks or assets, 

which will affect the shape and dispersion of the aggregate distribution of two variables. Based on the joint 

probability function, the correlation of 𝝆 in aggregate risk is defined as correlations between risks or assets 

will affect the shape and dispersion of the aggregate distribution. Analytically, determining an explicit 

formula for this equation is difficult. Therefore, determining the aggregate risk distribution function is carried 

out using a numerical approach.  

 

2.4 Research Methodology  

The complexity of the joint distribution function will use the GARCH-Bivariate Normal Algorithm 

and the GARCH-Copula Algorithm.  

 

2.4.1 GARCH-Bivariate Normal Algorithm 

Determine the explicit formula of this equation by determining the aggregate risk distribution function 

numerically using the following algorithm. This algorithm is called the GARCH-Bivariate Normal 

Algorithm. The steps of the GARCH-Bivariate Normal algorithm are as follows. 

1. Collecting Apple and Microsoft stock price data downloaded from the Yahoo Finance webpage from 

January 1st, 2010, to January 1st,  2024. Then calculate the return on Apple and Microsoft stock prices 

using Equation (9).  

2. Determining the estimated parameters of 𝛼0, 𝛼1, and 𝛽1 for 𝑋𝑡 and 𝑌𝑡 follow GARCH(1,1) model. 

3. Generate 𝑛 simulated return with the parameters obtained from Step 2, so that we obtained random 

vectors 𝑥1, 𝑥2, … , 𝑥𝑛  and 𝑦1, 𝑦2, … , 𝑦𝑛 that follow  GARCH(1,1) model. 

4. Estimating the parameters of the Normal bivariate distribution based on the data from step 2. Then 

generate 𝑛 data from the Normal bivariate data. So, we get 𝑥𝑡
+ and 𝑦𝑡

+ data for time 𝑡 = 1,2,… , 𝑛 which 

is dependent data.  

5. Aggregating the two random variables, which are expressed as 
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𝑠𝑡
+ = 𝑥𝑡

+ + 𝑦𝑡
+ (17) 

  The distribution function of 𝑆𝑡 can be determined empirically as follows in Equation (18). 

𝐹𝑆𝑡
𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(𝑆𝑡

+) =
1

𝑛
∑ 𝐼

𝑛

𝑖=1
{𝑥𝑡
+ + 𝑦𝑡

+  ≤  𝑠𝑡
+} (18) 

 Where the indicator function 𝐼(. )  is defined in Equation (19).           

𝐼{ 𝑥𝑡
+ + 𝑦𝑡

+  ≤  𝑠𝑡
+ } =  {

1 ;   𝑥𝑡
+ + 𝑦𝑡

+  ≤  𝑠𝑡
+

0 ;           𝑜𝑡ℎ𝑒𝑟𝑠
 (19) 

 

2.4.2 GARCH-Copula Algorithm 

Determining the aggregate distribution function using the Copula model is determined numerically with 

the following algorithm. 

1. Collecting Apple and Microsoft stock price data downloaded from the Yahoo Finance webpage from 

January 1st, 2010, to January 1st,  2024. Then calculate the return on Apple and Microsoft stock prices 

using Equation (9).  

2. Determining the estimated parameter of 𝛼0, 𝛼1, and 𝛽1 for 𝑋𝑡
∗ and 𝑌𝑡

∗ follow GARCH(1,1) model.  

3. Determining the aggregate distribution function using the Copula model is determined numerically with 

the following algorithm. So that we get random vectors 𝑥1, 𝑥2, … , 𝑥𝑛 and 𝑦1, 𝑦2, … , 𝑦𝑛 that follow  

GARCH(1,1) model. 

4. Transforming each return data into its distribution function          

𝑢𝑡 = 𝐹𝑋𝑡(𝑥𝑡) and 𝑣𝑡 = 𝐹𝑌𝑡(𝑦𝑡) (20) 

with 𝑡 = 1,2,… , 𝑛. Then, estimate the Copula parameters of the pair data {𝑢𝑡 , 𝑣𝑡}. 

5. Based on the parameters obtained by the estimation, generate random data from the Copula to obtain 

paired data {𝑢𝑡
∗, 𝑣𝑡

∗}. 

6. Transforming data 𝑢𝑡
∗ and 𝑣𝑡

∗ so we get return data with dependence Copula.  

𝑥𝑡
𝐶𝑜𝑝𝑢𝑙𝑎

= 𝐹𝑋𝑡
−1(𝑢𝑡

∗) (21) 

𝑦𝑡
𝐶𝑜𝑝𝑢𝑙𝑎

= 𝐹𝑌𝑡
−1(𝑣𝑡

∗) (22) 

Then the aggregate model of these two random variables can be expressed as follows: 

𝑠𝑡
𝐶𝑜𝑝𝑢𝑙𝑎

= 𝑥𝑡
𝐶𝑜𝑝𝑢𝑙𝑎

+ 𝑦𝑡
𝐶𝑜𝑝𝑢𝑙𝑎

 (23) 

7. The distribution function of 𝑆𝑡 can be obtained empirically with the formula 

𝐹𝑆𝑡
𝐸𝑚𝑝𝑖𝑟𝑖𝑘

(𝑆𝑡
𝐶𝑜𝑝𝑢𝑙𝑎

) =  
1

𝑛
∑ 𝐼{𝑥𝑡

𝐶𝑜𝑝𝑢𝑙𝑎
+ 𝑦𝑡

𝐶𝑜𝑝𝑢𝑙𝑎
 ≤  𝑠𝑡}

𝑛

𝑖=1
 (24) 

with 

𝐼{𝑥𝑡
𝐶𝑜𝑝𝑢𝑙𝑎

+ 𝑦𝑡
𝐶𝑜𝑝𝑢𝑙𝑎

≤ 𝑠𝑡
𝐶𝑜𝑝𝑢𝑙𝑎

} =  {
1; 𝑥𝑡

𝐶𝑜𝑝𝑢𝑙𝑎
+ 𝑦𝑡

𝐶𝑜𝑝𝑢𝑙𝑎
≤ 𝑠𝑡

𝐶𝑜𝑝𝑢𝑙𝑎

0; 𝑜𝑡ℎ𝑒𝑟𝑠
(25) 

Based on the construction of the GARCH(1,1) aggregate model, there are three types of models 

considered in the study:  

1. GARCH(1,1)-Bivariate Normal Aggregate Model. 

2. GARCH(1,1)-Copula Gaussian Aggregate Model. 

3. GARCH(1,1)-Copula 𝑡 Aggregate Model. 
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3. RESULT AND DISCUSSION 

3.1 Descriptive Statistics 

The variables used in this research are returns of stock prices from January 1, 2010, to January 1, 2024. 

Let 𝑋𝑡 and 𝑌𝑡 denote Apple and Microsoft return random variables, respectively. For example, the return plot 

is presented in Figure 3.  

 
                            (a) (b) 

Figure 3.  (a) Apple Return (b) Microsoft Return 

Source: Software RStudio  

Based on the data plot of the two returns, it can be seen that both returns will be stationary over time. 

However, there was a significant decline in 2020 for returns. Descriptive statistics on Apple and Microsoft 

returns are presented in Table 1 below. The descriptive statistics consist of minimum, maximum, mean, 

median, 1st quartile, 3rd quartile, kurtosis, and skewness.  

Table 1. Descriptive Statistics of Apple and Microsoft Return 

Statistic Apple Microsoft 

Minimum  -0.11316 -0.13293 

Maximum  0.13771 0.15945 

Mean -0.00092 -0.00071 

Median -0.00090 -0.00064 

1st Quartile  -0.01037 -0.00916 

3rd Quartile  0.00758 0.00727 

Kurtosis  5.41594 7.99362 

Skewness 0.25017 0.18123 

Based on Table 1, it can be seen that the value of kurtosis for each return for Apple and Microsoft is 

above 3. The result indicates that the return distribution for Apple and Microsoft is leptokurtic and has a 

higher peak than the normal distribution. A thick-tailed distribution indicates that a distribution with a 

probability function has heavier tails than a normal distribution. Research from [18] stated that the thick tail 

distribution has different properties and behavior from the normal distribution and other thin tail distributions. 

In addition, [19] explored several distributions of returns in certain countries, which stated that distributions 

of returns that do not follow a normal distribution tend to have skewness, kurtosis, and have thick tails. 

Research from [20] stated that the heaviness of tails, that is, the kurtosis of a normal distribution, is 3. If the 

kurtosis is more than 3, then the data distribution is said to be leptokurtic, and if the kurtosis is less than 3, 

the distribution is flat. So, the chance of getting values very far from the average (outliers) is greater than in 

a normal distribution. Suppose the distribution of returns on an asset has a kurtosis of more than 3. In that 

case, it means that there is a tendency for price fluctuations to occur that are greater than expected with a 

normal distribution. This indicates a potential risk that is more extreme than a normal distribution. The risk 

that occurs in returns is more susceptible to very large price movements, both in profits and losses. Skewness 

is a statistical measure that describes the asymmetry of a data distribution. Skewness of Apple and Microsoft 

returns is positive. The result indicates that there is potential for large profits with more frequent small losses 

occurring. 
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3.2 GARCH(1,1)-Bivariate Normal Aggregate Model 

The steps in carrying out the GARCH-Bivariate Normal Algorithm have been explained in the previous 

section. Firstly, we determine the estimated parameter of 𝛼0, 𝛼1, and 𝛽1 for 𝑋𝑡 and 𝑌𝑡 follow GARCH(1,1) 

model. The parameters of the GARCH(1,1) model are estimated using the software RStudio; the result can 

be seen in the GARCH(1,1) model in Apple and Microsoft returns in Table 2. 

 Table 2. Estimation Result of GARCH(1,1) Model Parameters 

After estimating the parameters of the GARCH(1,1) model, generate 𝑛 random return data which 

follow  GARCH(1,1) model. Random vectors of 𝑥1, 𝑥2, … , 𝑥𝑛 and 𝑦1, 𝑦2, … , 𝑦𝑛  which follow 

GARCH(1,1) with generated data. For instance, perform the estimation of the parameter in the Bivariate 

Normal based on data from the second step. The estimated parameter results are as follows: 

• Mean Vector (µ) 

The mean vector is a vector that consists of the parameters of 𝜇1 and 𝜇2 based on the generated data of 

Bivariate Normal. Here, the parameter of 𝜇1 is the mean of a random variable of 𝑋𝑡 and the parameter 

of 𝜇2 is the mean of a random variable of 𝑌𝑡. The parameter estimation result for the mean vector is as 

follows 

𝜇 = (𝜇1 , 𝜇2) = (−0.00090,−0.00030) 

• Covariance Matrix (Σ) 

The covariance matrix consists of variances and covariances. Covariance states the relationship between 

two random variables of 𝑋𝑡 and 𝑌𝑡. The covariance matrix consists of parameters 𝜎1
2 , 𝜎2

2 , and 𝜌. The 

parameter of ⍴ indicates the correlation coefficient between two random variables. The parameter of  𝜌 

has value -1 to 1. The covariance matrix is written as  

Σ =  (
𝜎1
2 𝜎1𝜎2

𝜎1𝜎2  𝜎2
2 ) =  (

0.00002 0.00003 
0.00003 0.00002

) 

After estimating the Bivariate Normal parameters, generate data of 𝑛 normal bivariate data. So it is 

obtained 𝑥𝑡
+ and 𝑦𝑡

+ data for 𝑡 =  1,2,… , 𝑛. Furthermore, Apple and Microsoft return for each row in each 

type of data is added or aggregated. Data aggregation random variables are denoted, 𝑠𝑡
+, with 𝑠𝑡

+ = 𝑥𝑡
+ + 𝑦𝑡

+. 
Empirically, the graph of the aggregate risk distribution function GARCH(1,1) with this algorithm approach 

is presented as follows. 

Figure 4. The Distribution Function of GARCH(1,1)-Bivariate Normal 

Source: Software RStudio  

Variable 𝜶𝟎 𝜶𝟏 𝜷𝟏 

𝑋𝑡 0.000016 0.109901 0.840672 

𝑌𝑡  0.201906 0.131959 0.794346 
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Based on the distribution function plot of 𝑠𝑡
+ above. It can be seen that the greater the aggregate of 

returns, the greater the possibility of aggregate returns. This means that if investors have more stock portfolio 

purchases, the possibility of profit obtained by investors will also increase. 

 

3.3 GARCH(1,1)-Copula Gaussian Aggregate Model. 

GARCH(1,1)-Copula-Gaussian Model has the steps described in the previous section. Firstly, we 

determine the estimation of the parameters of 𝛼0, 𝛼1, and 𝛽1 for 𝑋𝑡 and 𝑌𝑡 random variables which follow 

GARCH(1,1) model. Defined 𝑋𝑡 and 𝑌𝑡 random variables assume a Gaussian distribution. The Copula used 

in this research is the Gaussian Copula. The parameters of model  GARCH(1,1) model have been simulated 

using RStudio. The estimated parameters using GARCH(1,1) in Apple and Microsoft return data are 

represented in the following Table 3.  

 Table 3. Estimation Result of GARCH(1,1) Model Parameters 

Based on the estimated parameters on the following Table 3, we generate 𝑛 return data. So that we 

have random vectors 𝑥1, 𝑥2, … , 𝑥𝑛  and 𝑦1, 𝑦2, … , 𝑦𝑛 which follow GARCH(1,1) model. Furthermore, we 

conducted the transformation of each return data to a distribution function. Using the estimated parameters  

of the Copula of data pairs  {𝑢𝑡 , 𝑣𝑡} with maximum likelihood method. So that we have the estimated of data 

pairs of Copula-Gaussian is the parameter of �̂� =  0.008034. The graph of the distribution function of 

aggregate with GARCH(1,1)-Copula-Gaussian (𝑠𝑡
𝐶𝑜𝑝𝑢𝑙𝑎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛) are represented in Figure 5.  

Figure 5. The Distribution Function of GARCH(1,1)-Copula-Gaussian 

Source: Software RStudio 

3.4 GARCH(1,1)-Copula-Student 𝒕 Aggregate Model  

GARCH(1,1)-Copula-Student 𝑡 model has similar steps as GARCH(1,1)-Copula-Gaussian. Firstly, we 

conducted an estimation of the parameters of 𝛼0, 𝛼1, and 𝛽1 for 𝑋𝑡 and 𝑌𝑡 random variables which follow 

GARCH(1,1) model. The marginal distributions of 𝑋𝑡 and  𝑌𝑡 follow Student-t, and the dependence structure 

is modeled by Student-t Copula. Therefore, the other used of the copula in this research is Student 𝑡 Copula. 

The parameters in this GARCH(1,1) model have been simulated using RStudio. The estimated parameters of 

simulation GARCH(1,1) in the return data of  Apple and Microsoft can be represented in the following Table 

4.  

 Table 4. Estimation Result of GARCH(1,1) Model Parameters 

Variable 𝜶𝟎 𝜶𝟏 𝜷𝟏 

𝑋𝑡 0.000016 0.109901 0.840672 

𝑌𝑡  0.201906 0.131959 0.794346 

Variable 𝜶𝟎 𝜶𝟏 𝜷𝟏 

𝑋𝑡 0.000016 0.109901 0.840672 

𝑌𝑡  0.201906 0.131959 0.794346 
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Using the estimated parameters in Table 4 above, we simulate and generate 𝑛 data return, so we have 

random vectors 𝑥1, 𝑥2, … , 𝑥𝑛  and 𝑦1, 𝑦2, … , 𝑦𝑛 which follow GARCH(1,1) model. Using the estimated 

parameters of the Copula of a couple of  {𝑢𝑡, 𝑣𝑡} with the maximum likelihood method. So that we have the 

result of the estimated parameters of the pairs data of Copula-Student 𝑡 is parameter �̂� =   0.00271 and degree 

of freedom of �̂� = 19.10281. The distribution function of GARCH(1,1)-Copula-Gaussian (𝑠𝑡
𝐶𝑜𝑝𝑢𝑙𝑎𝑡) can be 

represented as follows   

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 6. The Distribution Function of GARCH(1,1)-Copula-𝒕 
Source: Software RStudio  

3.5 The Aspects of Selecting the Best Model       

The selection of the best model can be obtained from the Mean Squared Error (MSE). MSE aims to 

determine the difference between the actual value and the value produced by the estimator. Let 𝑆𝑡 be a 

stochastic random variable that represents the actual aggregate return. Furthermore, 𝑆�̂� random variables 

indicate aggregate predicted returns. The formula of MSE can be expressed as the following Equation (26). 

Based on the results in the table, it is found that the best aggregate risk volatility model is the volatility model 

with the GARCH-Bivariate Normal algorithm approach. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑆𝑡 − �̂�𝑡)

2
𝑛

𝑖=1

 (26) 

 

The three models were determined using MSE values, which are stated in Table 5 below. Based on 

Table 5, the best aggregate risk model is the GARCH(1,1)-Bivariate Normal model with the smallest MSE 

value among the three models.  

Table 5.  MSE of Three Models 

Model  MSE 

 GARCH(1,1)-Bivariate Normal  7.01369 

 GARCH(1,1)-Copula-Gaussian  8.64101 

 GARCH(1,1)-Copula-Student 𝑡 8.61545 

 

4. CONCLUSIONS 

Copulas are used to define a framework for multivariate distributions and the modelling of multivariate 

data. The copula of a multidimensional random vector, or more specifically of its distribution, is a function 

characterizing the dependence structure, thus the characteristics of its distribution, which do not depend on 

the margins. However, they can be combined with any set of univariate marginal distributions to form a joint 

distribution. Thus, copulas are widely used in the construction of univariate models for multivariate data. In 
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this study, the copulas used are the Gaussian Copula, t-Copula, and Bivariate Normal Copula. These copulas 

will be used in the application to find which one provides the best fit for the chosen data. Gaussian, t-student, 

and bivariate normal copulas can be useful to generate families of copulas that are based on multivariate 

Gaussian, t-student, and bivariate normal. Copula GARCH was used to model the dependence structure 

between Apple and Microsoft returns. The study showed that the GARCH(1,1)-Bivariate Normal model has 

the smallest MSE, so the GARCH(1,1)-Bivariate Normal model was found to be the most appropriate for 

examining the dependence between the returns.  
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