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ABSTRACT

Handling natural disasters such as floods requires efficient logistics distribution to
minimize the negative impact on victims. Distribution route optimization becomes very
important in this process. This paper applies a metaheuristic method using Genetic
Algorithm to the Bi-objective Multiple Traveling Salesman Problem (BMTSP) to obtain
a solution that minimizes the distance and time to deliver disaster relief logistics.
Multiple vehicles are used in this study to represent delivery agents with two main
objectives, namely minimizing total distance and travel time. Genetic Algorithm is
applied by considering these two main objectives through the process of selection,
crossover, mutation, and produces an effective Pareto solution. The results indicate that
applying the Genetic Algorithm to the Bi-Objective Multiple Traveling Salesman
Problem yields more efficient delivery routes—reducing both distance and time—
compared to the Nearest Neighbor Algorithm. The simulation and testing in this study
utilize data on distances and travel times among Central Java Regional Disaster
Management Agency offices in 19 regencies—including a central depot—Ilocated in
flood-prone areas of Central Java Province. The scenario involves two vehicles with
identical load capacities.
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1. INTRODUCTION

The Traveling Salesman Problem (TSP) is a prominent issue in combinatorial optimization, frequently
addressed in mathematics and computer science. Its exploration began in the 18th century, with contributions
from Irish mathematician Sir William Rowan Hamilton and English mathematician Thomas Penyngton
Kirkman [1]. The aim of TSP is to determine the most efficient route that visits each node (city) exactly once
and returns to the origin, factoring in the distance or cost between each pair of cities. TSP is recognized as an
NP-hard problem, indicating that no universally optimal solution algorithm has been found for all instances
[1]. As the number of cities increases, identifying the optimal solution to the TSP becomes progressively
more complex due to its combinatorial nature. The computational effort grows exponentially with the
problem size, making exact methods impractical for large-scale instances and necessitating the use of
heuristic or metaheuristic approaches.

Over time, various extensions of TSP have emerged, each defined by specific characteristics. A proper
understanding of these variants is essential for choosing suitable solution methods. The primary variations of
the Traveling Salesman Problem include the symmetric TSP (STSP), the asymmetric TSP (aTSP), and the
Multiple TSP (MTSP). In sTSP, the distance between two cities is considered the same regardless of the
travel direction, whereas in aTSP, the distances may vary depending on the direction traveled. MTSP involves
multiple salesmen, each following their own route, with the goal of minimizing the total travel distance for
all salesmen combined [1]. MTSP is often applicable to practical problems in logistics, supply chain
management, e-commerce distribution, vehicle routing, and scheduling [2].

In real-world applications, MTSP has been adapted with additional constraints to better reflect actual
conditions. One emerging problem is the Bi-objective Multiple Traveling Salesman Problem (BMTSP),
which arises when there are two objectives to be optimized simultaneously. For example, in addition to
minimizing the total travel distance, BMTSP may also consider minimizing travel time, total travel cost, or
carbon emissions. Solving BMTSP typically involves multi-objective programming, with the goal of finding
Pareto-optimal solutions, where no solution is better in all objectives [2] [3].

Due to the combinatorial complexity of BMTSP, studies on BMTSP remain limited making it
challenging to find optimal solutions using exact algorithms. Consequently, considerable research efforts
have been directed toward the development of heuristic and metaheuristic algorithms aimed at generating
near-optimal solutions in a computationally efficient manner [4]. One such approach is the Genetic Algorithm
(GA), which has been widely applied to various formulations of the Traveling Salesman Problem (TSP),
examples found in [4] — [8]. Study by Ha et al. [6] introduced a hybrid GA approach incorporating drones to
assist in package delivery, thereby addressing complex TSP scenarios. Additionally, a modified GA to solve
MTSP, employing local search operators to explore the search space efficiently and identify optimal solutions
was proposed in [9]. In another study [10], a macroscopic multi-criteria optimization model was developed
to address large-scale evacuation planning, employing the NSGA-II variant of GA, which demonstrated
notable effectiveness as a heuristic solution method. In [11], a hybrid GA was proposed for solving bi-
objective TSP, incorporating two satisfactory degree indices to guide the evolution of individuals during
iterations. Computational results show the algorithm is efficient and robust. Authors in [12] study a global
perspective on the optimization of distribution on logistics and transportation network based on complex
network theory, furthermore GA is used in solving the model and were relatively accurate and effective. In
[13], a fuzzy-based GA approach was introduced to address uncertainties in evacuation demand, where crowd
sizes at pickup points were modeled using triangular fuzzy numbers, aiming to minimize total travel time in
the evacuation model.

Finding near-optimal solution is crucial in emergency logistics, as efficient resource distribution can
significantly reduce casualties and damage during natural disaster. Emergency preparedness includes
activities before, during, and after a disaster, with logistics distribution playing a key role. Here, vehicles or
delivery agents represent the salesmen. The TSP method is useful for minimizing the total travel distance
needed to reach all affected areas [9]. This paper focuses on solving a Bi-objective Multiple Traveling
Salesman Problem model, aiming to optimize two main objectives: minimizing travel distance and
minimizing travel time, in line with real-world constraints. GA is used as an optimization approach, with
mutation techniques such as swap integrated into the mutation process to efficiently obtain Pareto solutions
for MTSP with multiple objectives. The proposed algorithm is applied to simulated flood relief distribution
data involving selected cities and districts in Central Java Province.
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2. RESEARCH METHODS

2.1 Model Formulation

The Multiple Traveling Salesman Problem (MTSP) typically finds m optimal routes for m vehicles,
which represent salesmen, where each vehicle starts and finishes their journey at the same depot city. Each
city must be visited by exactly one vehicle, with no overlapping routes. Each vehicle starts and ends at the
depot city, aiming to minimize the total distance traveled by all vehicles. However, optimizing the total
distance traveled alone often results in an unbalanced distribution of cities. In some cases, a vehicle may have
to visit most cities, while other vehicles only visit one or a few cities as in Figure 1 (a). Whereas Figure 1
(b) show a more balanced solution through the application of the concept of load balancing, thus each vehicle
gets almost the same number of cities.

—®— Route 1

8 —&— Route 2
Route 3

® Cities

@

x-coordinate x-coordinate

(@) (b)
Figure 1. (a) Route Plans of Unbalanced Visit Load, (b) Route Plans for MTSP with Balanced Load
Distribution.

This paper addresses MTSP with two objectives, which incorporates load balancing constraints. In the
Bi-objective Multiple Travelling Salesman Problem (BMTSP), load balancing constraints are applied, with
the first objective to minimize the total distance travelled and the second objective is to minimize the total
travel time across all vehicles. In this BMTSP, each vehicle must visit maximum g cities, excluding the depot
city, where ¢ = |(n — 1)/m| . Travel time between cities is not directly proportional to distance due to
factors such as traffic conditions, road quality, and others. Achieving an optimal solution to this problem is
quite challenging, as it involves trade-offs between two objectives. Therefore, finding the best Pareto solution
is necessary for two-objective or multi-objective optimization. The Pareto optimal solution is defined as:

Definition 1. [14] A solution x* € X is said to be Pareto optimal if there is no other solution x € X that
makes at least one objective function better without making the other objective function worse, which is
expressed by the notation f(x) < pareto f(x™).

The mathematical formulation of the BMTSP is presented as follows [2]:
Minimize Z = (z4,2,) Q)

where,

m n n
k=1 i=1 j=1
m n n
k=1 i=1 j=1

with constraints:

m n
3
DI §
k=1 j=1
m n
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SO e 2
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2:11271 Je=1, Vjevi{a (6)
Zk lzl 121_ Sy =m+n—1 )

Z lpk Z 5p}k—0 VPEV k—12 (8)
;lESk JESK
Y <q k=12,....m )
i=1
8iji, Yik €0,1 (10)

The following is the list of notations used to explain the BMTSP model:

Z4 = The overall distance covered by the vehicles.

Zy = The overall time taken by the vehicle.

n = Number of cities, this parameter indicates that there are n cities that will be used in the problem.

m = Number of vehicles, this parameter indicates the total number of vehicles that will be used to
visit all cities in the problem.

a = Depot city, this parameter indicates the start and end cities of each vehicle's journey.

% = Vertex set, this set represents all the cities to be visited in the problem, including the depot city.

d;j = The distance between two cities i and j, this parameter indicates the distance between two specifics

cities i and j in kilometers or miles.

tij = Travel time between cities i and j, this parameter indicates the total time taken to travel between
cities i and j in minutes or hours.

q = Load balancer, this parameter indicates the maximum number of cities that must be visited by each
vehicle, except the depot city.
Sk = The subset of cities that vehicle k visits.

8ijk. Yir = Binary decision variables, variable &; ;. indicates whether city j is visited from city i by vehicle

k and variable y;; indicates whether city i is visited by vehicle k.

Equation (2) defines the two objectives of minimizing total travel distance (z;) and total travel time
(z,) across all vehicles. Equation (3) defines the starting condition (each vehicle departs from the depot).
Equation (4) defines the ending condition (each vehicle returns to the depot). Equation (5) guarantees that
every non-depot city (i € V|{a}) is visited exactly once by one vehicle. Equation (6) ensure thar each non-
depot city (j € V|{a}) is entered exactly once, complementing Equation (5). Equation (7) states that every
feasible solution for BMTSP must have m + n — 1 edges. Equation (8) ensures continuity of travel for each
subset of cities S, assigned to vehicles k, preventing the formation of sub-tours. Equation (9) addresses load
balancing among vehicles, stating that the number of cities visited by a vehicle k should not exceed q. The
two binary decision variables defined in Equation (10) are as follows:

5 = { 1, ifvehicle k travels from city i to city j
Uk =10, otherwise
and
__ (1, ifvehicle k visits city i
Yike = {0, otherwise.

The variable &, helps in finding the path taken by each vehicle, ensuring that each city is only visited
once by one vehicle and helps in calculating the total distance and travel time. The variable y;; is utilized to
determine the workload or the number of cities each vehicle is required to visit, ensuring that no vehicle visits
more than q cities in addition to the depot city. Mutation steps, such as the swap operation, are incorporated
into the mutation process to obtain efficient Pareto-optimal solutions for the MTSP, which involves the two
objective functions defined in Equation (1).
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2.2 Solution Approach

The techniques of GA follow the genetic mechanisms of biological organisms that have adapted and
evolved in a highly competitive and changing environment, hence the terms used in GA are widely adopted
from these sciences [15]. The algorithm begins with a set of solutions known as a population. Solutions from
this population are selected to create a new population, with the expectation that the new population will
outperform the previous one. Solutions are chosen based on their fitness values to generate new solutions,
and this process is repeated until specific conditions are fulfilled [16]. The key components of the algorithm
include natural reproduction, selection, crossover, and mutation.

2.2.1 Population Initialization

Population initialization is a critical first step in GA, involving the creation of a set of valid solution
candidates (individuals) that are randomly generated. Each individual is represented by chromosomes,
meaning that the initial population consists of a collection of these chromosomes. These chromosomes must
conform to the specific format selected for the problem, which could include a binary string, an integer array,
or another data structure of a defined length [17]. The purpose of this population initialization is to ensure the
genetic diversity in the population that is fundamental to the exploration of a wide solution space, and provide
the algorithm with a good opportunity to correlate optimal solutions through the evolutionary process.

2.2.2 Fitness Evaluation

Evaluation is the process by which chromosomes in the population are judged to determine how well
they solve the given problem. This stage is very important because the results of this evaluation will be used
to guide the selection process in the GA, and lead to the formation of the next generation [16]. In
maximization problems, the fitness value f is typically set equal to the objective function z, i.e., f = z. However,
in minimization problems, this direct approach is unsuitable since GA favor individuals with higher fitness

values. A common solution is to use f = - allowing smaller objective values to correspond to higher fitness

[18]. To prevent division by zero, a small positive constant ¢ is added to the denominator, yielding a stable
fitness function:
1

fitness = f = pa (11)

2.2.3 Selection

Selection is the initial stage in each cycle of the GA process, where individuals (chromosomes) from
the existing population are chosen to serve as parents for the next generation. This selection process is based
on probability, with the likelihood of an individual being chosen linked to its fitness value, thereby favoring
those with higher fitness levels. There are several selection methods in GA, one of which is tournament
selection. In this method, two or more individuals are randomly selected from the population, and then the
individual with the best fitness value will win and be selected to the next stage [17]. For example, given in
Figure 2, where three individuals are randomly selected and individual F with the best fitness value wins.

Individu Fitness
A 8
B 12
C 27
D 4
E 45
F 17

Figure 2. Tournament Selection Process

2.2.4 Crossover

Crossover is the main genetic operator in GA, which involves a process during the reproduction phase
in which the genetic information of two parent individuals (chromosomes) is combined to create one or more
offspring that may exhibit better qualities [16]. Various methods or techniques exist for crossover, allowing
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the selection of a problem-specific crossover method that best suits a particular situation. The choice of
crossover method depends on the problem structure and desired exploitation [19].

2.2.5 Mutations

In the context of BMTSP, mutations play a crucial role in generating diverse solutions that can
effectively balance the two objective functions, minimizing total travel distance and balancing the workload
among vehicles. Mutation operators like swap, flip, and scramble are applied to the chromosome
representations of candidate solutions, which encode the routes assigned to each vehicle. By introducing
small, random changes to these routes, mutations help the algorithm escape local optima and explore a
broader range of possible solutions. This is particularly important in BMTSP, where the search space is
complex due to the presence of multiple vehicles and dual objectives. The use of mutation ensures that the
population maintains sufficient diversity, increasing the likelihood of discovering Pareto-optimal solutions
that offer a good trade-off between the competing objectives [20]. Figure 3 shows example of the three types
of mutation process. Figure 3 (a) illustrates the process of flip mutation where the segment sequence of
geneps5 i-€. |4 7 2| is flipped became |2 7 4|; Figure 3(b) is the process of swap mutation where geneps
and genegg are swapped; and Figure 3 (c) illustrates the process of scramble mutation [2].

(b)
Figure 3. (a) Flip Mutation, (b) Swap Mutation, (c) Scramble Mutation

Input parameter initialization:

n,m, dy;. and t;; forij=1.2,...n

!

[ Defined the hierarchical objective function ]

and set ¢ as the load balancer.

l

{Gencmtion of the initial populalion}

and determining the population size

Fitness evaluation

Is the termination

criteria met?
Select the next
generation using
- selection
Print the best Pareto J

route and solution
Update the best Perform crossover
individual genes m operation
Apply mutation
operation

Is the newest gene better Finds the fitness value
for the most recent gene

than the best gene?

Figure 4. Flowchart of Genetic Algorithm on BMTSP
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2.2.6 Flowchart

To identify the Pareto optimal solution for BMTSP, the code structure of the proposed Genetic
Algorithm, implemented in Python, is depicted in the flow chart in Figure 4.

3. RESULTS AND DISCUSSION

To better comprehend the BMTSP and the concepts involved in the proposed algorithm, the following
implementation is given relating to the delivery of logistics assistance to areas categorized as flood-prone
areas in several regencies in Central Java Province during the period January 1 — April 30, 2024. The logistics
assistance is intended for n = 19 regencies, namely Semarang, Demak, Jepara, Kudus, Pati, Grobogan, Blora,
Sragen, Karanganyar, Sukoharjo, Klaten, Boyolali, Kebumen, Cilacap, Brebes, Tegal, Pemalang,
Pekalongan, and Kendal. Henceforth the regencies are represented respectively as nodes 1, 2, ..., 19. The
delivery route starts from node 1.

The Central Java Regional Disaster Management Agency (BPBD), which functions as the depot (aid
storage warehouse) located in Semarang City. It is assumed that BPBD Central Java will deliver the logistics
assistance to BPBD offices in the 18 regencies by land and utilize two vehicles, m = 2, with the same load
capacity. The distance between two nodes i and j (d;;) and time travel (t;;) data were obtained based on
coordinates taken from Google Maps. During the journey, the vehicles should not visit any other regencies
other than those that have been allocated, except for the depot city as the starting and ending point. This
problem includes two important aspects, the selection of which BPBD offices each vehicle should visit, and
the order in which the vehicles should visit. Since this problem has two different objectives a single optimal
solution cannot be obtained. Therefore, the Pareto solution approach is used, where the decision maker can
select the most suitable solution based on the trade-off between distance and time, or based on the priority
assigned to either objective.

Table 1. Distance Matrix (Kilometer)

d; 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 0 30.4 76.1 46.1 25.3 51.6 81.2 52.8 1154 108.9 1203 118.1 101.4 76.4 165.9 249.3 197.2 196.7 179.2
2 30.4 0 30.4 55.5 55.5 76.1 55.5 53.5 1243 96.1 1155 120.7 117.6 92.6 194 239.8 177.9 214.8 139.7
3 76.1 30.4 0 37.1 25.3 63 63 47 136.3 1389 153.8 163.5 160.4 135.4 237.8 272.3 214.8 221.8 217.8
4 46.1 55.5 37.1 0 26.4 26.4 37 47 72.5 104.5 1239 129.1 132 107 218.8 241.2 2329 221.8 217.1
5 25.3 55.5 25.3 26.4 0 47 47 64.8 64.8 58.5 77.9 83.1 87.9 78.7 288.2 319.3 273.7 236.9 193
6 51.6 76.1 63 26.4 47 0 58.5 72.5 87 87 130 152 58.1 44.7 201.3 287.7 273.6 280.3 245.7
7 81.2 55.5 63 37 47 58.5 0 79 108.8 118.8 190.8 217 45.7 31.1 166.6 239 207.6 238 1815
8 52.8 53.5 47 47 64.8 72.5 79 0 44.4 333 44.4 65.8 25.9 0 140.2 207.6 135.3 140.2 1414
9 1154 1243 136.3 72.5 64.8 87 108.8 44.4 0 58.1 152 251.9 0 259 283.5 90.6 239 141.2 0

10 108.9 96.1 1389 104.5 58.5 87 118.8 333 58.1 0 66.6 1883 188.1 141.2 0 114.2 172.2 129.8 65.2
11 120.3 1155 153.8 1239 77.9 130 190.8 44.4 152 66.6 0 299 270.6 180.8 172.2 129.8 114.2 75 43.2
12 1181 120.7 163.5 129.1 83.1 152 217 65.8 2519 1883 299 0 252.4 227.4 1317 137.5 160.4 0 34.2
13 1014 117.6 160.4 132 87.9 58.1 45.7 259 0 188.1 270.6 2524 0 227.4 1317 137.5 160.4 0 34.2
14 76.4 92.6 135.4 107 78.7 44.7 311 0 259 1412 180.8 2274 227.4 0 172.2 129.8 114.2 75 43.2
15 165.9 194 237.8 218.8 288.2 2013 166.6 140.2 283.5 0 1722 1317 1317 172.2 0 75 43.2 194.2 2259
16 2493 239.8 2723 241.2 3193 287.7 239 207.6 90.6 114.2 129.8 160.4 160.4 129.8 75 0 0 137.5 194.2
17 197.2 177.9 214.8 2329 273.7 273.6 207.6 135.3 239 1722 114.2 75 160.4 114.2 43.2 0 0 34.2 103.1
18 196.7 214.8 221.8 221.8 236.9 280.3 238 140.2 1412 129.8 75 0 0 75 194.2 137.5 34.2 0 68.5
19 179.2 139.7 217.8 217.1 193 245.7 181.5 1414 0 65.2 43.2 34.2 43.2 43.2 2259 194.2 103.1 68.5 0

The mileage data used for logistics aid delivery route planning was obtained from the official source
of BPBD Central Java. The data forms a symmetrical distance matrix, which means that the distance between
two BPBD offices remains the same even if the direction of travel is reversed as presented in Table 1. The
travel time for each delivery route is presented in Table 2. Unlike the distance matrix, the entries in Table 2
are asymmetric, meaning the travel time between two regencies can differ depending on the direction of
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travel. This variation can be caused by road conditions, congestion, or infrastructure differences between the
outbound and return routes.

Table 2. Travel-Time Matrix (minutes)
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

:H
[N
N
w

1 0 45 112 80 106 8 195 112 114 131 116 75 246 314 129 131 115 91 56
2 43 0 70 44 67 68 175 130 131 148 135 91 264 334 147 148 133 112 72
3 112 74 0 70 93 123 207 200 208 217 205 163 338 424 225 226 209 187 146
4 77 44 71 0 29 78 136 163 173 183 169 136 270 359 197 194 179 156 115
5 100 64 94 28 0 80 111 166 193 205 191 158 290 375 218 214 200 177 135
6 84 64 121 82 79 0 106 82 109 124 140 109 280 369 213 210 194 171 130
7 192 169 207 136 107 101 0 150 175 189 210 180 368 464 305 302 287 262 221
8 95 129 204 162 160 80 141 0 44 62 82 46 254 359 190 189 176 154 118
9 108 133 215 175 188 113 164 44 0 33 80 48 255 360 192 191 177 155 119
10 128 155 232 190 209 131 182 63 34 0 56 61 238 335 208 207 194 172 135
11 115 137 222 177 198 145 209 80 77 55 0 48 207 302 207 208 193 170 135
12 73 86 167 138 157 108 171 47 52 60 43 0 232 342 161 163 148 125 86
13 243 273 361 290 313 293 363 250 253 236 196 225 0 151 279 274 237 256 264
14 319 349 420 305 387 373 465 368 373 342 299 343 149 0 208 213 231 258 296
15 131 15 233 197 220 207 301 200 202 221 204 165 274 202 0 24 54 66 110
16 130 155 233 193 215 202 297 195 198 217 204 164 268 212 21 0 41 65 108
17 116 140 215 180 203 190 284 182 184 203 189 150 228 226 54 41 0 52 89
18 92 115 191 158 180 168 263 162 163 180 169 130 252 256 68 69 53 0 73
19 57 75 148 113 136 128 220 123 125 140 130 86 267 293 110 111 90 70 0

3.1 Setting Initial Population

In this study, the initial population for the genetic algorithm is set to consist of 10 chromosomes. Each
chromosome represents a candidate solution that satisfies the problem constraints outlined in Equation (3)
to Equation (10). Specifically, each chromosome encodes two routes, represented by two consecutives
square brackets, corresponding to the two vehicles involved in the BMTSP. For example, Chromosomeyy is
represented as two sequences of cities visited by each vehicle, starting and ending at the depot city (node 1).

The choice of 10 chromosomes as the initial population size is grounded in a systematic approach
based on the problem scale. This parameter is derived from the rounded value of the ratio % where n is the

total number of cities to be visited, and m is the number of vehicles available. This ratio provides an estimate
of the average number of cities each vehicle is expected to serve, which in turn informs the population size
to ensure sufficient diversity and coverage of the solution space. By selecting the initial population size in
this manner, the algorithm balances computational efficiency with the need for genetic diversity. A population
size that is too small may lead to premature convergence and suboptimal solutions, while an excessively large
population increases computational overhead without proportional gains in solution quality. The chosen size
of 10 chromosomes thus represents a practical compromise, enabling the genetic algorithm to explore a wide
range of feasible solutions while maintaining manageable computational demands:

Chromosomey = [[1, 3, 2, 4, 6,5, 7, 8, 10, 9, 1], [1, 12, 11, 13, 14, 16, 15, 17, 19, 18, 1]]
Chromosomey = [[1, 18, 19, 17, 16, 15, 14, 12, 13, 11, 1], [1, 9, 10, 8, 7, 6,5, 4, 2, 3, 1]]

Chromosomeys = [[1, 5, 7, 9, 11, 13, 15, 17,19, 2, 1], [1, 4, 6, 8, 10, 12, 14, 16, 18, 3, 1]]
Chromosomep; = [[1, 3, 6,9, 12, 15, 18, 2, 5, 8, 1], [1, 11, 14, 17, 4, 7, 10, 13, 16, 19, 1]]
Chromosomegs; = [[1, 14, 12, 10, 8, 6, 4, 2, 19, 17, 1], [1, 15, 13,11,9, 7,5, 3, 18, 16, 1]]
Chromosomeg = [[1, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1], [1, 3.5, 7, 9, 11, 13, 15, 17, 19, 1]]
Chromosomeyr; = [[1, 15, 13, 11,9, 7,5, 3, 2, 4, 1], [1, 6, 8, 10, 12, 14, 16, 18, 17, 19, 1]]
Chromosomegg; = [[1, 17, 15, 13, 11,9, 7,5, 3, 2, 1], [1, 4, 6, 8, 10, 12, 14, 16, 18, 19, 1]]
Chromosomep = [[1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 1], [1, 5, 7, 9, 11, 13, 15, 17, 19, 18, 1]]
Chromosomeyq) = [[1, 19, 17, 15, 13,11, 9, 7,5, 2, 1], [1, 4, 6, 8, 10, 12, 14, 16, 18, 3, 1]]
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3.2 Tournament Selection Process

For each chromosome, the value of the first objective function (z,) which is the objective function of
first priority is calculated to determine the fitness value using Equation (11). The next step is the selection
process based on the tournament selection method. The number of tournaments is according to the number
of chromosomes, which is 10, In each tournament take 3 chromosomes randomly, then the best is selected
based on the greatest fitness value. The ten tournaments obtained are given in Table 3.

Table 3. Selection Tournament Process Scenario

Randomly Best
Tournament Selected Fitness [i] Best[iyin]
Chromosome
chromosomes
1 1,2,5 0.000728, 0.000612, 0.000452 1 0.000728
2 2,3,6 0.000612, 0.000555, 0.000599 2 0.000612
3 4,5,9 0.000422, 0.000452, 0.000554 9 0.000554
4 7,8,9 0.000575, 0.000599, 0.000554 8 0.000554
5 2,4, 10 0.000612, 0.000422, 0.000571 2 0.000612
6 5,68 0.000452, 0.000599, 0.000599 6 0.000599
7 1,3,9 0.000728, 0.000555, 0.000554 1 0.000728
8 3,6, 10 0.000555, 0.000599, 0.000571 6 0.000599
9 1,2,7 0.000728, 0.000612, 0.000575 1 0.000728
10 7,8, 10 0.000575, 0.000599, 0.000571 8 0.000599

3.3 Crossover and Mutation

The next process is the crossover using the sequential crossover method and mutation process using
the swap mutation method. Several combination tests between crossover probability and mutation probability
are carried out and based on Figure 5, the highest fitness value achieved is 0.000876 obtained by combining
pc = 0.8 (probability of crossover is 80%) and p,,, = 0.05 (probability mutation is 5%).

- T.000876
—®— Best Fitness

0.00085 +

0.00080

0.00075 4

Fitness

0.040714

0.00070 4

0.000668

0.00065 0.000639

T T T T T T T T T
0.1, 0.75 0.2, 0.65 0.3, 0.55 0.4,0.45 0.5,0.35 0.6, 0.25 0.7,0.15 0.8, 0.05 0.9, 0.05
Pc dan Pm

Figure 5. Results of Crossover and Mutation Probability Combination Testing

3.3.1 Sequential Crossover process

There are ten chromosomes in the population and the probability of crossover (p.) is 0.8 or 80%.
Before obtaining a pair of chromosomes, a random number Rp; between O and 1 is generated for
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Chromosomey;. If the R[;; is less than p. then the Chromosomey; is chosen as the parent. Suppose random
numbers Ry, i =1, ..., 10 are obtained in order, namely (0.25, 0.55, 0.42, 0.17, 0.75, 0.66, 0.70, 0.33, 0.82,

0.90). Thus, the chromosomes that will undergo crossover are Chromosomeyy, ..., Chromosomeyg. The
scenario for determining chromosome pairs is determined randomly. Suppose the following pair is selected

Chromosomey;; >< Chromosomers).

Chromosomeyy; is called Parentp;; dan Chromosomeys is called Parenty;. The location of the crossover
point of a gene in the chromosome is done randomly. In this problem, the crossover point is symbolized by
"|". For the above pair, supposed the crossover points is selected between the position of the 5™ and 6™ genes
from Chromosomep:; and Chromosomers). So the parental chromosome pairs (P, Prz) are as follows:

Py=[[13246|5781091],[1121113 14 16 1517 19 18 1]]
Py =[[12346|8101214161],[157 911131517 19 18 1]].

A new chromosome is called Offspringp; or Opy is formed by taking the first part before Geneps of
Parentpy, and taking the second part of Parentp;. While the second new chromosomes called Offspringpz or
Orz is formed by taking the first part before Geneps of Parenty, and taking the second part of the Parentp;.
So the new Chromosomeyy; and Chromosomey; are the 2 offsprings obtained from the crossover process:

Owy=1[[13246 8101214161],[15791113151719181]]
O=[[123465781091],[112111314161517 1918 1]].

If these chromosomes do not meet the Equation (3) to Equation (10), then the new chromosomes
(offsprings) cannot proceed to the next stage and the result of the crossover will be returned to the parent
chromosome.

3.3.2 Swap Mutation Process

The total number of genes from 10 chromosomes is 220, the probability of mutation is 5%, which
means 11 genes will undergo mutations. The sequencing of gene numbers starts from the first gene in
Chromosomer to the last gene in Chromosomerpig;. The selection of genes that will undergo mutations is
randomly selected, but still satisfy to the constraint conditions Equation (3) to Equation (10). The randomly
selected 11 genes out of 220 genes from the population of 10 chromosomes, and the corresponding
chromosome that will undergo mutations as follows:

Chromosomep; : 2" Gene and 20" Gene
Chromosomep; : 25" Gene

Chromosomeps : 53™ Gene

Chromosomeys : 68" Gene

Chromosomegs; : 92™ Gene

Chromosomegs : 113 Gene
Chromosomeyg; : 156" Gene and 168" Gene
Chromosomepg : 186" Gene and 189" Gene

The mutation process in Chromosomep; occurs as follows: the 2™ Gene is swapped with the 3™ Gene;
and the 20" Gene is swapped with the 215 Gene. Thus, a new gene arrangement in Chromosomeyy; is obtained,
namely: Chromosomepy = [[1,2,3,4,6,8,10,12,14,16,1], [1,5,7,9,11,13,15,17,18,19,1]].

Similar mutation procedure is conducted for the other 7 chromosomes. The result from one iteration
(generation) is a new generation of the following new population is shown in Table 4.

The GA process continue to repeat until the termination criteria is met. The criterion used is maximum
number of generations, in this case it is set 1000 iterations The final resulting chromosome with the best
fitness value of 0.000876 is:

Chromosome, = [[1,2,3,4,5,7,8,9,10,6,1],[1,12,11,13,14,16,15,17,19,18,1]].
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Table 4. New Population after Renewal
Chromosomey; Genes Fitness

—

[[1,2,3,4,6,8,10,12,14,16,1], [1,5,7,9,11,13,15,17,18,19,1]] 0.000599

2 [[1,19,18,17,16,15,14,12,13,11,1], [1,9,10,8,7,6,5,4,2,3,1]] 0.000668
3 [[1,2,3,4,6,5,7,8,9,10,1], [1,12,11,13,14,16,15,17,19,18,1]] 0.000754
4 [1,15,17,13,11,9,7,5,3,2,1], [1,4,6,8,10,12,14,16,18,19,1]] 0.000603
5 [[1,17,19,18,16,15,14,12,13,11,1], [ 1,9,10,8,7.6,5,4,2,3.,1]] 0.000587
6 [[1,3,2,4,6,5,7,8,10,9,1], [1,12,11,13,14,16,15,17,19,18,1]] 0.000728
7 [11,3,2,4,6,5,7,8,10,9,1], [1,12,11,13,14,16,15,17,19,18,1]] 0.000728
8 [[1,18,19,17,16,15,14,12,13,11,1], [1,9,10,8,7,6,5,4,2,3,1]] 0.000618
9 [[1,3,2,4,6,5,7,8,9,10,1], [1,11,12,13,14,16,15,17,19,18,1]] 0.000719
10 [[1,17,15,13,11,9,7,5,3,2,1], [1,4,6.8,10,12,14,16,18,19,1]] 0.000599

The first objective function, z,, is treated as the top priority, hence focusing on determining the 2- route
with the minimum total distance for the BMTSP while ensuring load balance.

On the other hand, if the decision-maker chooses the objective function z, (total travel time) as the
main priority, then the steps of the completion procedure are carried out similarly to those discussed for z;,
but using z, to calculate the fitness value. In this case, the end result from the GA simulation gives the best
chromosome solution, with fitness value 0.0006086, is:

Chromosome, = [[1,2,3,4,5,7,6,8,10,9,1], [1,12,11,13,14,15,16,17,18,19,1]].

The two route plans obtained for the BMTSP with n =19, m = 2, and g = 9 of the two scenarios are
given in Figure 6 (a) and Figure 6 (b), respectively, where the x and y coordinates indicate the location of
cities in Central Java Province. The nodes are labeled with indices from 1 to 19. There are two route plans,
one for each vehicle. Both vehicles start the journey from the depot city 1, visit 9 other BPBD offices
separately, and return to the depot. If z, is given top priority, the optimum total distance traveled is 1141.08
kilometers with a travel time of 1713 minutes. Conversely, if z, is given top priority, the total distance
traveled is 1173.85 kilometers with minimum travel time of 1643 minutes. The optimal solution cannot be
achieved for both objectives simultaneously, so the final decision depends on the priority set by the decision
maker.

Best Pareto solution of BMTSP Best Pareto solution of BMTSP

—&— Route 1 —8— Route 1
gl —® Route2 e Route 2
® dities 5 e (Cities 5

y-coordinate
y-coordinate

T T T T T
-4 -2 0 2 4 6 x-coordinate
x-coordinate

@) (b)

Figure 6. (a) Solution with z, as First Priority, (b) Solution with z, as First Priority

The first objective function z; is considered as the top priority based on the fact that route determination
with minimum distance is easier to verify and less influenced by external factors, such as traffic conditions,
compared to travel time. Therefore, prioritizing z, provides a clear and reliable basis for determining logistics
delivery routes, especially in emergency situations such as aid delivery to flood-prone areas.
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We next implemented the Nearest Neighbor Algorithm (NNA) [21] to evaluate and compare the results
regarding distance and travel time in logistics support delivery. NNA serves as a benchmark for addressing
the same problem, allowing identification of performance differences between the two algorithms. The
comparison of results generated by the two algorithms presented in Table 5 depicts the effectiveness of the
two approaches in determining the optimal route for logistics aid delivery in Central Java Province. It can be
seen that GA is superior in minimizing distance and time, as well as providing a more efficient solution in
the context of logistics delivery to flood-prone areas.

Table 5. Comparison of Optimal Routes from Two Algorithms
Total Distance

Methods The Two Optimal Route of two routes TO‘?" Time
: (Minutes)
(Kilometers)
i Vehicle 1: 1-2-53-54-55-57-58-59-510-6-1

Genetic 1141.08 1713
Algorithm  vehicle 2: 1512-511-13-14-16->15-517->18-19-51
Nearest Vehicle 1: 1-2-54-55-6-58-9-10-11-12-1
Neighbor  yehicle 2: 1519518-17-16-15-14-13-3-7-1 1281.40 1886

Algorithm

4. CONCLUSION

The Bi-objective Multiple Traveling Salesman Problem (BMTSP) is a special variant of the Traveling
Salesman Problem (TSP) that involves multiple salesmen with more than one objective being optimized
simultaneously. This study presents a novel application of the BMTSP to the context of disaster relief
logistics, specifically targeting the efficient delivery of aid to flood-prone areas in Central Java. The primary
objective is to simultaneously minimize total delivery distance and travel time. A Pareto-based multi-
objective optimization approach is employed to capture the trade-off between these conflicting goals. As
shown in the experimental results, the GA approach produced a solution with a minimum total distance of
1141.08 km and a travel time of 1713 minutes, demonstrating its effectiveness of 10.95% and 9.17%,
respectively over the Nearest Neighbor Algorithm (NNA) method. These findings underscore the potential
of GA-based optimization in enhancing the responsiveness and effectiveness of logistics planning in disaster-
prone regions.
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