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ABSTRACT                                                                                                 

Article History: This paper proposes a Multi-Objective Model Predictive Control (MO-MPC) framework for 

stock portfolio optimization, designed to achieve an optimal balance between return 

maximization and risk minimization in volatile financial markets. This approach integrates 

Stochastic Model Predictive Control (SMPC) to predict asset returns and dynamically adjust 

portfolio allocation based on a discrete-time state-space model. The optimization problem 

is formulated as a multi-objective optimization and is solved using Multi-Objective Particle 

Swarm Optimization (MOPSO). Simulation results show that the MO-MPC approach 

significantly outperforms conventional methods regarding wealth maximization and risk 

minimization. Moreover, SMPC performs better than MOPSO in maximizing portfolio value 

and reducing risk. These findings confirm the potential of SMPC as an adaptive and reliable 

strategy for financial decision-making under uncertainty. 
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1. INTRODUCTION 

Stock portfolio management has numerous challenges that can significantly impact investment 

performance. One of the primary challenges in stock portfolio management is the difficulty in accurately 

predicting future stock prices. As noted by Sen [1], the problem becomes increasingly complex when 

attempting to optimize future returns and risk values, as predicting stock prices is inherently uncertain. This 

uncertainty is compounded by market volatility and external factors such as economic indicators, geopolitical 

events, and market sentiment. These factors can influence the stock performance unpredictably [2]. 

Furthermore, the empirical study by Becker et al. [3] highlights the challenge of developing models that can 

effectively capture the multifaceted nature of stock performance across various investment criteria. The case 

indicates that single-objective models may not be sufficient for comprehensive portfolio management. 

Another significant challenge is allocating capital among a diverse set of stocks. Individual investors often 

struggle with managing a portfolio that includes too many different stocks, as research suggests that an 

optimal portfolio typically holds an average of seven stocks [4]. These challenges are increasingly complex 

due to market uncertainty, changes in global economic conditions, and operational constraints such as 

transaction costs and investment regulations. Therefore, a more adaptive and efficient method is needed to 

deal with changing market dynamics. 

The Multi-Objective Model Predictive Control (MO-MPC) approach presents a promising solution to 

portfolio optimization challenges. At its core, Model Predictive Control (MPC) is a widely adopted strategy 

that determines optimal control actions by minimizing a cost function over a finite prediction horizon while 

adhering to system constraints. MPC facilitates real-time feedback and effective disturbance rejection by 

continuously updating the optimization at each time step using the most recent state information. Building on 

this foundation, MO-MPC extends the standard MPC framework by incorporating multiple objectives—such 

as maximizing returns and minimizing risk—thereby enabling dynamic and adaptive management of stock 

portfolios in uncertain market conditions [5]. Multi-objective Model Predictive Control (MO-MPC) is a 

sophisticated prediction-based method that enables dynamic management of stock portfolios. One of the key 

advantages of MO-MPC is its ability to utilize predictive models to forecast future asset prices and market 

trends. This predictive capability is essential in a volatile market environment, where timely decisions can 

significantly impact investment performance [6], [7]. The dynamic nature of MO-MPC allows for continuous 

updates to the portfolio based on the latest market information, enabling managers to respond proactively to 

changes in asset values and market conditions [8]. Moreover, MO-MPC facilitates the consideration of 

multiple objectives in portfolio management. Traditional portfolio optimization methods often focus on a 

single objective, such as maximizing returns or minimizing risk.  

In contrast, MO-MPC allows for the simultaneous optimization of various objectives, which is crucial 

for achieving a balanced investment strategy. For instance, it can incorporate constraints related to risk 

tolerance, investment horizon, and liquidity requirements, ensuring that the portfolio aligns with the investor's 

overall financial goals [9], [10]. This multi-objective framework enhances the robustness of portfolio 

management strategies, as it accounts for the trade-offs between competing objectives [11]. 

Applying stochastic elements into MO-MPC enhances the control strategy's adaptability to changing 

market conditions. By continuously updating the probabilistic models based on new market data, the MO-

MPC framework can adjust the portfolio allocation in real-time, responding to shifts in asset performance or 

market volatility [12]. In addition, stochastic factors allow for the inclusion of probabilistic constraints, which 

specify acceptable levels of risk or the likelihood of achieving specific performance metrics [13]. 

Incorporating stochastic factors and including multiple variables—such as portfolio cardinality and 

transaction constraints—significantly increase the complexity of the optimization problem in Multi-Objective 

Model Predictive Control (MO-MPC). Consequently, an effective and robust optimization method is essential 

to navigate the high-dimensional solution space and identify optimal asset allocations. The Particle Swarm 

Optimization (PSO) algorithm is employed to address this challenge. PSO, an evolutionary algorithm 

introduced by Eberhart and Kennedy, has proven particularly effective for multi-objective optimization 

problems due to its ability to explore significant and complex solution spaces [14] efficiently. As a gradient-

free global optimization technique within Swarm Intelligence, PSO offers several advantages: it is simple to 

implement, robust in performance, and converges quickly  [15]. Its population-based approach maintains 

solution diversity, critical in dynamic financial markets where conditions can shift rapidly [16], [17]. The 

algorithm's population-based nature allows it to converge rapidly towards optimal solutions while 

maintaining diversity among potential solutions, which is crucial in financial markets where conditions can 
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change. In predictive portfolio control, PSO facilitates the construction of diversified and resilient portfolios 

by efficiently traversing non-convex and discontinuous solution landscapes [18]. 

In portfolio optimization, PSO has been employed to tackle various challenges, including cardinality 

constraints and transaction costs. Moreover, the performance of PSO in portfolio optimization has been 

validated through comparative studies. Research by Chen et al. indicates that PSO can yield superior results 

in constructing portfolios compared to traditional optimization methods, particularly in high-dimensional 

constrained optimization scenarios [14]. Integrating MO-MPC with heuristic optimization techniques, such 

as Particle Swarm Optimization (PSO), further enhances its effectiveness. PSO is known for its efficiency in 

exploring large solution spaces and can be employed to optimize the parameters of the MO-MPC model. By 

combining MO-MPC with PSO, portfolio managers can achieve more effective and efficient optimization 

results, particularly in complex and high-dimensional portfolio problems [19], [20]. This hybrid approach 

allows for the dynamic adjustment of portfolio weights based on predictive insights, leading to improved 

returns and risk management [21], [22]. 

The synergy between MO-MPC and PSO enhances the decision-making process in stock portfolio 

management. By utilizing MO-MPC's predictive capabilities alongside PSO's optimization strengths, 

investors can dynamically adjust their portfolios in response to market fluctuations while simultaneously 

optimizing multiple objectives. This integrated approach improves the robustness of investment strategies 

and aligns with modern portfolio theory principles, emphasizing the importance of diversification and risk 

management. Therefore, this paper is organized into six sections: Introduction, Research Methods, Results 

and Discussion, Conclusions, Acknowledgment, and References. 

2. RESEARCH METHODS 

This research seeks to develop a predictive control model for multi-objective optimization in stock 

portfolios, utilizing the Particle Swarm Optimization (PSO) algorithm. Through a systematic mathematical 

framework, this study aims to provide an efficient solution to achieving an optimal balance between profit 

maximization and risk minimization. The research methodology adopted in this study comprises two primary 

stages: a literature review and numerical simulation, as illustrated in Figure 1. In the first stage, the author 

explored relevant theoretical frameworks applied to address optimization problems during the initial stage. 

The second phase begins with collecting historical stock data from the Yahoo Finance platform, 

emphasizing specific sectors or targeted stock market indices. The subsequent step involves formulating a 

stock portfolio optimization model to maximize wealth and minimize risk, incorporating stochastic factors 

into the objective function. Following this, the constructed model is solved to generate optimal portfolio 

configurations. Finally, a comprehensive analysis of the results is conducted to assess the efficacy of 

employing Stochastic Model Predictive Control (SMPC) in improving the performance of the optimized stock 

portfolio. SMPC is an advanced control strategy to optimize decision-making in financial systems by 

explicitly incorporating uncertainty and stochastic elements into future predictions. It forecasts the system's 

evolution over a predefined prediction horizon and solves an optimization problem that balances expected 

returns and associated risks. This process is executed in a receding horizon manner, meaning that at each time 

step, the model is updated with newly available information to refine subsequent decisions. 

 

Figure 1. Reserch Flow Diagram 
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3. RESULTS AND DISCUSSION 

This section presents the portfolio optimization model formulated by model predictive control.  

3.1 Model Wealth Value in Portfolio 

Consider an investment portfolio comprising 𝑛 risky assets alongside a single risk-free asset. Let 

𝑥𝑖(𝑘) ≥ 0, where 𝑖 = 1, 2, . . . , 𝑛 represent the capital allocated to the i-th risky asset at time k, and suppose  

𝑥𝑛+1(𝑘) ≥ 0 denote the capital allocated to the risk-free asset at time k which the return of risk-free asset 

assumed fixed. The total wealth at time k can thus be expressed as follows: 

 

𝑊(𝑘) =  ∑ 𝑥𝑖(𝑘)

𝑛+1

𝑖=1

 

 

for each risky asset, the return at time k is denote by  𝜗𝑖(𝑘), where , 𝑖 = 1, 2, . . . , 𝑛. At time 𝑘 + 1, the return 

on the i-th risky asset over the period [𝑘, 𝑘 + 1], represented as 𝜗𝑖(𝑘 + 1), is defined as follows: 

 

𝜗𝑖(𝑘 + 1) =  
𝑏𝑖(𝑘 + 1) − 𝑏𝑖(𝑘)

𝑏𝑖(𝑘)
 

 
for each 𝑖 = 1, 2, . . . , 𝑛, let 𝑏𝑖(𝑘) represent the closing price of asset 𝑖 at time 𝑘. Consequently, the total wealth 

associated with asset 𝑖 at time 𝑘 can be defined as follows: 

 

𝑊(𝑘 + 1) = 𝑊(𝑘) + ∑ 𝜗𝑖(𝑘 + 1)𝑥𝑖(𝑘)

𝑛+1

𝑖=1

 

= ∑ 𝑥𝑖(𝑘) + ∑ 𝜗𝑖(𝑘 + 1)𝑥𝑖(𝑘)

𝑛+1

𝑖=1

𝑛+1

𝑖=1

 

= 𝑊(𝑘) + ∑ 𝜗𝑖(𝑘 + 1)𝑥𝑖(𝑘)

𝑛+1

𝑖=1

 (1) 

         
for each 𝑖 = 1, 2,⋯ , 𝑛.  

Let 𝑅(𝑘 + 1) = [𝜗1(𝑘 + 1),… , 𝜗𝑛(𝑘 + 1), 𝑟0]
𝑇 ,  𝑟0 is prosentage of the ruturn of risk-free, and 𝑋(𝑘) =

[𝑥1(𝑘),… , 𝑥𝑛(𝑘), 𝑥𝑛+1(𝑘)]𝑇, Equation (1) can be reformulated as follows: 

 

𝑊(𝑘 + 1) = 𝑊(𝑘) + 𝑅𝑇(𝑘 + 1)𝑋(𝑘). (2) 

 

Based on Equation (2), the expected value of total wealth at time 𝑘 + 1 is given by:  

 

𝐸[𝑊(𝑘 + 1)] = 𝑊(𝑘) +  𝐸[𝑅𝑇(𝑘 + 1)]𝑋(𝑘). (3) 

 

Because the returns and the capitals are independent, then if Equation (3) is carried out along the prediction 

horizon m, the following equation will be obtained, 

 

𝐸[𝑊(𝑘 + 1)] = 𝑊(𝑘) + ∑ 𝐸[𝑅𝑇(𝑘 + 1 + 𝑗)]𝑋(𝑖 + 𝑗)

𝑚−1

𝑗=0

 (4) 

 

where 𝐸[𝑅(𝑘 + 𝑗 + 1)] = [ 𝐸[𝜗1(𝑘 + 𝑗 + 1)], 𝐸[𝜗2(𝑘 + 𝑗 + 1)], … , 𝐸[𝜗𝑛(𝑘 + 𝑗 + 1)], 𝑟0], 𝑗 = 1,2, … ,
𝑚 − 1. Suppose 𝐸[𝜗(𝑘 + 1) = �̂�(𝑘 + 1)]. 
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Assume a transaction cost proportion 𝑐 > 0, representing the expense associated with each transaction, 

whether it involves purchasing or selling asset 𝑖. Consequently, Equation (4) can be reformulated as follows: 

 

𝐸[𝑊(𝑘 + 𝑚)] = 𝑊(𝑘) + ∑ 𝐸[𝑅𝑇(𝑘 + 𝑗 + 1)]𝑋(𝑘 + 𝑗)

𝑚−1

𝑖=1

− 𝑐 ∑ 1|𝑋(𝑘 + 𝑗) − (𝐼𝑛+1 + 𝑑𝑖𝑎𝑔(𝐸[𝑅𝑇(𝑘 + 𝑗)]))𝑋(𝑘 + 𝑗 − 1)|

𝑚−1

𝑖=1

 

(5) 

 

where 1 = [1 … 1]. 

3.2 Vector Auto Regressive (VAR) 

Assume that the predicted returns of risky assets are generated by a first-order Vector Autoregressive 

(VAR) model, specified as: 

 
𝜗(𝑘 + 1) = 𝑣 + 𝐴1𝜗(𝑘) + 𝑒(𝑘 + 1) (6) 

 
where A1 is an n x n coefficient matrix, 𝑣 = (𝐼𝑛 − 𝐴1)𝜇 is an 𝑛 𝑥 1 vector of intercept terms, 𝜇 = 𝐸[𝜗(𝑘)]  
representing the mean return. Here 𝑒(𝑘 + 1) denotes the white noise or random disturbance at time 𝑘 + 1 an 

n-dimensional vector with 

 
𝐸[𝑒(𝑘 + 1)] = 0, 𝐸[𝑒(𝑘 + 1)]𝑒𝑇(𝑘 + 1) = 𝜎, and 𝐸[𝑒(𝑘 + 𝑖)𝑒𝑇(𝑘 + 𝑗) = 0, 𝑖 ≠ 𝑗, 

 
where 𝜎 is a 𝑛 × 𝑛  non-singular covariance matrix. For a prediction horizon of m periods, the expected return 

prediction, derived from Equation (6), is given by: 

 
𝜗(𝑘 + 1) = 𝑣 + 𝐴1𝜗(𝑘) + 𝑒(𝑘 + 1) 
𝜗(𝑘 + 2) = 𝑣 + 𝐴1𝜗(𝑘 + 1) + 𝑒(𝑘 + 2) 
    = 𝑣 + 𝐴1(𝑣 + 𝐴1𝜗(𝑘) + 𝑒(𝑘 + 1)) + 𝑒(𝑘 + 2) 

    = 𝑣 + 𝐴1𝑣 + 𝐴1
2𝜗(𝑘) + 𝐴1𝑒(𝑘 + 1) + 𝑒(𝑘 + 2) 

𝜗(𝑘 + 3) = 𝑣 + 𝐴1𝜗(𝑘 + 2) + 𝑒(𝑘 + 3) 
    = 𝑣 + 𝐴1𝑣 + 𝐴1

2𝑣 + 𝐴1
3𝜗(𝑘) + 𝐴1

2(𝑘 + 1) + 𝐴1𝑒(𝑘 + 2) + 𝑒(𝑘 + 3) 
⋮ 
𝜗(𝑘 + 𝑚) = 𝑣 + 𝐴1𝜗(𝑘 + 𝑚 − 1) + 𝑒(𝑘 + 𝑚). 
      

As a result, the following equation is obtained 

 

𝜗(𝑘 + 𝑚) = 𝐴1𝜗(𝑘) + ∑[𝐴𝑖
𝑗
𝑣 +

𝑚−1

𝑖=0

𝐴𝑖
𝑚−𝑗−1

𝑒(𝑘 + 𝑗 + 1)] 

 
where 𝑒(𝑘 + 𝑗 + 1) capturing the stochastic component of the predicted returns. 

3.3 Expected Portfolio Risk (Variance) 

The risk of a portfolio is calculated using the investment weights and the covariance matrix as follow 

as: 

 

𝜎𝑝
2 = ∑

𝑛

𝑖=1

∑𝑊𝑖𝑊𝑗Cov(

𝑛

𝑗=1

�̂�𝑖�̂�𝑗) (7) 

 

where 0 ≤ 𝑊𝑖,𝑊𝑗 ≤ 1, for all 𝑖, 𝑗 = 1, 2, . . . , 𝑛 are the allocation weights for each assets.  
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3.4 Expected Portfolio Risk (CvaR) 

In the portfolio optimization problem, the loss function is critical for evaluating potential losses 

associated with investment decisions under changing market conditions. Conditional Value at Risk (CVaR) 

is frequently employed as an optimization criterion, as it measures the expected loss beyond a specific 

threshold, known as Value at Risk (VaR).  

Definition 1. Consider �̌�  ∈ 𝑅𝑚𝑛 represents the decision vector �̌� = [𝑥1, … , 𝑥𝑛, 𝑥𝑚𝑛]𝑇and 𝑉 ∈ 𝑅𝑚𝑛 is a 

random variable. The loss function 𝑔(�̌�, 𝑉): 𝑅𝑚𝑛 𝑥 𝑚𝑛 →  𝑅, where �̌�, 𝑉 ∈ 𝑅𝑚𝑛. 

Consider  𝑓𝛽(𝑉) denote the probability density function of 𝑉, where 𝛽 representing the confidence 

level where 0 ≤  𝛽 ≤  1. The β-VaR is defined as the smallest value 𝜉 such that, with probability 𝛽, the 

portfolio loss does not exceed 𝜉. Formally, this is expressed as: 

 

𝜉𝛽(�̌�)  =  𝑚𝑖𝑛𝑥{ 𝜉 ∈  𝑅 | 𝜓(�̌�, 𝜉)  ≥  𝛽 } 

 

where the cumulative distribution function of the loss 𝑔 is represented as: 

 

𝜓(�̌�, 𝜉)  =  𝑃(𝑉 | 𝑔(𝑈, 𝑉)  ≤  𝜉)  =   ∫ 𝑓𝛽(𝑉)
𝑔(𝑈,𝑉) ≤ 𝜉

  𝑑𝑉. 

 

While VaR provides an estimate of the maximum loss at a specified confidence level, it does not 

quantify the extent of losses that exceed this threshold. Therefore, Conditional Value at Risk (CVaR) or β-

CVaR is introduced as the expected loss given that it exceeds β-VaR. Mathematically, β-CVaR is defined as: 

 

𝜑𝛽(�̌�)  =  𝐸[𝑔(�̌�, 𝑉) | 𝑔(�̌�, 𝑉)  ≥  𝜉𝛽(�̌�)] 

                                =  
1

1 −  𝛽
 ∫ 𝑔(�̌�, 𝑉) 𝑓𝛽(𝑉)  𝑑𝑉

𝑔(�̌�,𝑉) ≥ 𝜉β(�̌�)

. 

 

An alternative approach to calculating CVaR involves minimizing the cumulative distribution function 

𝐹𝛽(�̌�, 𝜉): 

 

𝜑𝛽(�̌�)  =  min
𝜉 ∈ 𝑅

𝐹𝛽(�̌�, 𝜉)  

 

where 

 

𝐹𝛽(�̌�, 𝜉) =  𝜉 + 
1

1 −  𝛽
∫ [𝑔(�̌�, 𝑉)–  𝜉]

+

𝑉 ∈ 𝑅𝑚
 𝑓𝑝(𝑉)𝑑𝑉. 

 

If the distribution of 𝑉 is approximated with samples 𝑉1, . . . , 𝑉𝑚, an empirical approximation of 

𝐹𝛽(�̌�, 𝜉) can be represented as: 

𝐹𝛽(�̌�, 𝜉) =  𝜉 + 
1

1 −  𝛽
∑[𝑔(�̌�, 𝑉^𝑇)  −  𝜉]+.

𝑀

𝑡=1

 

 

In multi-period settings, CVaR is calculated by incorporating stochastic scenarios that represent 

potential future trajectories of risky assets. The expected wealth at time 𝑘 +  𝑚 is given by: 

 

𝐸[𝑊(𝑘 +  𝑚)]  =  
1

𝑆
 ∑𝐸[𝑊𝑠(𝑘 +  𝑚)]

𝑆

𝑠=1

  

 

where 𝑆 denotes the set of s scenarios and 𝐸[𝑊𝑠(𝑘 +  𝑚)] is expected wealth at 𝑘 +  𝑚 for s scenario. Hence, 

the multi-period CVaR, with a loss function −𝐸[𝑊𝑠(𝑘 +  𝑚)], is formally defined as: 

 



BAREKENG: J. Math. & App., vol. 19(3), pp. 2191- 2206, September, 2025. 2197 

 

 

𝐸[𝐹𝛽(𝑋, 𝜉, 𝑘,𝑚)]  =  𝜉 +  
1

(1 −  𝛽)𝑆
 ∑[−𝐸[𝑊𝑠(𝑘 +  𝑚)] −  𝜉]+.

𝑆

𝑠=1

 (8) 

3.5 Multi-objective Model Predictive Control 

3.5.1 State-Space 

The state-space model for portfolio management includes three main variables: 

a. State variable 𝑥(𝑘) : represents the proportion of investment distribution at time k, where 𝑥𝑖 

indicates the amount of capital in risky asset i, and 𝑥𝑛+1 the amount of capital in a risk-free asset. 

b. Control variable �̂�(𝑘) : consists proportion of transfer amounts capital 𝑝 (to risky assets) and 

𝑞 (back to risk-free assets). 

c. Output variable �̂�(𝑘) : represents total wealth 𝑊(𝑘) at time k, or �̂�(𝑘) = 𝑊(𝑘). 

The discrete state-space model is expressed as: 

 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵�̂�(𝑘) 

�̂�(𝑘 + 1) = 𝐶𝑥(𝑘), 
 

where, 𝑥(𝑘 + 1) = [

𝑥1(𝑘 + 1)
⋮

𝑥𝑛(𝑘 + 1)
𝑥𝑛+1(𝑘 + 1)

], �̂�(𝑘) =

[
 
 
 
 
 
𝑝1(𝑘)

⋮
𝑝𝑛(𝑘)
𝑞1(𝑘)

⋮
𝑞𝑛(𝑘)]

 
 
 
 
 

 

and matrices 𝐴, 𝐵, and 𝐶 are constructed based on asset returns and allocation rules, follows: 

 

𝐴(𝑛+1)×(𝑛+1) = [

1 + �̂�1(𝑘)
⋮
0
0

⋯
⋱
⋯
⋯

0
⋮

1 + �̂�𝑛(𝑘)
0

0
⋮
0

1 + 𝑟0

], 

 

𝐵(𝑛+1)×2𝑛 = [

1 + �̂�1(𝑘)
⋮
0

(1 + 𝑟0)(−1 − 𝑐)

⋯
⋱
⋯
⋯

0
⋮

1 + �̂�𝑛(𝑘)
(1 + 𝑟0)(−1 − 𝑐)

−(1 + �̂�1(𝑘))
⋮
0

(1 + 𝑟0)(1 + 𝑐)

⋯
⋱
⋯
⋯

0
⋮

−(1 + �̂�𝑛(𝑘))
(1 + 𝑟0)(1 + 𝑐)

], 

𝐶1×(𝑛+1) = [1 ⋯ 1 1], 

 

𝑟0 represents the return of risk-free asset, and 𝑐 denotes the transaction fee, where 𝑟0 and 𝑐 are 

constants. 

3.5.2 Objective Function 

The optimization problem to be formulated is designed to maximize expected wealth and minimize 

risk. Based on Equation (5), the equation for maximizing future returns over the prediction horizon m is 

defined as follows: 

Maximizing Expected Wealth: 

 

max 𝐸[𝑊(𝑘 +  𝑚)]. (9) 

 

Next, based on Equation (8), the equation for minimizing Conditional Value-at-Risk (CVaR), a risk 

measure that estimates potential losses in worst-case scenarios, is defined as follows: 
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Minimizing Risk (CVaR): 

 

min 𝐸[�̂�𝛽(𝑋, 𝜉, 𝑘,𝑚)]. (10) 

 

In the Multi-Objective Model Predictive Control (MO-MPC) framework, both objectives in Equation 

(9) and Equation (10) can be optimized simultaneously by assigning weights to each objective. The 

combined objective function in MO-MPC integrates both maximizing returns and minimizing risk using 

CVaR, as follows: 

Combined Objective Function in MO-MPC: 

 

𝐽 = 𝛼1(−𝐸[𝑊(𝑘 + 𝑚)]) + 𝛼2(𝐸[𝐹𝛽(�̌�, 𝜉, 𝑘,𝑚)] ) (11) 

 

where 𝛼1 and 𝛼2 are weights indicating the investor’s priority in maximizing returns and minimizing risk, 

respectively, 𝛼1 ∈ [0,1], 𝛼2 = 1 − 𝛼1. Furthermore, we will minimizing the objective function 𝐽. 

3.5.3 Constraints 

The first constraint applied to the portfolio is the lower and upper bounds, derived from a percentage 

of wealth:  

 

 𝑥𝑖
𝑚𝑖𝑛(𝑘) = 𝛿𝑊(𝑘) and 𝑥𝑖

𝑚𝑎𝑥(𝑘) = 𝛿𝑊(𝑘) for  𝑖 =  1,… , 𝑛 + 1. 
 

It is known that the portfolio is self-financing, meaning that initially, there is an injection of capital, but 

subsequently, no further capital inflows or outflows occur; all investment gains are reinvested in the portfolio. 

This constraint is expressed as follows: 

 

�̿�𝑚𝑖𝑛(𝑘) =

[
 
 
 
 
 
𝑥1

𝑚𝑖𝑛(𝑘)

𝑥2
𝑚𝑖𝑛(𝑘)

⋮
𝑥𝑛+1

𝑚𝑖𝑛(𝑘)

𝑊(𝑘) ]
 
 
 
 
 

 and �̿�𝑚𝑎𝑥(𝑘) =

[
 
 
 
 
𝑥1

𝑚𝑎𝑥(𝑘)

𝑥2
𝑚𝑎𝑥(𝑘)

⋮
𝑥𝑛+1

𝑚𝑎𝑥(𝑘)

𝑊(𝑘) ]
 
 
 
 

. 

 

Suppose 𝑀 = [
𝐼𝑛+1

𝐸
], with 𝐸 = [1 ⋯1], then each control action must be bounded by: 

 

𝑥𝑚𝑖𝑛(𝑘) ≤ 𝑀𝑥(𝑘) ≤ 𝑥𝑚𝑎𝑥(𝑘). 

 

Since control will be applied over the time horizon m, the following constraint is defined: 

 

�̿�𝑚𝑖𝑛(𝑘) ≤ ℳ(𝑘)�̿�(𝑘) ≤ �̿�𝑚𝑎𝑥(𝑘) 

 

where �̿�(𝑘) = [𝑥𝑇(𝑘|𝑘), … , 𝑥𝑇(𝑘 + 𝑚 − 1|𝑘) ]𝑚(𝑛+2)𝑥1,  

�̿�𝑚𝑖𝑛(𝑘) = [𝑥𝑚𝑖𝑛
𝑇 (𝑘|𝑘), … , 𝑥𝑚𝑖𝑛

𝑇 (𝑘 + 𝑚 − 1|𝑘) ]𝑚(𝑛+2)𝑥1, 

�̿�𝑚𝑎𝑥(𝑘) = [𝑥𝑚𝑎𝑥
𝑇 (𝑘|𝑘), … , 𝑥𝑚𝑎𝑥

𝑇 (𝑘 + 𝑚 − 1|𝑘) ]𝑚(𝑛+2)𝑥1, and ℳ = 𝑑𝑖𝑎𝑔 (𝑀,… ,𝑀)𝑚(𝑛+2)𝑥1. 

The number of selected assets must fall within the range [𝐾𝑖𝑛𝑓 , 𝐾𝑠𝑢𝑝] :  

 

𝐾𝑖𝑛𝑓 ≤ ∑ 𝑧𝑗

𝑛+1

𝑗=1

≤ 𝐾𝑠𝑢𝑝, 

where 𝑧𝑗 is an auxiliary variable that counts the number of assets in the portfolio: 

𝑧𝑗 = {
1, jika 𝑢𝑗 > 0, 𝑗 = 1,… , 𝑛 + 1,

0, otherwise.
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To specify the portfolio cardinality, set 𝐾𝑖𝑛𝑓 = 𝐾𝑠𝑢𝑝 = 𝐾. Based on Equation (12), this yields: 

 

∑ 𝑧𝑗

𝑛+1

𝑗=1

= 𝐾. 

3.6 Multi-objective PSO 

The optimization model using MOPSO is developed based on the principles outlined in Equation (4) 

and Equation (7) and is formulated as follows. 

The prediction wealth for a portfolio is given by: 

 

max 𝐸[𝑊(𝑘 +  1)]. 
 

Portfolio risk, defined as the variance, is given by: 

 

min𝜎𝑝
2 

 

Where constrain as follows: 

a. The allocation of capital to each asset 𝑥𝑖 must be non-negative: 

 

0 ≤ 𝑥𝑖 ≤ 1, for all 𝑖 = 1, 2, . . . , 𝑛. 
 

b. The allocation weights 𝑊𝑖 for each asset are restricted to lie within the interval [0, 1]: 

 

0 ≤ 𝑊𝑖 ≤ 1, for all 𝑖 = 1, 2, . . . , 𝑛. 
 

c. The total weight of the portfolio allocation must sum to 1: 

 

∑𝑊𝑖

𝑛

𝑖=1

= 1. 

3.7 Implementation of PSO Algorithm 

The multi-objective MPC controller is integrated with the PSO algorithm and operates as a control 

function block executed over each sample time interval 𝑇, where 𝑇 indicates the number of days in the sample 

dataset. For each interval 𝑘 =  1, … , 𝑇, the solution procedure is outlined as follows: 

a. Particle Initialization   

Particles are initialized with a random position vector 𝑋𝑖(𝑘), and velocity vector 𝑉𝑖(𝑘),  for each 

particle i. Lower and upper bounds are set on portfolio allocations to ensure valid values. 

b. Cost Function Definition 

The cost function for the MO-MPC algorithm is defined using Equation (11). 

c. Fitness Calculation 

Each particle's fitness is evaluated by computing the return fitness to estimate expected wealth, 

𝐸[𝑊(𝑘 +  𝑚)], based on its position 𝑋𝑖(𝑘), and the risk fitness (CVaR) to measure expected risk, 

𝐸[𝐹𝛽(𝑋, 𝜉, 𝑘,𝑚)] , at position 𝑋𝑖(𝑘).  

d. Updating Velocity and Position Using PSO 

The PSO algorithm updates particle velocity and position using the following equations: 

Velocity update:   

 

𝑉𝑖(𝑘 +  1) =  𝜔 𝑉𝑖(𝑘) + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡(𝑘) − 𝑋𝑖(𝑘)) + 𝑐2𝑟2(𝑃𝑏𝑒𝑠𝑡(𝑘) − 𝑋𝑖(𝑘)) 
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Position update:   

 

𝑋𝑖(𝑘 +  1)  =  𝑋𝑖(𝑘)  + 𝑉𝑖 (𝑘 +  1) 

where  

𝑉𝑖(𝑘) is the particle i velocity at time k, 

𝑋𝑖(𝑘) is the position of particle i, representing the portfolio allocation vector, 

𝜔 is the inertia factor, influencing the particle's momentum,   

𝑐1 and 𝑐2 are learning coefficients guiding the particle toward its personal best position, 

𝑃𝑏𝑒𝑠𝑡 is the best solution of an individual particle,  

𝐺𝑏𝑒𝑠𝑡 is the best 𝑃𝑏𝑒𝑠𝑡 position of an individual, 

𝑟1 and 𝑟2 are random variables that maintain the algorithm's stochastic properties. 

e. Optimal Solution Identification Using the Pareto Front 

Once each particle has stored its 𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡, the optimal solution is identified through the 

Pareto front—a set of solutions where no objective can be improved without detriment to another. 

Solutions on this front represent the optimal trade-offs between maximizing returns and 

minimizing risks. 

f. Iteration and Convergence 

The iteration process proceeds until convergence is achieved, either through minimal changes in 

particle position or upon reaching the maximum iteration threshold. 

g. Results of Pareto Front Solutions 

Following the completion of iterations, the Pareto front results provide optimal solutions that 

capture the best trade-offs between return maximization and risk minimization. 

3.8 Simulation and Evaluation 

3.8.1 Parameter Initialization 

Portfolio optimization begins with determining the relevant parameters. These parameters encompass 

fundamental variables that significantly affect the portfolio's performance. We assume the relevant 

parameters which are summarized in Table 1 below. 

Table 1. Parameter Values 

Variable Value 

𝛽 5% 

c 0.03% 

𝑟0 6% 

𝛾 1% 

𝛿 90% 

W(0) 100,000,000 IDR 

3.8.2 Data 

This study analyzed historical closing prices of selected companies within the LQ45 index, specifically 

PT Astra International Tbk (ASII.JK), Bank Central Asia (BBCA.JK), Bank Indonesia (BBSI.JK), PT Bumi 

Serpong Damai Tbk (BSDE.JK), PT Indofood Sukses Makmur Tbk (INDF.JK), and PT XL Axiata Tbk 

(EXCL.JK). The data from Yahoo Finance cover the period from January 1 to December 31, 2023. 

Fluctuations in returns are illustrated in Figure 2. 
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Figure 2. Daily Stock Return 

3.8.3 Portfolio Optimization with SMPC-PSO 

This study focuses on portfolio optimization using the Stochastic Model Predictive Control (SMPC) 

algorithm to determine the optimal asset allocation weight. The SMPC framework is first utilized to establish 

these optimal weights by leveraging historical data and predictive models to forecast future allocations. The 

results from the multi-objective optimization conducted with the SMPC algorithm reveal significant 

variations in asset allocation weights across different prediction horizons. 

In the initial prediction horizon, Table 2 outlines the optimal portfolio allocation. The highlighted 

funds are adjusted for each subsequent prediction horizon, leading to the final allocation shown in Table 3. 

Table 2. Optimal Portfolio Allocation at The Initial Prediction Horizon 

 

 

 

Table 3. Final Portfolio Allocation After Adjustments Across Prediction Horizons 

 

 

 

The proportion of optimal allocation obtained is then used to estimate the wealth prediction, the wealth 

trend demonstrates significant growth from Horizon 1 to Horizon 252 shown in Table 4. 

Tabel 4. Optimal Allocation  

Horizon BBCA.JK INDF.JK ASII.JK EXCL.JK BBSI.JK BSDE.JK Risk Free 

1 0.128347 0.073990 0.239414 0.123791 0.193955 0.131123 0.109378 

2 0.270935 0.014732 0.085564 0.223689 0.159444 0.014495 0.231141 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
251 0.166946 0.183312 0.182030 0.151261 0.093784 0.061704 0.160962 

252 0.247554 0.107252 0.149635 0.011755 0.010824 0.125348 0.347628 

The portfolio begins with an initial capital of IDR 100,000,000, and wealth increases from IDR 

100,532,500 at Horizon 1 to IDR 328,633,100 at Horizon 252, indicating that optimal asset allocation yields 

stable wealth growth despite return fluctuations. Figure 3 illustrates the significant change in wealth over the 

analysis period. 

BBCA.JK INDF.JK ASII.JK EXCL.JK BBSI.JK BSDE.JK Risk Free 

0.1283 0.0740 0.2394  0.1238  0.1940  0.1311 0.1094 

BBCA.JK INDF.JK ASII.JK EXCL.JK BBSI.JK BSDE.JK Risk Free 

0.2476 0.1073 0.1496  0.0118  0.0108  0.1253 0.3476 
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Figure 3. Wealth Prediction Per Horizon 

CVaR values, which are presented in Figure 4, decrease significantly from Horizon 1 to Horizon 5 

(0.0063 to 0.0080), indicating the reduced risk as the portfolio is optimized. However, from Horizon 248 to 

Horizon 250, small spikes in CVaR (0.0029 to 0.0010) suggest a decrease in risk, likely due to market 

volatility or unpredictability in the later stages of the simulation. 

Furthermore, in Figure 4, we visualize CVaR fluctuations, showing a trend of rising extreme risk, 

which shows a decreasing trend of risk that gradually becomes lower in the final horizons.  

 
Figure 4. CVaR Per Horizon 

 

Evaluation of the optimization results involves a comparison between MOMPC and the Multi-

Objective Particle Swarm Optimization (PSO) algorithms, as discussed in the next section. 

3.8.4 Portfolio Optimization with MOPSO 

This section applies the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm to optimize 

the stock portfolio. Results include daily returns, wealth projections, and risk assessments using Conditional 

Value-at-Risk (CVaR) over 248 days, with evaluations based on the optimal allocation weights in Table 5. 
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Table 5. The Optimal Allocation Weight 

 

 

 

Optimal allocation weights are used to predict daily portfolio wealth. Figure 5 shows an increase from 

IDR 100,000,000 to IDR 100,002,841 in the first horizon, consistent with negative returns in the initial phase. 

Moreover, the fluctuation of wealth across prediction horizons results in the investor's wealth amounting to 

IDR 99,993,802 by the conclusion of the simulation. 

  
Figure 5. The Wealth Per Horizon 

Subsequently, Figure 6 illustrates the risk simulation across the prediction horizon. At the start of the 

horizon, the risk associated with the wealth is quantified at 0.002. The risk exhibits fluctuations throughout 

the horizon, ultimately reaching a value of 0.007 by the end of the prediction horizon. 

  
Figure 6. Simulated Risk Per Horizon 

3.8.5 Results Analysis 

Despite fluctuations in the early simulation stages, the MOPSO algorithm demonstrates solid 

performance in optimizing portfolio allocations, successfully converging to maximize wealth and minimize 

risk. However, the MOMPC algorithm outperforms MOPSO in several key areas. Given an initial capital of 

BBCA.JK INDF.JK ASII.JK EXCL.JK BBSI.JK BSDE.JK Risk Free 

0.0002 0.0000 0.0052  0.9888  0.0002  0.0057 0.0000 
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100,000,000, the optimal allocation for each asset and portfolio risk is presented in Table 6. A more detailed 

representation of this allocation can be observed in Figure 7. MOMPC achieves a final portfolio value of 

IDR 328,633,100, significantly higher than MOPSO's IDR 99,993,802, highlighting its effectiveness in asset 

allocation and maximizing gains amid market fluctuations. Additionally, MOMPC stabilizes expected returns 

faster, achieving stability by day 150, while MOPSO stabilizes closer to day 200, indicating MOMPC's 

superior adaptability to market volatility. 

Table 6. The Optimal Allocation Weight 

 BBCA.JK INDF.JK ASII.JK EXCL.JK BBSI.JK BSDE.JK RF Wealth Prediction 

MOMPC 0.2476 0.1073 0.1496 0.0118 0.0108 0.1253 0.3476 IDR 328,633,100, 

MOPSO 0.0002 0.0000 0.0052  0.9888  0.0002  0.0057  0.0000 IDR 99,993,802, 

 

Regarding risk management, MOMPC shows a more efficient reduction in Conditional Value-at-Risk 

(CVaR). By day 180, MOMPC's CVaR approaches zero, while MOPSO only reaches a similar value towards 

the end of the simulation. This demonstrates MOMPC's ability to dynamically adjust portfolio weights to 

minimize risk without sacrificing returns, making it a more effective algorithm for portfolio optimization in 

volatile market conditions. 

 

 
Figure 7. Wealth Prediction MOMPC and MOPSO Per Horizons 

4. CONCLUSIONS 

This study has empirically demonstrated the effectiveness of the Multi-Objective Model Predictive 

Control (MOMPC) algorithm in achieving the primary objective of optimizing stock portfolios by 

maximizing returns while minimizing risk in dynamic market environments. In response to the research 

problems, the results provide clear evidence that MOMPC significantly outperforms the Multi-Objective 

Particle Swarm Optimization (MOPSO) benchmark algorithm across multiple performance indicators. 

Specifically, MOMPC achieves a substantially higher final portfolio value (IDR 328,633,100 compared to 

MOPSO's IDR 99,993,802), accelerates the stabilization of returns (achieving convergence by day 150, 

whereas MOPSO requires up to day 200), and demonstrates superior risk control through a more rapid decline 

in Conditional Value-at-Risk (CVaR). These findings affirm MOMPC's enhanced capacity for wealth 

maximization, return stability, and effective risk management, indicating its suitability in volatile financial 

markets. 

Nonetheless, the study is not without limitations. The optimization was conducted on a restricted 

selection of assets and utilized historical return data, which may not comprehensively represent real-time 

market complexities. Additionally, the simulation model does not incorporate certain practical constraints 

such as transaction costs, tax considerations, macroeconomic disruptions, or investor behavioral factors. 

Future research is therefore encouraged to address these aspects to enhance the applicability and robustness 

of the proposed optimization framework. 
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