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 ABSTRACT 

Article History: 
Handling natural disasters such as floods requires efficient logistics distribution to 

minimize the negative impact on victims. Distribution route optimization becomes very 

important in this process. This paper applies a metaheuristic method using Genetic 

Algorithm to the Bi-objective Multiple Traveling Salesman Problem (BMTSP) to obtain 

a solution that minimizes the distance and time to deliver disaster relief logistics. 

Multiple vehicles are used in this study to represent delivery agents with two main 

objectives, namely minimizing total distance and travel time. Genetic Algorithm is 

applied by considering these two main objectives through the process of selection, 

crossover, mutation, and produces an effective Pareto solution. The results indicate that 

applying the Genetic Algorithm to the Bi-Objective Multiple Traveling Salesman 

Problem yields more efficient delivery routes—reducing both distance and time—

compared to the Nearest Neighbor Algorithm. The simulation and testing in this study 

utilize data on distances and travel times among Central Java Regional Disaster 

Management Agency offices in 19 regencies—including a central depot—located in 

flood-prone areas of Central Java Province. The scenario involves two vehicles with 

identical load capacities. 
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1. INTRODUCTION 

The Traveling Salesman Problem (TSP) is a prominent issue in combinatorial optimization, frequently 

addressed in mathematics and computer science. Its exploration began in the 18th century, with contributions 

from Irish mathematician Sir William Rowan Hamilton and English mathematician Thomas Penyngton 

Kirkman [1]. The aim of TSP is to determine the most efficient route that visits each node (city) exactly once 

and returns to the origin, factoring in the distance or cost between each pair of cities. TSP is recognized as an 

NP-hard problem, indicating that no universally optimal solution algorithm has been found for all instances 

[1]. As the number of cities increases, identifying the optimal solution to the TSP becomes progressively 

more complex due to its combinatorial nature. The computational effort grows exponentially with the 

problem size, making exact methods impractical for large-scale instances and necessitating the use of 

heuristic or metaheuristic approaches. 

Over time, various extensions of TSP have emerged, each defined by specific characteristics. A proper 

understanding of these variants is essential for choosing suitable solution methods. The primary variations of 

the Traveling Salesman Problem include the symmetric TSP (sTSP), the asymmetric TSP (aTSP), and the 

Multiple TSP (MTSP). In sTSP, the distance between two cities is considered the same regardless of the 

travel direction, whereas in aTSP, the distances may vary depending on the direction traveled. MTSP involves 

multiple salesmen, each following their own route, with the goal of minimizing the total travel distance for 

all salesmen combined [1]. MTSP is often applicable to practical problems in logistics, supply chain 

management, e-commerce distribution, vehicle routing, and scheduling [2]. 

In real-world applications, MTSP has been adapted with additional constraints to better reflect actual 

conditions. One emerging problem is the Bi-objective Multiple Traveling Salesman Problem (BMTSP), 

which arises when there are two objectives to be optimized simultaneously. For example, in addition to 

minimizing the total travel distance, BMTSP may also consider minimizing travel time, total travel cost, or 

carbon emissions. Solving BMTSP typically involves multi-objective programming, with the goal of finding 

Pareto-optimal solutions, where no solution is better in all objectives [2] [3].   

Due to the combinatorial complexity of BMTSP, studies on BMTSP remain limited making it 

challenging to find optimal solutions using exact algorithms. Consequently, considerable research efforts 

have been directed toward the development of heuristic and metaheuristic algorithms aimed at generating 

near-optimal solutions in a computationally efficient manner [4]. One such approach is the Genetic Algorithm 

(GA), which has been widely applied to various formulations of the Traveling Salesman Problem (TSP), 

examples found in [4] – [8]. Study by Ha et al. [6] introduced a hybrid GA approach incorporating drones to 

assist in package delivery, thereby addressing complex TSP scenarios. Additionally, a modified GA to solve 

MTSP, employing local search operators to explore the search space efficiently and identify optimal solutions 

was proposed in [9]. In another study [10], a macroscopic multi-criteria optimization model was developed 

to address large-scale evacuation planning, employing the NSGA-II variant of GA, which demonstrated 

notable effectiveness as a heuristic solution method. In [11], a hybrid GA was proposed for solving bi-

objective TSP, incorporating two satisfactory degree indices to guide the evolution of individuals during 

iterations. Computational results show the algorithm is efficient and robust. Authors in [12] study a global 

perspective on the optimization of distribution on logistics and transportation network based on complex 

network theory, furthermore GA is used in solving the model and were relatively accurate and effective. In 

[13], a fuzzy-based GA approach was introduced to address uncertainties in evacuation demand, where crowd 

sizes at pickup points were modeled using triangular fuzzy numbers, aiming to minimize total travel time in 

the evacuation model. 

Finding near-optimal solution is crucial in emergency logistics, as efficient resource distribution can 

significantly reduce casualties and damage during natural disaster. Emergency preparedness includes 

activities before, during, and after a disaster, with logistics distribution playing a key role. Here, vehicles or 

delivery agents represent the salesmen. The TSP method is useful for minimizing the total travel distance 

needed to reach all affected areas [9]. This paper focuses on solving a Bi-objective Multiple Traveling 

Salesman Problem model, aiming to optimize two main objectives: minimizing travel distance and 

minimizing travel time, in line with real-world constraints. GA is used as an optimization approach, with 

mutation techniques such as swap integrated into the mutation process to efficiently obtain Pareto solutions 

for MTSP with multiple objectives. The proposed algorithm is applied to simulated flood relief distribution 

data involving selected cities and districts in Central Java Province. 
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2. RESEARCH METHODS 

2.1 Model Formulation 

The Multiple Traveling Salesman Problem (MTSP) typically finds 𝑚 optimal routes for 𝑚 vehicles, 

which represent salesmen, where each vehicle starts and finishes their journey at the same depot city. Each 

city must be visited by exactly one vehicle, with no overlapping routes. Each vehicle starts and ends at the 

depot city, aiming to minimize the total distance traveled by all vehicles. However, optimizing the total 

distance traveled alone often results in an unbalanced distribution of cities. In some cases, a vehicle may have 

to visit most cities, while other vehicles only visit one or a few cities as in Figure 1 (a). Whereas Figure 1 

(b) show a more balanced solution through the application of the concept of load balancing, thus each vehicle 

gets almost the same number of cities. 

 
(a)                                           (b) 

Figure 1. (a) Route Plans of Unbalanced Visit Load, (b) Route Plans for MTSP with Balanced Load 

Distribution. 

This paper addresses MTSP with two objectives, which incorporates load balancing constraints. In the 

Bi-objective Multiple Travelling Salesman Problem (BMTSP), load balancing constraints are applied, with 

the first objective to minimize the total distance travelled and the second objective is to minimize the total 

travel time across all vehicles. In this BMTSP, each vehicle must visit maximum 𝑞 cities, excluding the depot 

city, where 𝑞 = ⌊(𝑛 − 1) 𝑚⁄ ⌋ . Travel time between cities is not directly proportional to distance due to 

factors such as traffic conditions, road quality, and others. Achieving an optimal solution to this problem is 

quite challenging, as it involves trade-offs between two objectives. Therefore, finding the best Pareto solution 

is necessary for two-objective or multi-objective optimization. The Pareto optimal solution is defined as: 

Definition 1. [14] A solution 𝑥∗ ∈ 𝑋 is said to be Pareto optimal if there is no other solution 𝑥 ∈ 𝑋 that 

makes at least one objective function better without making the other objective function worse, which is 

expressed by the notation  𝑓(𝑥) ≺ 𝑝𝑎𝑟𝑒𝑡𝑜 𝑓( 𝑥∗). 

The mathematical formulation of the BMTSP is presented as follows [2]: 

Minimize 𝑍 = (𝑧1, 𝑧2) 

where, 

(1) 

{
 
 

 
 𝑧1 =∑ ∑ ∑ 𝑑𝑖𝑗𝛿𝑖𝑗𝑘

𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑘=1

𝑧2 =∑ ∑ ∑ 𝑡𝑖𝑗𝛿𝑖𝑗𝑘
𝑛

𝑗=1

𝑛
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𝑚
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(2) 

with constraints:  

∑ ∑ 𝛿𝛼𝑗𝑘 = 𝑚
𝑛

𝑗=1

𝑚

𝑘=1
 

(3) 

∑ ∑ 𝛿𝑗𝛼𝑘 = 𝑚
𝑛

𝑗=1

𝑚

𝑘=1
 

(4) 

∑ ∑ 𝛿𝑖𝑗𝑘 = 1,   ∀𝑖 ∈ 𝑉|{𝛼}
𝑛

𝑗=1

𝑚

𝑘=1
 

(5) 
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∑ ∑ 𝛿𝑖𝑗𝑘 = 1,   ∀𝑗 ∈ 𝑉|{𝛼}
𝑛

𝑖=1

𝑚

𝑘=1
 

(6) 

∑ ∑ ∑ 𝛿𝑖𝑗𝑘 = 𝑚 + 𝑛 − 1
𝑛

𝑗=1

𝑛

𝑖=1

𝑚

𝑘=1
 

(7) 

∑ 𝛿𝑖𝑝𝑘
𝑖∈𝑆𝑘

−∑ 𝛿𝑝𝑗𝑘 = 0,   ∀𝑝 ∈ 𝑉,   𝑘 = 1,2, . . . , 𝑚
𝑗∈𝑆𝑘

 (8) 

∑ 𝑦𝑖𝑘 ≤ 𝑞,   𝑘 = 1,2, . . . , 𝑚
𝑛

𝑗=1
 

(9) 

𝛿𝑖𝑗𝑘 , 𝑦𝑖𝑘 ∈ 0,1 (10) 

 

The following is the list of notations used to explain the BMTSP model: 

𝑧1  = The overall distance covered by the vehicles. 

𝑧2  = The overall time taken by the vehicle. 

𝑛  = Number of cities, this parameter indicates that there are n cities that will be used in the problem. 

𝑚  = Number of vehicles, this parameter indicates the total number of vehicles that will be used to  

visit all cities in the problem. 

𝛼  = Depot city, this parameter indicates the start and end cities of each vehicle's journey. 

𝑉  = Vertex set, this set represents all the cities to be visited in the problem, including the depot city.  

𝑑𝑖𝑗  = The distance between two cities 𝑖 and 𝑗, this parameter indicates the distance between two specifics 

cities 𝑖 and j in kilometers or miles. 

𝑡𝑖𝑗  = Travel time between cities 𝑖 and 𝑗, this parameter indicates the total time taken to travel between  

cities 𝑖 and 𝑗 in minutes or hours. 

𝑞  = Load balancer, this parameter indicates the maximum number of cities that must be visited by each  

vehicle, except the depot city. 

𝑆𝑘   = The subset of cities that vehicle 𝑘 visits. 

𝛿𝑖𝑗𝑘 , 𝑦𝑖𝑘 = Binary decision variables, variable 𝛿𝑖𝑗𝑘 indicates whether city 𝑗 is visited from city 𝑖 by vehicle  

                  𝑘 and variable 𝑦𝑖𝑘 indicates whether city 𝑖 is visited by vehicle 𝑘. 

Equation (2) defines the two objectives of minimizing total travel distance (𝑧1) and total travel time 

(𝑧2) across all vehicles. Equation (3) defines the starting condition (each vehicle departs from the depot). 

Equation (4) defines the ending condition (each vehicle returns to the depot). Equation (5) guarantees that 

every non-depot city ( 𝑖 ∈ 𝑉|{𝛼}) is visited exactly once by one vehicle. Equation (6) ensure thar each non-

depot city ( 𝑗 ∈ 𝑉|{𝛼}) is entered exactly once, complementing Equation (5). Equation (7) states that every 

feasible solution for BMTSP must have 𝑚 + 𝑛 − 1 edges. Equation (8) ensures continuity of travel for each 

subset of cities 𝑆𝑘 assigned to vehicles 𝑘, preventing the formation of sub-tours. Equation (9) addresses load 

balancing among vehicles, stating that the number of cities visited by a vehicle 𝑘 should not exceed 𝑞. The 

two binary decision variables defined in Equation (10) are as follows: 

𝛿𝑖𝑗𝑘 = {
1,   if vehicle 𝑘 travels from city 𝑖 to city 𝑗     
0,   otherwise                                                             

 

and 

𝑦𝑖𝑘 = {
1,   if vehicle 𝑘 visits city 𝑖                
0,   otherwise.                                           

 

 

The variable 𝛿𝑖𝑗𝑘 helps in finding the path taken by each vehicle, ensuring that each city is only visited 

once by one vehicle and helps in calculating the total distance and travel time. The variable 𝑦𝑖𝑘 is utilized to 

determine the workload or the number of cities each vehicle is required to visit, ensuring that no vehicle visits 

more than 𝑞 cities in addition to the depot city. Mutation steps, such as the swap operation, are incorporated 

into the mutation process to obtain efficient Pareto-optimal solutions for the MTSP, which involves the two 

objective functions defined in Equation (1).  
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2.2 Solution Approach 

The techniques of GA follow the genetic mechanisms of biological organisms that have adapted and 

evolved in a highly competitive and changing environment, hence the terms used in GA are widely adopted 

from these sciences [15]. The algorithm begins with a set of solutions known as a population. Solutions from 

this population are selected to create a new population, with the expectation that the new population will 

outperform the previous one. Solutions are chosen based on their fitness values to generate new solutions, 

and this process is repeated until specific conditions are fulfilled [16]. The key components of the algorithm 

include natural reproduction, selection, crossover, and mutation. 

2.2.1 Population Initialization 

Population initialization is a critical first step in GA, involving the creation of a set of valid solution 

candidates (individuals) that are randomly generated. Each individual is represented by chromosomes, 

meaning that the initial population consists of a collection of these chromosomes. These chromosomes must 

conform to the specific format selected for the problem, which could include a binary string, an integer array, 

or another data structure of a defined length [17]. The purpose of this population initialization is to ensure the 

genetic diversity in the population that is fundamental to the exploration of a wide solution space, and provide 

the algorithm with a good opportunity to correlate optimal solutions through the evolutionary process. 

2.2.2 Fitness Evaluation 

Evaluation is the process by which chromosomes in the population are judged to determine how well 

they solve the given problem. This stage is very important because the results of this evaluation will be used 

to guide the selection process in the GA, and lead to the formation of the next generation [16]. In 

maximization problems, the fitness value f is typically set equal to the objective function z, i.e., f = z. However, 

in minimization problems, this direct approach is unsuitable since GA favor individuals with higher fitness 

values. A common solution is to use 𝑓 =
1

𝑧
, allowing smaller objective values to correspond to higher fitness 

[18]. To prevent division by zero, a small positive constant θ is added to the denominator, yielding a stable 

fitness function: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓 =
1

𝑧 + 𝜃
(11) 

2.2.3 Selection 

Selection is the initial stage in each cycle of the GA process, where individuals (chromosomes) from 

the existing population are chosen to serve as parents for the next generation. This selection process is based 

on probability, with the likelihood of an individual being chosen linked to its fitness value, thereby favoring 

those with higher fitness levels. There are several selection methods in GA, one of which is tournament 

selection. In this method, two or more individuals are randomly selected from the population, and then the 

individual with the best fitness value will win and be selected to the next stage [17]. For example, given in 

Figure 2, where three individuals are randomly selected and individual F with the best fitness value wins. 

 

 
Figure 2. Tournament Selection Process 

2.2.4 Crossover 

Crossover is the main genetic operator in GA, which involves a process during the reproduction phase 

in which the genetic information of two parent individuals (chromosomes) is combined to create one or more 

offspring that may exhibit better qualities [16]. Various methods or techniques exist for crossover, allowing 
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the selection of a problem-specific crossover method that best suits a particular situation. The choice of 

crossover method depends on the problem structure and desired exploitation [19]. 

2.2.5 Mutations 

In the context of BMTSP, mutations play a crucial role in generating diverse solutions that can 

effectively balance the two objective functions, minimizing total travel distance and balancing the workload 

among vehicles. Mutation operators like swap, flip, and scramble are applied to the chromosome 

representations of candidate solutions, which encode the routes assigned to each vehicle. By introducing 

small, random changes to these routes, mutations help the algorithm escape local optima and explore a 

broader range of possible solutions. This is particularly important in BMTSP, where the search space is 

complex due to the presence of multiple vehicles and dual objectives. The use of mutation ensures that the 

population maintains sufficient diversity, increasing the likelihood of discovering Pareto-optimal solutions 

that offer a good trade-off between the competing objectives [20]. Figure 3 shows example of the three types 

of mutation process. Figure 3 (a) illustrates the process of flip mutation where the segment sequence of 

gene[3],[4],[5]  i.e. | 4 7 2 | is flipped became |2 7 4|; Figure 3(b) is the process of swap mutation where gene[3] 

and gene[6] are swapped; and Figure 3 (c) illustrates the process of scramble mutation [2]. 

 
Figure 3. (a) Flip Mutation, (b) Swap Mutation, (c) Scramble Mutation 

 

 
Figure 4. Flowchart of Genetic Algorithm on BMTSP   
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2.2.6 Flowchart 

To identify the Pareto optimal solution for BMTSP, the code structure of the proposed Genetic 

Algorithm, implemented in Python, is depicted in the flow chart in Figure 4. 

3. RESULTS AND DISCUSSION 

To better comprehend the BMTSP and the concepts involved in the proposed algorithm, the following 

implementation is given relating to the delivery of logistics assistance to areas categorized as flood-prone 

areas in several regencies in Central Java Province during the period January 1 – April 30, 2024. The logistics 

assistance is intended for n = 19 regencies, namely Semarang, Demak, Jepara, Kudus, Pati, Grobogan, Blora, 

Sragen, Karanganyar, Sukoharjo, Klaten, Boyolali, Kebumen, Cilacap, Brebes, Tegal, Pemalang, 

Pekalongan, and Kendal. Henceforth the regencies are represented respectively as nodes 1, 2, …, 19. The 

delivery route starts from node 1.  

The Central Java Regional Disaster Management Agency (BPBD), which functions as the depot (aid 

storage warehouse) located in Semarang City. It is assumed that BPBD Central Java will deliver the logistics 

assistance to BPBD offices in the 18 regencies by land and utilize two vehicles, 𝑚 = 2, with the same load 

capacity. The distance between two nodes 𝑖 and 𝑗 (𝑑𝑖𝑗) and time travel (𝑡𝑖𝑗) data were obtained based on 

coordinates taken from Google Maps. During the journey, the vehicles should not visit any other regencies 

other than those that have been allocated, except for the depot city as the starting and ending point. This 

problem includes two important aspects, the selection of which BPBD offices each vehicle should visit, and 

the order in which the vehicles should visit. Since this problem has two different objectives a single optimal 

solution cannot be obtained. Therefore, the Pareto solution approach is used, where the decision maker can 

select the most suitable solution based on the trade-off between distance and time, or based on the priority 

assigned to either objective. 

Table 1. Distance Matrix (Kilometer) 

𝒅𝒊𝒋 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 0 30.4 76.1 46.1 25.3 51.6 81.2 52.8 115.4 108.9 120.3 118.1 101.4 76.4 165.9 249.3 197.2 196.7 179.2 

2 30.4 0 30.4 55.5 55.5 76.1 55.5 53.5 124.3 96.1 115.5 120.7 117.6 92.6 194 239.8 177.9 214.8 139.7 

3 76.1 30.4 0 37.1 25.3 63 63 47 136.3 138.9 153.8 163.5 160.4 135.4 237.8 272.3 214.8 221.8 217.8 

4 46.1 55.5 37.1 0 26.4 26.4 37 47 72.5 104.5 123.9 129.1 132 107 218.8 241.2 232.9 221.8 217.1 

5 25.3 55.5 25.3 26.4 0 47 47 64.8 64.8 58.5 77.9 83.1 87.9 78.7 288.2 319.3 273.7 236.9 193 

6 51.6 76.1 63 26.4 47 0 58.5 72.5 87 87 130 152 58.1 44.7 201.3 287.7 273.6 280.3 245.7 

7 81.2 55.5 63 37 47 58.5 0 79 108.8 118.8 190.8 217 45.7 31.1 166.6 239 207.6 238 181.5 

8 52.8 53.5 47 47 64.8 72.5 79 0 44.4 33.3 44.4 65.8 25.9 0 140.2 207.6 135.3 140.2 141.4 

9 115.4 124.3 136.3 72.5 64.8 87 108.8 44.4 0 58.1 152 251.9 0 25.9 283.5 90.6 23.9 141.2 0 

10 108.9 96.1 138.9 104.5 58.5 87 118.8 33.3 58.1 0 66.6 188.3 188.1 141.2 0 114.2 172.2 129.8 65.2 

11 120.3 115.5 153.8 123.9 77.9 130 190.8 44.4 152 66.6 0 299 270.6 180.8 172.2 129.8 114.2 75 43.2 

12 118.1 120.7 163.5 129.1 83.1 152 217 65.8 251.9 188.3 299 0 252.4 227.4 131.7 137.5 160.4 0 34.2 

13 101.4 117.6 160.4 132 87.9 58.1 45.7 25.9 0 188.1 270.6 252.4 0 227.4 131.7 137.5 160.4 0 34.2 

14 76.4 92.6 135.4 107 78.7 44.7 31.1 0 25.9 141.2 180.8 227.4 227.4 0 172.2 129.8 114.2 75 43.2 

15 165.9 194 237.8 218.8 288.2 201.3 166.6 140.2 283.5 0 172.2 131.7 131.7 172.2 0 75 43.2 194.2 225.9 

16 249.3 239.8 272.3 241.2 319.3 287.7 239 207.6 90.6 114.2 129.8 160.4 160.4 129.8 75 0 0 137.5 194.2 

17 197.2 177.9 214.8 232.9 273.7 273.6 207.6 135.3 23.9 172.2 114.2 75 160.4 114.2 43.2 0 0 34.2 103.1 

18 196.7 214.8 221.8 221.8 236.9 280.3 238 140.2 141.2 129.8 75 0 0 75 194.2 137.5 34.2 0 68.5 

19 179.2 139.7 217.8 217.1 193 245.7 181.5 141.4 0 65.2 43.2 34.2 43.2 43.2 225.9 194.2 103.1 68.5 0 

The mileage data used for logistics aid delivery route planning was obtained from the official source 

of BPBD Central Java. The data forms a symmetrical distance matrix, which means that the distance between 

two BPBD offices remains the same even if the direction of travel is reversed as presented in Table 1. The 

travel time for each delivery route is presented in Table 2. Unlike the distance matrix, the entries in Table 2 

are asymmetric, meaning the travel time between two regencies can differ depending on the direction of 
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travel. This variation can be caused by road conditions, congestion, or infrastructure differences between the 

outbound and return routes.  

Table 2. Travel-Time Matrix (minutes) 

𝒕𝒊𝒋 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 0 45 112 80 106 86 195 112 114 131 116 75 246 314 129 131 115 91 56 

2 43 0 70 44 67 68 175 130 131 148 135 91 264 334 147 148 133 112 72 

3 112 74 0 70 93 123 207 200 208 217 205 163 338 424 225 226 209 187 146 

4 77 44 71 0 29 78 136 163 173 183 169 136 270 359 197 194 179 156 115 

5 100 64 94 28 0 80 111 166 193 205 191 158 290 375 218 214 200 177 135 

6 84 64 121 82 79 0 106 82 109 124 140 109 280 369 213 210 194 171 130 

7 192 169 207 136 107 101 0 150 175 189 210 180 368 464 305 302 287 262 221 

8 95 129 204 162 160 80 141 0 44 62 82 46 254 359 190 189 176 154 118 

9 108 133 215 175 188 113 164 44 0 33 80 48 255 360 192 191 177 155 119 

10 128 155 232 190 209 131 182 63 34 0 56 61 238 335 208 207 194 172 135 

11 115 137 222 177 198 145 209 80 77 55 0 48 207 302 207 208 193 170 135 

12 73 86 167 138 157 108 171 47 52 60 43 0 232 342 161 163 148 125 86 

13 243 273 361 290 313 293 363 250 253 236 196 225 0 151 279 274 237 256 264 

14 319 349 420 305 387 373 465 368 373 342 299 343 149 0 208 213 231 258 296 

15 131 156 233 197 220 207 301 200 202 221 204 165 274 202 0 24 54 66 110 

16 130 155 233 193 215 202 297 195 198 217 204 164 268 212 21 0 41 65 108 

17 116 140 215 180 203 190 284 182 184 203 189 150 228 226 54 41 0 52 89 

18 92 115 191 158 180 168 263 162 163 180 169 130 252 256 68 69 53 0 73 

19 57 75 148 113 136 128 220 123 125 140 130 86 267 293 110 111 90 70 0 

3.1 Setting Initial Population 

In this study, the initial population for the genetic algorithm is set to consist of 10 chromosomes. Each 

chromosome represents a candidate solution that satisfies the problem constraints outlined in Equation (3) 

to Equation (10). Specifically, each chromosome encodes two routes, represented by two consecutives 

square brackets, corresponding to the two vehicles involved in the BMTSP. For example, Chromosome[1] is 

represented as two sequences of cities visited by each vehicle, starting and ending at the depot city (node 1). 

The choice of 10 chromosomes as the initial population size is grounded in a systematic approach 

based on the problem scale. This parameter is derived from the rounded value of the ratio 
𝑛

𝑚
, where n is the 

total number of cities to be visited, and 𝑚 is the number of vehicles available. This ratio provides an estimate 

of the average number of cities each vehicle is expected to serve, which in turn informs the population size 

to ensure sufficient diversity and coverage of the solution space. By selecting the initial population size in 

this manner, the algorithm balances computational efficiency with the need for genetic diversity. A population 

size that is too small may lead to premature convergence and suboptimal solutions, while an excessively large 

population increases computational overhead without proportional gains in solution quality. The chosen size 

of 10 chromosomes thus represents a practical compromise, enabling the genetic algorithm to explore a wide 

range of feasible solutions while maintaining manageable computational demands: 

Chromosome[1] = [[1, 3, 2, 4, 6, 5, 7, 8, 10, 9, 1], [1, 12, 11, 13, 14, 16, 15, 17, 19, 18, 1]] 

Chromosome[2] = [[1, 18, 19, 17, 16, 15, 14, 12, 13, 11, 1], [1, 9, 10, 8, 7, 6, 5, 4, 2, 3, 1]] 

Chromosome[3] = [[1, 5, 7, 9, 11, 13, 15, 17, 19, 2, 1], [1, 4, 6, 8, 10, 12, 14, 16, 18, 3, 1]] 

Chromosome[4] = [[1, 3, 6, 9, 12, 15, 18, 2, 5, 8, 1], [1, 11, 14, 17, 4, 7, 10, 13, 16, 19, 1]] 

Chromosome[5] = [[1, 14, 12, 10, 8, 6, 4, 2, 19, 17, 1], [1, 15, 13, 11, 9, 7, 5 , 3, 18, 16, 1]] 

Chromosome[6] = [[1, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1], [1, 3. 5, 7, 9, 11, 13, 15, 17, 19, 1]] 

Chromosome[7] = [[1, 15, 13, 11, 9, 7, 5, 3, 2, 4, 1], [1, 6, 8, 10, 12, 14, 16, 18, 17, 19, 1]] 

Chromosome[8] = [[1, 17, 15, 13, 11, 9, 7, 5, 3, 2, 1], [1, 4, 6, 8, 10, 12, 14, 16, 18, 19, 1]] 

Chromosome[9] = [[1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 1], [1, 5, 7, 9, 11, 13, 15, 17, 19, 18, 1]] 

Chromosome[10] = [[1, 19, 17, 15, 13, 11, 9, 7, 5, 2, 1], [1, 4, 6, 8, 10, 12, 14, 16, 18, 3, 1]] 
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3.2 Tournament Selection Process 

For each chromosome, the value of the first objective function (𝑧1) which is the objective function of 

first priority is calculated to determine the fitness value using Equation (11). The next step is the selection 

process based on the tournament selection method. The number of tournaments is according to the number 

of chromosomes, which is 10, In each tournament take 3 chromosomes randomly, then the best is selected 

based on the greatest fitness value. The ten tournaments obtained are given in Table 3. 

Table 3. Selection Tournament Process Scenario 

Tournament 
Randomly 

Selected 

chromosomes 

Fitness [𝒊] Best 

Chromosome 
𝑩𝒆𝒔𝒕[𝒊𝒘𝒊𝒏] 

1 1, 2, 5 0.000728, 0.000612, 0.000452 1 0.000728 

2 2, 3, 6 0.000612, 0.000555, 0.000599  2 0.000612 

3 4, 5, 9 0.000422, 0.000452, 0.000554 9 0.000554 

4 7, 8, 9 0.000575, 0.000599, 0.000554  8 0.000554 

5 2, 4, 10 0.000612, 0.000422, 0.000571  2 0.000612 

6 5, 6, 8 0.000452, 0.000599, 0.000599 6 0.000599 

7 1, 3, 9 0.000728, 0.000555, 0.000554 1 0.000728 

8 3, 6, 10 0.000555, 0.000599, 0.000571 6 0.000599 

9 1, 2, 7 0.000728, 0.000612, 0.000575 1 0.000728 

10 7, 8, 10 0.000575, 0.000599, 0.000571 8 0.000599 

3.3 Crossover and Mutation 

The next process is the crossover using the sequential crossover method and mutation process using 

the swap mutation method. Several combination tests between crossover probability and mutation probability 

are carried out and based on Figure 5, the highest fitness value achieved is 0.000876 obtained by combining 

𝜌𝑐 = 0.8   (probability of crossover is 80%) and 𝜌𝑚 = 0.05 (probability mutation is 5%). 

 
 

Figure 5. Results of Crossover and Mutation Probability Combination Testing 

 

3.3.1 Sequential Crossover process 

There are ten chromosomes in the population and the probability of crossover (𝜌𝑐) is 0.8 or 80%. 

Before obtaining a pair of chromosomes, a random number 𝑅[𝑖] between 0 and 1 is generated for 
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Chromosome[i]. If the 𝑅[𝑖] is less than 𝜌𝑐  then the Chromosome[i] is chosen as the parent. Suppose random 

numbers 𝑅[𝑖], i =1, …, 10 are obtained in order, namely (0.25, 0.55, 0.42, 0.17, 0.75, 0.66, 0.70, 0.33, 0.82, 

0.90). Thus, the chromosomes that will undergo crossover are Chromosome[1], …, Chromosome[8]. The 

scenario for determining chromosome pairs is determined randomly. Suppose the following pair is selected 

Chromosome[1]  ><  Chromosome[3]. 

Chromosome[1] is called Parent[1] dan Chromosome[3] is called Parent[2]. The location of the crossover 

point of a gene in the chromosome is done randomly. In this problem, the crossover point is symbolized by 

"|". For the above pair, supposed the crossover points is selected between the position of the 5th and 6th genes 

from Chromosome[1] and Chromosome[3]. So the parental chromosome pairs (P[1], P[2]) are as follows: 

P[1] = [[1 3 2 4 6 | 5 7 8 10 9 1], [1 12 11 13 14 16 15 17 19 18 1]] 

P[2] = [[1 2 3 4 6 | 8 10 12 14 16 1], [1 5 7 9 11 13 15 17 19 18 1]]. 

A new chromosome is called Offspring[1] or O[1] is formed by taking the first part before Gene[6] of 

Parent[1], and taking the second part of Parent[2]. While the second new chromosomes called Offspring[2] or 

O[2] is formed by taking the first part before Gene[6] of Parent[2], and taking the second part of the Parent[1]. 

So the new Chromosome[1] and Chromosome[2] are the 2 offsprings obtained from the crossover process: 

O[1] = [[1 3 2 4 6  8 10 12 14 16 1], [1 5 7 9 11 13 15 17 19 18 1]] 

O[2] = [[1 2 3 4 6  5 7 8 10 9 1], [1 12 11 13 14 16 15 17 19 18 1]]. 

 

If these chromosomes do not meet the Equation (3) to Equation (10), then the new chromosomes 

(offsprings) cannot proceed to the next stage and the result of the crossover will be returned to the parent 

chromosome. 

3.3.2 Swap Mutation Process 

The total number of genes from 10 chromosomes is 220, the probability of mutation is 5%, which 

means 11 genes will undergo mutations. The sequencing of gene numbers starts from the first gene in 

Chromosome[1] to the last gene in Chromosome[10]. The selection of genes that will undergo mutations is 

randomly selected, but still satisfy to the constraint conditions Equation (3) to Equation (10). The randomly 

selected 11 genes out of 220 genes from the population of 10 chromosomes, and the corresponding 

chromosome that will undergo mutations as follows: 

Chromosome[1] : 2nd Gene and 20th Gene 

Chromosome[2] : 25th Gene 

Chromosome[3] : 53rd Gene 

Chromosome[4] : 68th Gene 

Chromosome[5] : 92nd Gene 

Chromosome[6] : 113rd Gene 

Chromosome[8] : 156th Gene and 168th Gene 

Chromosome[9] : 186th Gene and 189th Gene 

The mutation process in Chromosome[1] occurs as follows: the 2nd Gene is swapped with the 3rd Gene; 

and the 20th Gene is swapped with the 21st Gene. Thus, a new gene arrangement in Chromosome[1] is obtained, 

namely: Chromosome[1] = [[1,2,3,4,6,8,10,12,14,16,1], [1,5,7,9,11,13,15,17,18,19,1]]. 

Similar mutation procedure is conducted for the other 7 chromosomes. The result from one iteration 

(generation) is a new generation of the following new population is shown in Table 4. 

The GA process continue to repeat until the termination criteria is met. The criterion used is maximum 

number of generations, in this case it is set 1000 iterations The final resulting chromosome with the best 

fitness value of 0.000876 is:  

Chromosome𝑧1= [[1,2,3,4,5,7,8,9,10,6,1],[1,12,11,13,14,16,15,17,19,18,1]]. 
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Table 4. New Population after Renewal 

Chromosome[i] Genes Fitness 

1 [[1,2,3,4,6,8,10,12,14,16,1], [1,5,7,9,11,13,15,17,18,19,1]]  0.000599 

2 [[1,19,18,17,16,15,14,12,13,11,1], [1,9,10,8,7,6,5,4,2,3,1]]  0.000668 

3 [[1,2,3,4,6,5,7,8,9,10,1], [1,12,11,13,14,16,15,17,19,18,1]]  0.000754 

4 [[1,15,17,13,11,9,7,5,3,2,1], [1,4,6,8,10,12,14,16,18,19,1]]  0.000603 

5 [[1,17,19,18,16,15,14,12,13,11,1], [ 1,9,10,8,7,6,5,4,2,3,1]]  0.000587 

6 [[1,3,2,4,6,5,7,8,10,9,1], [1,12,11,13,14,16,15,17,19,18,1]] 0.000728 

7 [[1,3,2,4,6,5,7,8,10,9,1], [1,12,11,13,14,16,15,17,19,18,1]]  0.000728 

8 [[1,18,19,17,16,15,14,12,13,11,1], [1,9,10,8,7,6,5,4,2,3,1]]  0.000618 

9 [[1,3,2,4,6,5,7,8,9,10,1], [1,11,12,13,14,16,15,17,19,18,1]] 0.000719 

10 [[1,17,15,13,11,9,7,5,3,2,1], [1,4,6,8,10,12,14,16,18,19,1]]  0.000599 

The first objective function, 𝑧1, is treated as the top priority, hence focusing on determining the 2- route 

with the minimum total distance for the BMTSP while ensuring load balance.  

On the other hand, if the decision-maker chooses the objective function 𝑧2 (total travel time) as the 

main priority, then the steps of the completion procedure are carried out similarly to those discussed for 𝑧1, 

but using 𝑧2 to calculate the fitness value. In this case, the end result from the GA simulation gives the best 

chromosome solution, with fitness value 0.0006086, is: 

Chromosome𝑧2= [[1,2,3,4,5,7,6,8,10,9,1], [1,12,11,13,14,15,16,17,18,19,1]]. 

The two route plans obtained for the BMTSP with 𝑛 = 19, 𝑚 = 2, and 𝑞 = 9 of the two scenarios are 

given in Figure 6 (a) and Figure 6 (b), respectively, where the 𝑥 and 𝑦 coordinates indicate the location of 

cities in Central Java Province. The nodes are labeled with indices from 1 to 19. There are two route plans, 

one for each vehicle. Both vehicles start the journey from the depot city 1, visit 9 other BPBD offices 

separately, and return to the depot. If 𝑧1 is given top priority, the optimum total distance traveled is 1141.08 

kilometers with a travel time of 1713 minutes. Conversely, if 𝑧2 is given top priority, the total distance 

traveled is 1173.85 kilometers with minimum travel time of 1643 minutes. The optimal solution cannot be 

achieved for both objectives simultaneously, so the final decision depends on the priority set by the decision 

maker.  

  

(a) (b) 

Figure 6. (a) Solution with 𝒛𝟏 as First Priority, (b) Solution with 𝒛𝟐 as First Priority 

The first objective function 𝑧1 is considered as the top priority based on the fact that route determination 

with minimum distance is easier to verify and less influenced by external factors, such as traffic conditions, 

compared to travel time. Therefore, prioritizing 𝑧1 provides a clear and reliable basis for determining logistics 

delivery routes, especially in emergency situations such as aid delivery to flood-prone areas. 
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We next implemented the Nearest Neighbor Algorithm (NNA) [21] to evaluate and compare the results 

regarding distance and travel time in logistics support delivery. NNA serves as a benchmark for addressing 

the same problem, allowing identification of performance differences between the two algorithms. The 

comparison of results generated by the two algorithms presented in Table 5 depicts the effectiveness of the 

two approaches in determining the optimal route for logistics aid delivery in Central Java Province. It can be 

seen that GA is superior in minimizing distance and time, as well as providing a more efficient solution in 

the context of logistics delivery to flood-prone areas. 

Table 5. Comparison of Optimal Routes from Two Algorithms 

Methods The Two Optimal Route   

Total Distance 

of two routes 

(Kilometers) 

Total Time 

(Minutes)  

Genetic 

Algorithm 

Vehicle 1: 1→2→3→4→5→7→8→9→10→6→1  

Vehicle 2: 1→12→11→13→14→16→15→17→18→19→1 
1141.08 1713 

Nearest 

Neighbor 

Algorithm 

Vehicle 1: 1→2→4→5→6→8→9→10→11→12→1 

Vehicle 2: 1→19→18→17→16→15→14→13→3→7→1 1281.40 1886 

4. CONCLUSION 

The Bi-objective Multiple Traveling Salesman Problem (BMTSP) is a special variant of the Traveling 

Salesman Problem (TSP) that involves multiple salesmen with more than one objective being optimized 

simultaneously. This study presents a novel application of the BMTSP to the context of disaster relief 

logistics, specifically targeting the efficient delivery of aid to flood-prone areas in Central Java. The primary 

objective is to simultaneously minimize total delivery distance and travel time. A Pareto-based multi-

objective optimization approach is employed to capture the trade-off between these conflicting goals. As 

shown in the experimental results, the GA approach produced a solution with a minimum total distance of 

1141.08 km and a travel time of 1713 minutes, demonstrating its effectiveness of 10.95% and 9.17%, 

respectively over the Nearest Neighbor Algorithm (NNA) method. These findings underscore the potential 

of GA-based optimization in enhancing the responsiveness and effectiveness of logistics planning in disaster-

prone regions. 
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