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ABSTRACT                                                                                                 

Article History: The significant decline in the IDX30 stock index occurred due to an intervention, namely the 

COVID-19 pandemic, which affected market stability and investment decisions. This study 

aims to model and forecast the IDX30 stock index using intervention analysis with a step 

function, which is very suitable for capturing long-term external shocks. The methodology 
used includes the ARIMA (AutoRegressive Integrated Moving Average) model combined 

with step function intervention analysis to account for structural changes due to external 

disturbances. The data used is sourced from investing.com, consisting of weekly IDX30 stock 

index prices from January 2019 to December 2023. The results show that the COVID-19 
pandemic significantly impacted the IDX30 index, causing a drastic decline. The best model 

identified is ARIMA (1,2,1) with intervention parameters b = 0, s = 0, and r = 1. The 

forecasting results range from Rp. 488 to Rp. 505, with a Mean Absolute Percentage Error 
(MAPE) of 1.9404%, which shows the forecasting results are very good, indicating high 

forecasting accuracy. These findings highlight the effectiveness of intervention analysis in 

modeling financial time series data affected by external disturbances. 
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1. INTRODUCTION  

In the era of globalization, most countries, especially Indonesia, pay considerable attention to the 

capital market. Given the dual role of the capital market as a means of investment and as a source of business 

funding for companies that want to obtain funds from the public, the capital market plays an important role 

in a country's economy. In carrying out investment activities in the capital market, there are many financial 

tools that can be used, one of which is stocks [1].  

Shares are securities that prove shareholders' capital participation in a company. These letters give 

shareholders the right to receive a portion of the company's profits. The indicator used to show how much 

the price changes in the stock market over a certain period of time is called a stock index, one of which is 

IDX30. IDX30 is an index that evaluates the price performance of 30 stocks with high liquidity, high 

capitalization, and strong company fundamentals [2].  

Stocks listed on the Indonesia Stock Exchange experienced significant increases and decreases. 

However, in early March 2020, various stock indices, including the IDX30, experienced a decline and reached 

a low of Rp. 311.88 at the end of March due to the COVID-19 pandemic [3]. The Severe Acute Respiratory 

Syndrome Coronavirus-2 virus has a faster rate of development that can lead to more serious illness and organ 

failure.  

The Indonesian government has implemented the Large-Scale Social Restrictions (PSBB) program in 

an effort to contain the spread of the coronavirus in Indonesia. This has led to the cessation of community 

social activities and has an impact on the capital market and economy, as well as other aspects of people's 

social life [4]. The fear of the virus spreading triggered panic among foreign investors who offloaded their 

shares, resulting in a sharp decline in global exchanges. Although not a direct economic event, the impact of 

COVID-19 on the financial sector has been profound. The effects caused by the coronavirus destabilized the 

macroeconomy and caused losses in several investment products or instruments [5]. 

COVID-19 is an out-of-control event or so-called intervention that affects the IDX30 stock index, 

causing fluctuations. In addition to potential profits, buying and selling in the capital market also has 

considerable risk, especially if there is intervention. An effort that can be made to minimize the possibility of 

loss is by forecasting the stock index. Forecasting is a key tool in financial risk management, allowing 

investors to anticipate market trends. Forecasting is a technique for estimating conditions that will occur in 

the future [6]. Traditional time series models, such as ARIMA, provide a structured approach to predicting 

stock price movements. However, when external shocks such as COVID-19 occur, traditional models alone 

may not be sufficient. Intervention analysis, specifically the step function intervention method, improves the 

ARIMA model by incorporating structural shifts caused by external events so that it can better explain the 

impact of the intervention. 

Some previous research has been made, such as research on the analysis of the intervention model of 

the number of airplane passengers at Sultan Hasanuddin Airport, which found that the analysis of the response 

pattern of the number of airplane passengers produced an intervention effect when the intervention impact 

occurred [7]. There is also research on forecasting tourism demand during the COVID-19 pandemic with the 

ARIMAX approach and intervention modeling. It was found that the intervention model provides the most 

accurate forecasting when compared to ARIMAX [8]. Another study comparing the goodness of the step 

function intervention model with ARIMA Box-Jenkins found that the intervention model with a step function 

is a better model [9]. In addition, previous research also produced predictions of IDX30 stock index prices in 

Indonesia during the COVID-19 pandemic with ARIMA. The test results using IDX30 stock closing price 

data obtained a MAPE of 7.96% [10]. There is also research on “Intervention analysis of COVID-19 

pandemic impact on timber price in selected markets”. The results show that intervention analysis and 

structural break analysis have proven to be good tools for studying the impact of external shocks, such as the 

COVID-19 pandemic, on timber price movements [11]. Based on the previous description, this study models 

the IDX30 stock index using ARIMA with step function intervention analysis to assess the impact of COVID-

19 and improve forecasting accuracy. 
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2. RESEARCH METHODS 

2.1 Stationary 

Time series analysis has the assumption of stationarity. A stationary model is considered a condition 

that has probabilistic and remains in equilibrium or statistical stability that does not change over time. In time 

series data, stationarity is indicated by constant variance and mean values [12]. When time series data 

periodically fluctuates with a fixed variance, the data is said to be stationary in variance. In other words, the 

value of the variance is fixed for each 𝑡. The test for data stationarity in variance can also use the Levene test 

[13]. If there is data non-stationarity in variance, a Box-Cox transformation process can be performed. The 

Box-Cox transformation is a method of transformation of the response, namely by lifting Zt with 𝜆, so that it 

can be written as Z𝑡
λ with lambda (𝜆) is the value of the transformation parameter. If  𝜆 = 1  means that no 

transformation is required; in other words, the time series data is stationary in variance. Stationarity in the 

mean can be determined using the unit root test, namely the Augmented Dickey-Fuller (ADF) test. Data that 

is not stationary in the mean can be overcome by differencing. This aims to make the data stationary, both at 

the first and second differencing stages [14]. 

 

2.2 Intervention Analysis 

An external event, such as a vacation, religious holiday, sales promotion, or policy change, can often 

affect the pattern of time series data. In such time series data, there is usually a sharp increase or decrease. 

These events are called interventions. A method that can be used to address the impact of interventions on 

time series is intervention analysis [15]. Measuring the magnitude and duration of the effect that occurs due 

to an intervention in time series data is the goal of intervention analysis. Intervention analysis is divided into 

two types of variables, namely pulse function and step function. A step function is an intervention variable 

where the intervention occurs at time 𝑡 and so on over a long period of time. The intervention occurrence 

time in the pulse function only takes place at time 𝑡 . The model for intervention analysis is generally 

formulated as follows [16]. 

𝑍𝑡 =  𝑓(𝐼𝑡) + 𝑌𝑡  (1) 

𝑌𝑡  is an ARIMA model without the influence of intervention, and 𝑓(𝐼𝑡) is a function of the 𝑡 time 

intervention variable. The function of the intervention variable is represented by 
𝜔𝑠(𝐵)

𝛿𝑟(𝐵)
 and 𝐵 is a backshift 

operator that causes the data to go back one period. 

The ARIMA model on the data before the intervention will be used as a reference to identify the 

intervention order. In the process of identifying the order of intervention, the leftover response graph is used. 

The conditions are as follows [17]: 

1. Order 𝑏 is calculated based on the start time of the intervention effect, characterized by a lag that is 

outside the significance limit. If the intervention effect is felt immediately at the time of the intervention, 

then order 𝑏 is zero. If the effect is felt after one period of the intervention, then order 𝑏 is one. Order 

𝑏 is two, if the effect is felt after two periods of intervention, and so on.  

2. Order 𝑠 is the length of time delay until the data stabilizes again, characterized by the start of a decline 

from the previous lag. For example, if the intervention occurs at time 𝑇 and at time 𝑇 + 1 the side 

response is not as small as at time 𝑇, then at time 𝑇 + 2 the response is smaller than the previous time, 

namely, time 𝑇 + 1, then order 𝑠 is worth one.  

3. Order 𝑟 can be known through the pattern of the leftover response graph. If the graph does not show any 

pattern, it is said that order 𝑟 is zero. If the leftover response graph has an exponential pattern, then order 

𝑟 is one. Meanwhile, if the leftover response graph shows a sine or cosine pattern, then order 𝑟 is worth 

two. 
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2.3 Mean Absolute Percentage Error (MAPE) 

The results of a forecast often show different results from the actual conditions, which is due to the 

presence of forecasting errors. There are several methods for calculating forecasting accuracy, one of which 

is Mean Absolute Percentage Error. MAPE is a method of calculating the percentage of forecasting error 

compared to the actual value. MAPE produces a value in the form of a percentage, making it easier to 

interpret. MAPE is formulated as follows [18]: 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑍𝑡 − �̂�𝑡

𝑍𝑡
|

𝑛

𝑡=1

× 100% (2) 

The model that has the smallest MAPE value is a very good forecasting model. In forecasting, there is 

a measure of the model's ability that can be seen in the following MAPE value interval [19]: 

Table 1. MAPE Value 

MAPE Decision 

<10% Excellent forecasting ability 

10% - 20% Good forecasting ability 

20% - 50% Fair forecasting ability 

>50% Poor forecasting ability 

Source: Pradani dkk (2021) 

 

2.4 Data Sources and Research Variables 

The data used in the study is secondary data taken from the website https://www.investing.com. The 

variables used are weekly historical price data for the IDX30 stock index (𝑍𝑡)  from January 2019 to 

December 2023, with the COVID-19 pandemic (𝐼t) as an intervention variable that occurred on March 9, 

2020. 

 

2.5 Analysis Method 

Data analysis in this study uses R software, with the following steps: 

1. Collecting data. 

2. Input data. 

3. Data exploration using IDX30 stock index time series data plots. 

4. Determined the intervention point and grouped the 2019 to 2022 data into two groups based on the 

intervention time. 

a. Data before intervention, namely January 6, 2019, to March 8, 2020. 

b. Data from when the intervention occurred until the last data, namely March 15, 2020, to December 

25, 2022. 

5. Perform ARIMA modeling on the data before intervention. 

a. Checking data stationarity in variance using Levene's test and data stationarity in average using 

the Augmented Dickey Fuller Test or ADF Test. 

b. Model identification before intervention using ACF and PACF plots. 

c. Model identification by estimating model parameters and selecting the best model based on the 

smallest AIC value. 

d. Perform white noise residual assumption test using Ljung-Box Test and normal distribution 

residual assumption test using Kolmogorov-Smirnov test. 

e. Perform prediction using the selected ARIMA model. 

https://www.investing.com/
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6. Building an intervention model 

a. Identify the value of the order (𝑏, 𝑟, 𝑠 ) using the leftover response graph obtained from the 

difference between the actual data subtracted from the predicted data using the ARIMA model 

before the intervention. 

b. Perform parameter estimation of the intervention model 

c. Test the assumptions of white noise and normally distributed residuals on the intervention model. 

7. Forecast the IDX30 stock index using the intervention model and calculate the level of forecasting 

accuracy using Mean Absolute Percentage Error (MAPE). Forecasting is carried out from January 1 to 

December 31, 2023. 

8. Interpretation of results 

 

3. RESULTS AND DISCUSSION 

3.1 Data Exploration 

Data exploration is the process of recognizing data before it is processed with the aim of understanding 

the pattern of data. Data exploration in this study was carried out through plots. The data used is the weekly 

historical price of the IDX30 stock index for the period January 2019 to December 2023. The data exploration 

is described in Figure 1 below: 

 
Figure 1. Plot of IDX30 Before 2nd Differencing Intervention 

Source: RStudio 

Based on Figure 1, it can be seen visually that the data has been stationary, characterized by data 

patterns that tend to move towards the average or pass through the horizontal axis. This has also been proven 

previously using the Augmented Dickey-Fuller test. 

 

3.2 ARIMA Model Identification 

After checking the data stationarity in variance and mean, the next step is to determine the ARIMA 

model on the IDX30 stock index data before the intervention, namely the period January 6, 2019, to March 

8, 2020 (𝑡 < 62) with 𝑛 = 61. The results obtained can be seen through the ACF and PACF plots in Figure 

2 below: 

Time 
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(a)                                                                                                       (b) 

Figure 2. (a) Differencing ACF Plot, (b) Differencing PACF Plot 

Source: RStudio 

The ACF plot and the PACF plot in Figure 2 are used in determining the tentative ARIMA model, 

known from the lags that have been significant in this case, obtained after differencing twice. From the ACF 

and PACF plots above, it is known that both cut off at the first lag. So that 3 temporary models are obtained, 

namely IMA (2,1), ARI (1,2), and ARIMA (1,2,1). 

 

3.3 Model Parameter Estimation Before Intervention 

The next step is to estimate the parameters of the temporary ARIMA model. The estimated value 

generated from each temporary model can be seen in Table 2 below: 

Table 2. Model Parameter Estimation Before Intervention 

Model Parameter Estimate AIC 
ARI (1,2) 𝝓𝟏 -0.6879 496.68 
IMA (2,1) 𝜽𝟏 -0.8916 490.51 

ARIMA (1,2,1) 
𝝓𝟏 -0.3061 

489.55 
𝜽𝟏 -0.7399 

Based on Table 2, the estimated parameters and AIC value of each temporary model can be seen. Of 

the three models, the best model is the ARIMA (1,2,1) model. This model is said to be the best because it has 

the smallest AIC value compared to the other two models, which is 489.55. The ARIMA (1,2,1) model 

equation can be written as follows. 

𝑌𝑡 =
𝜃𝑞(𝐵)

𝜙𝑝(𝐵)(1 − 𝐵)𝑑 𝑒𝑡   

 𝑌𝑡 =
(1 − 𝜃1𝐵 − . . . − 𝜃𝑞𝐵𝑞)

(1 − 𝜙1𝐵 − . . . − 𝜙𝑝𝐵𝑝)(1 − 𝐵)𝑑 𝑒𝑡  

𝑌𝑡 =
(1 − 𝜃1𝐵)

(1 − 𝜙1𝐵)(1 − 𝐵)2 𝑒𝑡  (3) 

 

 

3.4 Residual Assumption Test Before Intervention 

A model can be said to be a feasible model if the residual white noise and normality assumptions have 

been met. To find out whether the model meets the white noise assumption, it can be done using the Ljung-

Box test. As for testing the normality of a model, it can be done with the Kolmogorov-Smirnov test. The 

results of the two tests are presented in Table 3 below: 

Table 3. Ljung-Box Test and Kolmogorov-Smirnov Test on Model Before Intervention 

Residual Assumption Test 𝒑-value 
Ljung-Box Test 0.9539 

Kolmogorov-Smirnov Test 0.2805 
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Based on Table 3, the 𝑝-value of the two residual assumption tests can be seen. With a significance 

level of alpha = 5%, the Ljung-Box test results are obtained with a 𝑝-value of 0.9539 > 0.05 and the 

Kolmogorov-Smirnov test result with a 𝑝-value of 0.2805 > 0.05. So that the ARIMA (1,2,1) model has met 

the assumptions of white noise and normal distribution. Thus, it is concluded that the model is suitable for 

use. 

 

3.5 Model Prediction Results Before Intervention 

After obtaining a model that meets both assumptions, namely the white noise assumption and the 

normality assumption, the next step is to predict the selected model, namely ARIMA (1,2,1). The model 

prediction results before intervention are presented in Table 4 below: 

Table 4. Model Prediction Results Before Intervention 

Date T Prediction 

January 06, 2019 1 556.87 

January 13, 2019 2 567.86 

January 20, 2019 3 573.03 

January 27, 2019 4 570.38 

February 03, 2019 5 575.26 

⋮ ⋮ ⋮ 
February 09, 2020 57 525.75 

February 16, 2020 58 518.33 

February 23, 2020 59 517.38 

March 01, 2020 60 478.36 

March 08, 2020 61 470.75 

From the prediction results above, the prediction accuracy value of the model before intervention, using 

the Mean Absolute Percentage Error (MAPE) value, is presented in Table 5 below: 

Table 5. Model Prediction Accuracy Before Intervention 

Model MAPE (%) 

Arima(1,2,1) 1.8893 

Based on Table 5, the prediction MAPE value of the ARIMA (1,2,1) model is 1.8893%. This indicates 

that the prediction results of the model are very good because they produce a MAPE < 20. 

 

3.6 Identification of Intervention Order 

After getting the best model on the data before the intervention, the next step is to analyze the IDX30 

stock index data by adding the intervention that occurred at 𝑇 = 62. This intervention analysis uses a step 

function because the COVID-19 pandemic event has an influence on a long enough period. The analysis is 

carried out by identifying the intervention order value obtained by looking at the residual response graph. 

The residual response graph can be seen in Figure 3 below: 
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Figure 3. Intervention Residual Response Graph 

Source: RStudio 

Based on Figure 3,  it is observed that the first lag of the residual response exceeds the significance 

limit at 𝑇 = 62. Therefore, it can be concluded that the order 𝑏 = 0. Meanwhile, for the length of the 

intervention effect, until the next lag response decreases or is smaller than the previous lag, occurs at 𝑇 + 1 

in this graph, so 𝑠 =  0. It is also known that the pattern formed from the response graph is an exponential 

pattern, so it can be said that the order 𝑟 = 1. Furthermore, the intervention order value obtained can be 

written as follows: 

𝑓(𝐼𝑡) =
𝜔𝑠(𝐵)

𝛿𝑟(𝐵)
𝐵𝑏, 𝐼𝑡 =

𝜔0(𝐵)

𝛿1(𝐵)
𝐵0𝑆𝑡

(62) (4) 

 

3.7 Parameter Estimation of Intervention Model 

After identifying the intervention order, the next step is to estimate the parameters of the intervention 

model. The estimated parameters consist of 𝛿1, 𝜔0, 𝜙1, and 𝜃1. The results of the parameter estimation test 

are presented in Table 6 and Table 7 below: 

Table 6. Intervention Model Parameter Estimation 

Parameter Estimate 

𝜹𝟏 3.0585 × 10−13 

𝝎𝟎 −37.484 

Based on Table 6, it is known that the estimated value of each parameter is 𝛿1 = 3.0585 𝑥 10−13 and 

𝜔0 = −37.484. Furthermore, these values will be used in the estimation of the final intervention model 

parameters. This aims to obtain the parameter estimation values of 𝜙1 and 𝜃1 as in the following table: 

Table 7. Parameter Estimation of the Final Intervention Model 

Parameter Estimate 

𝝓𝟏 −0.0185 

𝜽𝟏 −1.0000 

Based on Table 7, the estimated values of each parameter are 𝜙1 = −0.0185 and 𝜃1 = −1.0000. The 

estimated values of these parameters are then combined with the previous parameter coefficients in creating 

an intervention model. The intervention model can be written as follows, as in Equation (1): 

𝑍𝑡 = 𝑓(𝐼𝑡) + 𝑌𝑡 

With the ARIMA (1,2,1) model equation obtained previously, Equation (3): 

Time (T) 
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𝑌𝑡 =
(1 − 𝜃1𝐵)

(1 − 𝜙1𝐵)(1 − 𝐵)2 𝑒𝑡  

Where, for the intervention model, the step function 𝑓(𝐼𝑡) =
𝜔𝑠(𝐵)

𝛿𝑟(𝐵)
𝐵𝑏𝑆𝑡

(𝑇)
 with 𝑏 = 0, 𝑠 = 0 and 

 𝑟 = 1, 𝜔𝑠(𝐵) = (𝜔0 − 𝜔1𝐵 − 𝜔2𝐵2 − ⋯ − 𝜔𝑠𝐵𝑠) , and 𝛿𝑟(𝐵) = (1 − 𝛿1𝐵 − 𝛿2𝐵2 − ⋯ − 𝛿𝑟𝐵𝑟)  then it 

can be written as follows: 

𝑍𝑡 =
𝜔0(𝐵)

𝛿1(𝐵)
𝐵0𝑆𝑡

(62) +
(1 − 𝜃1𝐵)

(1 − 𝜙1𝐵)(1 − 𝐵)2 𝑒𝑡  

𝑍𝑡 =
𝜔0

(1 − 𝛿1𝐵)
𝑆𝑡

(62) +
(1 − 𝜃1𝐵)

(1 − 𝜙1𝐵)(1 − 𝐵)2 𝑒𝑡 

⋮ 

𝑍𝑡 = 2𝑍𝑡−1 − 𝑍𝑡−2 + 𝜙1𝑍𝑡−1 − 2𝜙1𝑍𝑡−2 + 𝜙1𝑍𝑡−3+𝛿1𝑍𝑡−1 − 2𝛿1𝑍𝑡−2 + 𝛿1𝑍𝑡−3 − 𝛿1𝜙1𝑍𝑡−2 

+2𝛿1𝜙1𝑍𝑡−3 − 𝛿1𝜙1𝑍𝑡−4 + 𝜔0𝑆𝑡
(62) − 2𝜔0𝑆𝑡−1

(62) + 𝜔0𝑆𝑡−2
(62) − 𝜔0𝜙1𝑆𝑡−1

(62)
 

+2𝜔0𝜙1𝑆𝑡−2
(62) − 𝜔0𝜙1𝑆𝑡−3

(62) + 𝑒𝑡 − 𝛿1𝑒𝑡−1 − 𝜃1𝑒𝑡−1 + 𝛿1𝜃1𝑒𝑡−2 

𝑍𝑡 = (2 + 𝜙1+𝛿1)𝑍𝑡−1 − (1 + 2𝜙1 + 2𝛿1 + 𝛿1𝜙1)𝑍𝑡−2 + (𝜙1 + 𝛿1 + 2𝛿1𝜙1)𝑍𝑡−3 

− 𝛿1𝜙1𝑍𝑡−4 + 𝜔0𝑆𝑡
(62) − (2 + 𝜙1)𝜔0𝑆𝑡−1

(62) + (1 + 2𝜙1)𝜔0𝑆𝑡−2
(62)

 

−𝜔0𝜙1𝑆𝑡−3
(62) + 𝑒𝑡 − (𝛿 + 𝜃1)𝑒𝑡−1 + 𝛿1𝜃1𝑒𝑡−2 (5) 

With the help of Excel software, the final intervention model of the step function is obtained as follows. 

𝑍𝑡 = 1.9815𝑍𝑡−1 − 0.963𝑍𝑡−2 − 0.0185𝑍𝑡−3 + 5.6582 × 10−15𝑍𝑡−4 − 37.484𝑆𝑡
(62) + 74.275𝑆𝑡−1

(62)

− 36.097𝑆𝑡−2
(62) − 0.6935𝑆𝑡−3

(62) + 𝑒𝑡 + 1.0000𝑒𝑡−1 − 3.0585 × 10−13𝑒𝑡−2 

with, 𝐼𝑡 = 𝑆𝑡
(62) =  {

0, 𝑡 <  62
1, 𝑡 ≥  62

. 

 

3.8 Residual Assumption Test of Intervention Model 

If the white noise and normally distributed residual assumptions have been met, then a model can be 

said to be a good model. Just like testing the residual assumptions of the model before the intervention, the 

Ljung-Box test is used to determine whether the model meets the white noise assumption, and also the 

Kolmogorov-Smirnov test to test the normality of an intervention model. The results of both tests are 

presented in Table 8 below: 

Table 8. Ljung-Box Test and Kolmogorov-Smirnov Test on The Intervention Model 

Residual Assumption Test 𝒑-value 

Ljung-Box Test 0.9636 

Kolmogorov-Smirnov Test 0.1044 

Based on Table 8, the 𝑝-value of the two residual assumption tests is known. With a significance level 

of alpha = 5%, the Ljung-Box test results are obtained with a 𝑝-value of 0.9636 > 0.05 and the Kolmogorov-

Smirnov test results with a 𝑝-value of 0.1044 > 0.05. This shows that the step function intervention model 

has fulfilled the two required assumptions. So, with this, it can be concluded that the model is suitable for use 

in forecasting. 

 

3.9 Intervention Model Prediction Results 

The next step is to predict the model after the intervention. The prediction results of the intervention 

model are presented in Table 9 below: 
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Table 9. Intervention Model Prediction Results 

Date T Prediction 

January 06, 2019 1 556.87 

January 13, 2019 2 567.86 

⋮ ⋮ ⋮ 
March 01, 2020 60 479.90 

March 08, 2020 61 483.91 

March 15, 2020 62 342.70 

⋮ ⋮ ⋮ 
December 18, 2022 206 497.05 

December 25, 2022 207 487.32 

From the prediction results above, the accuracy value of the intervention model prediction using the 

Mean Absolute Percentage Error (MAPE) value is presented in Table 10 below:  

Table 10. Intervention Model Prediction Accuracy 

 MAPE (%) 

Intervention Model 1.8977 

Based on Table 10, the prediction MAPE value of the intervention model is 1.8977%. This indicates 

that the model prediction results are very good because they produce a MAPE < 20%. When compared to the 

prediction MAPE value of the ARIMA (1,2,1) model, which is 1.8977%, it can be concluded that the 

prediction MAPE value in the intervention model is greater than the prediction MAPE value in the model 

before the intervention, 1.8893%. This can be assumed as the cause of the intervention effect, namely the 

COVID-19 pandemic. 

3.10 Intervention Model Forecasting Results 

After obtaining the best intervention model that has met the residual assumption test, the model is 

suitable for forecasting. Forecasting is carried out using data from January 1 to December 31, 2023. The 

results of the intervention model forecasting are presented in Table 11 below: 

Table 11. Intervention Model Forecasting Results 

 
Figure 4. Plot of Intervention Model Forecasting Results 

Source: RStudio 

Date T Actual Data Forecasting 

January 01, 2023 208 474.97 488.53 

January 08, 2023 209 471.05 488.94 

January 15, 2023 210 491.05 489.35 

⋮ ⋮ ⋮ ⋮ 
December 17, 2023 258 491.41 505.28 

December 24, 2023 259 495.21 505.55 

December 31, 2023 260 501.72 505.82 

Time (T) 
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Based on Figure 4, it is known that the forecasting results of the intervention model tend to be constant. 

The value of the IDX30 stock index in 2023 rises slowly every week in the range of Rp. 488 to Rp. 505. From 

the forecasting results, it can also be seen that the forecasting accuracy value using the MAPE value is as in 

Table 12 below: 

Table 12. Intervention Model Forecasting Accuracy 

 MAPE (%) 

Validation 1.9404 

Based on Table 12, the MAPE value of the intervention model is 1.9404%. Because MAPE < 20%, it 

can be concluded that the model forecasting results are very good. 

 

4. CONCLUSIONS 

Based on the discussion presented earlier, it can be concluded that the best model obtained from the 

IDX30 stock index data is ARIMA (1,2,1) with the intervention order obtained, namely 𝑏 = 0, 𝑠 = 0 and 

𝑟 = 1. The step function intervention model is formed as follows: 

𝑍𝑡 = 1.9815𝑍𝑡−1 − 0.963𝑍𝑡−2 − 0,0185𝑍𝑡−3 + 5,6582 × 10−15𝑍𝑡−4 − 37,484𝑆𝑡
(62) + 74,275𝑆𝑡−1

(62)

− 36,097𝑆𝑡−2
(62) − 0,6935𝑆𝑡−3

(62) + 𝑒𝑡 + 1,0000𝑒𝑡−1 − 3,0585 × 10−13𝑒𝑡−2 

with, 𝐼𝑡 = 𝑆𝑡
(62) =  {

0, 𝑡 <  62
1, 𝑡 ≥  62

  

With prediction accuracy using Mean Absolute Percentage Error (MAPE) of 1.9404% < 20%, the 

forecasting value of the IDX30 stock index in 2023, which ranges from Rp. 488 to Rp. 505 shows excellent 

forecasting results from the intervention model, which are very good. 
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