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ABSTRACT                                                                                                 

Article History: 
This study discusses the intervention of cannibalism and disease spread with Holling Type II 

response function in the predator-prey model. It is assumed that disease infection is limited 

to the prey population and cannot be cured so that in this model there are three 

subpopulations namely susceptible prey, infected prey and predators. In addition, there is 

cannibalism in the predator population. The objectives of this study include constructing a 

predator-prey model with cannibalism intervention and disease infection in prey using 

Holling Type II response function, identifying the stability of the equilibrium point of the 

model and interpreting the model based on simulation results. Analysis of the stability of the 

equilibrium point is carried out with a linearization approach and the Routh-Hurwitz criterion 

was used to determine equilibrium stability. Based on the stability analysis, 5 (five) 

equilibrium points are obtained, namely population extinction, susceptible prey exists, 

predator extinction, infected prey extinction and population exists where the population 

extinction equilibrium point is unstable and the other equilibrium points are stable with the 

certain conditions. From the simulation, it is obtained that the numerical results are in 

accordance with the analytical results of the stability analysis of the equilibrium point of the 

model and for infinite time, there will be no population extinction while the state of susceptible 

prey exists, predator extinction, infected prey extinction and population exists can occur if the 

stability conditions are met. Based on the numerical simulations, it was found that changes in 

the parameter values of the rate of change of susceptible prey to infected prey and the 

coefficient of predator cannibalism in day-1 can cause changes in the type of stability of the 

equilibrium point. Thus, rate of change susceptible prey to infected prey and the 

coefficient of predator cannibalism affects the population of prey and predator. 
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1. INTRODUCTION 

Every organism must interact with each other which can have an impact on these organisms in the form 

of positive or negative impacts on one species or positive or negative on both [1]. One form of interaction 

between species is predation. Predation is an interaction between prey and predator where the predator preys 

for its survival and the predator acts as a regulator of the prey population [2]. Alfred Lotka and Vito Volterra 

first introduced a mathematical model in 1926 to describe the relationship between prey and predator which 

eventually became known as the Lotka-Volterra model. This model continues to evolve, one of which is in 

describing predator-prey interactions through a concept called the response function which describes the 

amount of prey consumed by predators as a function of prey population density [3]. This function was 

introduced by Holling in 1953 which consists of Holling type I, Holling type II and Holling type III response 

functions [4]. Some studies that use Holling response function are [5]-[10]. 

In the Lotka-Voltera model, it is assumed that there is no disease infection in the environment of prey 

and predator populations. While in reality what happens in the environment shows that prey and predator 

populations can be infected with a disease [8]. Therefore, attention is needed to the spread of disease in prey 

and predators because it can contribute to the decline in the number of species to extinction. One of the efforts 

made is by using a mathematical prey-predator model which involves the spread of disease. The research was 

first conducted by [11] or known as the eco-epidemiology problem. Research on this eco-epidemiology 

problem continues to grow, including by [12] examining the analysis of predator-prey systems involving the 

existence of a proportional harvesting factor in predators and assuming disease spread in prey. In the study, 

it is assumed that the disease is incurable and the predation function uses Holling type I. There are five 

equilibrium points obtained by using Holling type I. Five equilibrium points were obtained with the 

population extinction equilibrium point never reached. The eco-epidemiology model research was then 

developed in [13] by adding the assumption that the disease in the prey population can be cured and obtained 

the result that the population extinction equilibrium point is unstable from the five equilibrium points that 

exist. Furthermore, [14] discusses the predator-prey interaction model response function using Cowley Martin 

with the assumption that the disease only spreads in the prey population while the research [4] discusses the 

predator-prey interaction model with the assumption that the disease only infects the prey population and 

only infected prey are preyed upon by predators by involving harvesting factors on prey. From these studies, 

the conditions are determined so that prey and predator populations can exist. 

In addition to disease infection, cannibalism is also a biological phenomenon that can affect the 

existence of prey and predators. Cannibalism can help regulate the number of predators, thus reducing the 

risk of extinction of prey, but cannibalism can also be a factor in predator extinction. Therefore, research is 

needed on the predator-prey model that involves the cannibalism factor. Research [15] examined the dynamic 

behavior of the Lotka-Volterra predator-prey model involving predator cannibalism and found that 

cannibalism has positive and negative effects on system stability, depending on the dynamic behavior of the 

original system. Research [16] extended the model by adding stage structure and cannibalism in predators. 

The predator population was divided into juvenile and adult predators where it was assumed that adult 

predators hunted prey and juvenile predators at a rate represented by Holling type I functional response. 

Furthermore, [17] combines the models [18] and [15] by taking the example of shrimp (prey) and crab 

(predator) interaction models. In the study, it was assumed that predators attacked susceptible and infected 

prey with predation functions using Holling type I responses and prey-prey interactions following 

cannibalism behavior in predators. 

In contrast to previous studies, researchers formulated a mathematical model by modifying the model 

in research [17], namely replacing the predation function applied to the Holling type II response function but 

using the cannibalism function in research [16]. The assumption of Holling type II response function is based 

on the fact that crabs need time to prey on shrimp. The purpose of this study is to construct a predator-prey 

model due to the intervention of cannibalism and disease infection using the Holling type II response function, 

determine the equilibrium point of the model and identify the type of stability and interpret the model through 

numerical simulations. 
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2. RESEARCH METHODS 

2.1 The Lotka-Volterra Model 

This model was first introduced by Lotka (1925) and Volterra (1926) so it is often referred to as the 

Lotka-Volterra Model. The Lotka-Volterra model is the simplest Predator-Prey model that describes the 

interaction between prey and predator populations. It is assumed that the growth of predators depends on prey 

as the main source of food so that without predators, prey will grow rapidly in proportion to the current 

population size while without prey the predator population will become extinct. The interaction between prey 

and predator will contribute to the growth of predators and reduce the number of preys. 

If x denotes the prey population at time t and y denotes the predator population at time t, then the 

Lotka-Volterra model can be written 

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 − 𝛽𝑥𝑦  

𝑑𝑦

𝑑𝑡
= 𝛽𝑥𝑦 − 𝜑𝑦  

with 𝑟, 𝛽, and 𝜑 > 0. 𝑟𝑥 shows that prey grows exponentially in the absence of predation,  −𝛽𝑥𝑦 shows the 

effect of predation, namely to reduce the per capita growth rate of prey over a period of time proportional to 

the population of prey and predator, −𝜑𝑦 shows the death rate of predators due to the absence of prey, 

resulting in exponential decay and 𝛽𝑥𝑦 shows the contribution of prey to the growth rate of predators [3]. 

2.2 Holling Type II Response Function 

The response function in ecology is expressed as a function of the predator's consumption rate against 

different prey densities. This function was introduced by Holling who categorized the response function into 

three types, one of which is the Holling type II response function. The response function illustrates that the 

consumption rate of  predator increases as the prey population increases but will decrease when the predator 

approaches satiety. This is because when the prey population is small, some of the time of predator is spent 

searching for prey, while when the prey population is large, the predator spends the available time holding 

and digesting prey rather than searching for it, resulting in a lower consumption rate. This causes the 

consumption rate to reach half saturation. This type describes a predator that is actively moving to search for 

prey [19]. 

The type II response function is represented as follows.  

𝐹(𝐼𝐼)(𝑥) =
𝑎𝑥

1+𝑏𝑥
  

with 𝑎 is predation rate on prey, 𝑏 is handling time of prey by predators, and 𝑥 is the prey population [20]. 

3. RESULTS AND DISCUSSION 

3.1 Predator-Prey Model with Cannibalism Intervention and Disease Infection in Prey Using Holling 

type II Response Function 

The assumptions that apply in the model include: 

1. The disease spreads in the prey population and cannot be cured so that the prey population is divided 

into two sub-populations, namely susceptible prey and infected prey. 

2. The prey population grows logistically. 

3. Only susceptible prey can reproduce. 

4. Predators perform predation following a Holling type II response function.  

5. Diseases in prey cannot spread in predator populations. 

6. Predators have a cannibalistic nature. 

The compartment diagram of the predator-prey interaction corresponding to the applicable assumptions 

is given as in Figure 1 below: 

(2) 

(1) 
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Figure 1. Diagram of the Compartment Model 

 The list of variables and parameters in the model is shown in Table 1 below: 

Table 1. Variables and Parameters in the Model 

Symbol Description Type Unit 

x susceptible prey population Variable tail 

y infected prey population Variable tail 

z predator population Variable tail 

r intrinsic growth rate of prey Parameter day-1 

k prey carrying capacity Parameter tail 

d rate of interaction between susceptible prey and infected prey Parameter tail-1day-1 

𝛿 rate of change susceptible prey to infected prey Parameter tail-1day-1 

m predation rate on susceptible prey  Parameter tail-1day-1 

n predation rate on infected prey Parameter tail-1day-1 

σ death rate due to disease Parameter day-1 

𝜏 natural mortality coefficient of infected prey Parameter day-1 

𝜇 predator natural mortality coefficient Parameter day-1 

a handling time of susceptible prey by predators Parameter tail-1 

b handling time of infected prey by predators Parameter tail-1 

p prey conversion rate of susceptible prey  Parameter tail-1day-1 

q prey conversion rate of infected prey Parameter tail-1day-1 

γ predator cannibalism coefficient Parameter tail-1day-1 

Based on the compartment drawing, the predator-prey interaction model with the intervention of 

cannibalism and disease infection in prey using Holling type II response function is presented in the following 

system: 

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥 + 𝑦

𝑘
) −

𝑚𝑥𝑧

1 + 𝑎𝑥
− 𝑑𝑥𝑦 

𝑑𝑦

𝑑𝑡
= 𝛿𝑥𝑦 −

𝑛𝑦𝑧

1 + 𝑏𝑦
− 𝜎𝑦 − 𝜏𝑦 

𝑑𝑧

𝑑𝑡
=

𝑝𝑥𝑧

1 + 𝑎𝑥
+

𝑞𝑦𝑧

1 + 𝑏𝑦
− 𝜇𝑧 − 𝛾𝑧2 

with r, k, a, b, m, n, 𝛿, 𝛾, 𝜇, 𝑑, 𝑒, 𝛼, 𝜏, 𝛾 dan 𝛽 ∈ ℝ+. 

3.2 Equilibrium Point of Model 

Given the set ℝ+
3 = {(𝑥, 𝑦, 𝑧)|𝑥 ≥ 0, 𝑦 ≥ 0, 𝑧 ≥ 0, 𝑥, 𝑦, 𝑧 ∈ℝ}. The equilibrium point of Equation (3) 

is the solution of Equation (3) that satisfies 
𝑑𝑥

𝑑𝑡
= 0,

𝑑𝑦

𝑑𝑡
= 0, and

𝑑𝑧

𝑑𝑡
= 0.  Thus the following system of 

equations is obtained: 

(3) 
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𝑟𝑥 (1 −
𝑥 + 𝑦

𝑘
) −

𝑚𝑥𝑧

1 + 𝑎𝑥
− 𝑑𝑥𝑦 = 0 

𝛿𝑥𝑦 −
𝑛𝑦𝑧

1 + 𝑏𝑦
− 𝜎𝑦 − 𝜏𝑦 = 0 

𝑝𝑥𝑧

1 + 𝑎𝑥
+

𝑞𝑦𝑧

1 + 𝑏𝑦
− 𝜇𝑧 − 𝛾𝑧2 = 0 

Thus, the equilibrium point of  Equation (3) is obtained, namely: 

1. Equilibrium point of population extinction E0(0,0,0). 

2. Susceptible prey equilibrium point exists E1(𝑘, 0,0). 

3. Predator extinction equilibrium point E2 (
𝜎+𝜏

𝛿
,
𝑟(𝛿𝑘−(𝜎+𝜏))

𝛿(𝑟+𝑑𝑘)
, 0) with conditions 

𝛿𝑘

𝜎+𝜇
> 1. 

4. Prey extinction equilibrium point of infected E3(𝑥, 0, �̂�) with 𝑥 is a positive solution of 

𝑎2𝑟𝛾𝑥3 + 𝛾𝑟𝑎(2 − 𝑎𝑘)𝑥2 + (𝛾𝑟 − 2𝑎𝑘 + 𝑝𝑚𝑘 − 𝜇𝑚𝑎)𝑥 − 𝑘(𝛾𝑟 + 𝜇𝑚) = 0  

and 

�̂� =
𝑟 (1 −

𝑥

𝑘
) (1 + 𝑎𝑥)

𝑚
 

under the condition that  
𝑥

𝑘
< 1. 

5. The population equilibrium point exists E4(𝑥
∗, 𝑦∗, 𝑧∗) where 𝑥∗ is the positive root of 

𝐾𝑥6 + 𝐿𝑥5 + 𝑀𝑥4 + 𝑁𝑥3 + 𝑂𝑥2 + 𝑃𝑥 + 𝑄 = 0, 

𝑦∗ =
𝑛𝑎𝑟𝑥∗2 + (𝑚𝑘𝛿 + 𝑟𝑛 − 𝑎𝑘𝑛𝑟)𝑥∗ − (𝑟𝑘𝑛 + 𝑚𝑘(𝜎 + 𝜏))

−(𝑛𝑎𝑟 + 𝑛𝑘𝑑𝑎 + 𝑚𝑘𝑏𝛿)𝑥∗ + (𝑚𝑘𝑏(𝜎 + 𝜏) − 𝑟𝑛 − 𝑑𝑘𝑛)
 

and 

𝑧∗ =
(𝛿𝑥∗ − (𝜎 + 𝜏))(1 + 𝑏𝑦∗)

𝑛
 

with: 

𝐴 = (𝑛𝑎𝑟)2 

𝐵 = −𝑛𝑎𝑟(𝑎𝑘𝑛𝑟 − 𝑟𝑛 − 𝑚𝑘𝛿) 

𝐶 = (𝑎𝑘𝑛𝑟 − 𝑟𝑛 − 𝑚𝑘𝛿)2 − 2𝑛𝑎𝑟(𝑟𝑘𝑛 + 𝑚𝑘(𝜎 + 𝜏)) 

𝐷 = 2(𝑟𝑘𝑛 + 𝑚𝑘(𝜎 + 𝜏))(𝑎𝑘𝑛𝑟 − 𝑟𝑛 − 𝑚𝑘𝛿) 

𝐸 = (𝑟𝑘𝑛 + 𝑚𝑘(𝜎 + 𝜏))
2
 

𝐹 = (𝑛𝑎𝑟 + 𝑛𝑘𝑑𝑎 + 𝑚𝑘𝑏𝛿)2 

𝐺 = 2(𝑛𝑎𝑟 + 𝑛𝑘𝑑𝑎 + 𝑚𝑘𝑏𝛿)(𝑟𝑛 + 𝑑𝑘𝑛 − 𝑚𝑘𝑏(𝜎 + 𝜏)) 

𝐻 = (𝑟𝑛 + 𝑑𝑘𝑛 − 𝑚𝑘𝑏(𝜎 + 𝜏))
2
 

𝐾 = 𝑎𝑏2𝛿𝛾𝐴 

𝐿 = 𝑏2𝛿𝛾(𝑎𝐵 + 𝑎𝐴 − 𝐴) 

𝑀 = 𝑏2𝛿𝛾𝐵 + 𝑏2(𝜎 + 𝜏)𝛾𝐴 − 𝑎𝑏2𝛿𝛾𝐶 − 𝑎𝑏2𝛿𝛾𝐵 − 𝑎𝛿𝛾𝐹 − 2𝑎2𝑛𝛾𝛿𝑏𝑟 

𝑁 = 𝑏2𝛿𝛾𝐶 + 𝑏2(𝜎 + 𝜏)𝛾𝐵 + 𝑎𝑏2𝛿𝛾𝐷 − 𝑎𝑏2𝛿𝛾𝐶 − (𝑛𝑝 − 𝑎𝜇𝑛 + 𝑎𝛾𝜎 − 𝛾𝛿)𝐹 + 𝑎𝛿𝛾𝐺 

+(𝑝𝑏𝑛 + 𝑎𝑞𝑛 − 𝑎𝑏𝜇𝑛)𝑛𝑎𝑟 + 2𝑎𝛾𝛿𝑏(𝑎𝑘𝑛𝑟 − 𝑟𝑛 − 𝑚𝑘𝛿) + (𝑎𝛾𝑟𝑏 − 𝛾𝑟𝑏)2𝑛𝑎𝑟 

𝑂 = (𝑝𝑏𝑛 + 𝑎𝑞𝑛 − 𝑎𝑏𝜇𝑛)(𝑎𝑘𝑛𝑟 − 𝑟𝑛 − 𝑚𝑘𝛿) − (𝑞𝑛 − 𝑏𝜇𝑛 + 2𝛾𝑟𝑏)𝑛𝑎𝑟 − 𝜇𝑛2𝑎𝑟 

−2𝑎𝛾𝛿𝑏(𝑟𝑘𝑛 + 𝑚𝑘(𝜎 + 𝜏)) + 2𝛾(𝜎 + 𝜏)𝑏(𝑎 − 1)(𝑎𝑘𝑛𝑟 − 𝑟𝑛 − 𝑚𝑘𝛿) − 𝑏𝛾𝛿𝐷 

(5) 

(4) 

(6) 
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+𝑏2(𝜎 + 𝜏)𝛾𝐶 − 𝑎𝑏2𝛿𝛾𝐸 + 𝑎𝑏2𝛿𝛾𝐷 + (𝑛𝑝 − 𝑎𝑟𝑛 + 𝑎𝛾 + 𝑏2(𝜎 + 𝜏)𝛾𝐶 − 𝛾𝛿)𝐺 − 𝑎𝛿𝛾𝐻 

+(𝛾 + 𝑏2(𝜎 + 𝜏)𝛾𝐶 − 𝜇𝑛)𝐹 

𝑃 = (𝑝𝑏𝑛 + 𝑎𝑞𝑛 − 𝑎𝑏𝜇𝑛)(𝑘𝑟𝑛 + 𝑚𝑘(𝜎 + 𝜏)) + (𝑞𝑛 − 𝑏𝜇𝑛 + 2𝛾𝑟𝑏)(𝑎𝑘𝑛𝑟 − 𝑟𝑛 − 𝑚𝑘𝛿) 

−𝜇𝑛(𝑎𝑘𝑛𝑟 − 𝑟𝑛 − 𝑚𝑘𝛿) + 2𝛾(𝜎 + 𝜏)𝑏(𝑎 − 1)(𝑘𝑟𝑛 + 𝑚𝑘(𝜎 + 𝜏)) − 𝑏2𝛿𝛾𝐸 + 𝑏2𝜎𝛾𝐷 

+𝑎𝑏2𝛿𝛾𝐸 + (𝑛𝑝 − 𝑎𝜇𝑛 + 𝑎𝛾(𝜎 + 𝜏) − 𝛾𝛿)𝐻 + (𝛾(𝜎 + 𝜏) − 𝜇𝑛)𝐺 

Q = 𝑏2(𝜎 + 𝜏)𝛾𝐸 + (𝛾(𝜎 + 𝜏) − 𝜇𝑛)𝐻 + (𝑞𝑛 − 𝑏𝜇𝑛 + 2𝛾𝑟𝑏)(𝑘𝑛𝑟 + 𝑚𝑘𝑟) 

+𝜇𝑛(𝑟𝑘𝑛 + 𝑚𝑘(𝜎 + 𝜏)) + (𝛾(𝜎 + 𝜏) − 𝜇𝑛)𝐻 

The equilibrium point E4  exists under the conditions 𝑛𝑎𝑟𝑥∗2 + (𝑚𝑘𝛿 + 𝑟𝑛 − 𝑎𝑘𝑛𝑟)𝑥∗ − (𝑟𝑘𝑛 +

𝑚𝑘(𝜎 + 𝜏)) > 0 and 
(𝜎+𝜏)

𝛿
< 𝑥∗ <

(𝑚𝑘𝑏(𝜎+𝜏)−𝑟𝑛−𝑑𝑘𝑛)

(𝑛𝑎𝑟+𝑛𝑘𝑑𝑎+𝑚𝑘𝑏𝛿)
 

3.3 Stability Analysis 

To determine the type of stability of the equilibrium point, it is necessary to linearize the Equation (3) 

by determining the Jacobian matrix, 

𝐽 =

[
 
 
 
 
 
 
𝜕(

𝑑𝑥

𝑑𝑡
)

𝜕𝑥

𝜕(
𝑑𝑥

𝑑𝑡
)

𝜕𝑦

𝜕(
𝑑𝑥

𝑑𝑡
)

𝜕𝑧

𝜕(
𝑑𝑦

𝑑𝑡
)

𝜕𝑥

𝜕(
𝑑𝑦

𝑑𝑡
)

𝜕𝑦

𝜕(
𝑑𝑦

𝑑𝑡
)

𝜕𝑧

𝜕(
𝑑𝑧

𝑑𝑡
)

𝜕𝑥

𝜕(
𝑑𝑧

𝑑𝑡
)

𝜕𝑦

𝜕(
𝑑𝑧

𝑑𝑡
)

𝜕𝑧 ]
 
 
 
 
 
 

. 

Thus the Jacobian matrix of  Equation (3) is obtained as follows: 

J = [

J11 J12 J13

J21 J22 J23

J31 J32 J33

]. 

with: 

J11 = 𝑟 (1 −
2𝑥 + 𝑦

𝑘
) −

𝑚𝑧

(1 + 𝑎𝑥)2
− 𝑑𝑦 

J12 = −(
𝑟

𝑘
+ 𝑑) 𝑥 

J13 = −
𝑚𝑥

1 + 𝑎𝑥
 

J21 = 𝛿𝑦 

J22 = 𝛿𝑥 −
𝑛𝑧

(1 + 𝑏𝑦)2
− (𝜎 + 𝜏) 

J23 = −
𝑛𝑦

1 + 𝑏𝑦
 

J31 =
𝑝𝑧

(1 + 𝑎𝑥)2
 

J32 =
𝑞𝑧

(1 + 𝑏𝑦)2
 

J33 =
𝑝𝑥

1 + 𝑎𝑥
+

𝑞𝑦

1 + 𝑏𝑦
− 2𝛾𝑧 − 𝜇 

Theorem 1. The equilibrium point  𝐸0(0,0,0) is unstable. 

Proof. Substituting the equilibrium point E0(0,0,0) into Equation (8) is obtained: 

JE0
= [

𝑟 0 0
0 −(𝜎 + 𝜏) 0
0 0 −𝜇

]. 

By using the equation|𝜆𝐼 − JE0
| =0, from Equation (9) is obtained the eigenvalues 𝜆1 = 𝑟, 𝜆2 = −(𝜎 + 𝜏) 

and 𝜆3 = −𝜇 . Because there is an eigenvalue 𝜆1 = 𝑟 > 0 as a result the equilibrium point 𝐸0 is unstable. 

(7) 

(8) 

(9) 
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Theorem 2. The equilibrium point 𝐸1(𝑘, 0,0)  is asymptotically stable under the conditions 
𝛿𝑘

𝜎
< 1  and 

𝑝𝑘

𝜇(1+𝑎𝑘)
< 1. 

Proof. Substitution of the equilibrium point 𝐸1(𝑘, 0,0) into Equation (8) is obtained: 

JE1
=

[
 
 
 −𝑟 −(𝑟 + 𝑑𝑘)

−𝑚𝑘

1+𝑎𝑘

0 𝛿𝑘 − (𝜎 + 𝜏) 0

0 0
𝑝𝑘

1+𝑎𝑘
− μ]

 
 
 
. 

By using the equation|𝜆𝐼 − JE1
| = 0, from Equation (10) is obtained the eigenvalues 𝜆1 = −𝑟, 𝜆2 = 𝛿𝑘 −

(𝜎 + 𝜏) and 𝜆3 =
𝛼𝑘

1+𝑎𝑘
− 𝜑. Thus, the equilibrium point 𝐸1is asymptotically stable under the conditions 

𝛿𝑘

𝜎
<

1 and 
𝑝𝑘

𝜇(1+𝑎𝑘)
< 1. 

Theorem 3. The equilibrium point 𝐸2(𝑥, �̂�, 0) is asymptotically stable under the condition that 𝑎33 <
0, 𝑎11 < −𝑎22,  and 𝑎11𝑎22 < 𝑎12𝑎21. 

Proof. Substituting the equilibrium points E2(𝑥, �̂�, 0) with 𝑥 =
𝜎+𝜏

𝛿
 and �̂� =

𝑟(𝛿𝑘−(𝜎+𝜏))

𝛿(𝑟+𝑑𝑘)
 into Equation (8) 

is obtained: 

JE2
=

[
 
 
 
 𝑟 (1 −

2𝑥+�̂�

𝑘
) − 𝑑�̂� −(

𝑟

𝑘
+ 𝑑) 𝑥 −

𝑚𝑥

1+𝑎𝑥

𝛿�̂� 𝛿𝑥 − (𝜎 + 𝜏) −
𝑛�̂�

1+𝑏�̂�

0 0
𝑝𝑥

1+𝑎𝑥
+

𝑞�̂�

1+𝑏�̂�
− 𝜇]

 
 
 
 

. 

By using the equation |𝜆𝐼 − JE2
| = 0  is obtained characteristic equation (𝜆 − 𝑎33)[𝜆

2 − (𝑎11 + 𝑎22)𝜆 +

(𝑎11𝑎22 − 𝑎12𝑎21)] = 0  with 𝑎11 = 𝑟 (1 −
2𝑥+�̂�

𝑘
) − 𝑑�̂�, 𝑎12 = −(

𝑟

𝑘
+ 𝑑) 𝑥, 𝑎21 = 𝛿�̂�𝑎22 = 𝛿𝑥 − (𝜎 + 𝜏), 

and 𝑎33 =
𝑝𝑥

1+𝑎𝑥
+

𝑞�̂�

1+𝑏�̂�
− 𝜇 . Thus obtained 𝜆 = 𝑎33  or 𝜆2 − (𝑎11 + 𝑎22)𝜆 + (𝑎11𝑎22 − 𝑎12𝑎21) = 0.  By 

using the concept of the Routh-Hurwitz criterion, the equilibrium point 𝐸2 is asymptotically stable under the 

condition that 𝑎33 < 0, 𝑎11 < −𝑎22,  and 𝑎11𝑎22 < 𝑎12𝑎21. 

Theorem 4. The equilibrium point 𝐸3(�̃�, 0, �̃�) is asymptotically stable under the conditions ℎ22 < 0, ℎ11 <
−ℎ33,  and ℎ11ℎ33 > ℎ13ℎ31. 

Proof. Substitution of the equilibrium point 𝐸3(�̃�, 0, �̃�) into Equation (8) is obtained: 

JE3
=

[
 
 
 
 𝑟 (1 −

2x̃

𝑘
) −

𝑚𝑧

(1+𝑎x̃)2
−(

𝑟

𝑘
+ 𝑑) x̃ −

𝑚x̃

1+𝑎x̃

0 𝛿x̃ − 𝑛�̃� − (𝜎 + 𝜏) 0
𝑝𝑧

(1+𝑎x̃)2
𝑞�̃�

𝑝x̃

1+𝑎x̃
− 2𝛾�̃� − 𝜇]

 
 
 
 

. 

Using the equation |𝜆𝐼 − JE3
| = 0, the characteristic equation (𝜆 − ℎ22)[𝜆

2 − (ℎ11 + ℎ33)𝜆 + (ℎ11ℎ33 −

ℎ13ℎ31)] = 0 is obtained withℎ11 = 𝑟 (1 −
2x̃

𝑘
) −

𝑚𝑧

(1+𝑎x̃)2
, ℎ13 = −

𝑚x̃

1+𝑎x̃
, ℎ22 = 𝛿x̃ − 𝑛�̃� − (𝜎 + 𝜏), ℎ31 =

𝑝𝑧

(1+𝑎x̃)2
 andℎ33 =

𝑝x̃

1+𝑎x̃
− 2𝛾�̃� − 𝜇. So that 𝜆 = ℎ22  or 𝜆2 − (ℎ11 + ℎ33)𝜆 + (ℎ11ℎ33 − ℎ13ℎ31) = 0. Using 

the concept of Routh-Hurwitz, the equilibrium point 𝐸3 is asymptotically stable under the conditions ℎ22 <
0, ℎ11 < −ℎ33,  and ℎ11ℎ33 > ℎ13ℎ31. 

Theorem 5. The equilibrium point 𝐸4(𝑥
∗, 𝑦∗, 𝑧∗) is asymptotically stable under the conditions 𝑈 < 0,𝑊 >

0 and 
𝑊−𝑈𝑉

𝑈
> 0 

Proof. Substitution of the equilibrium point 𝐸4(𝑥
∗, 𝑦∗, 𝑧∗) into Equation (8) is obtained: 

(10) 

(11) 

(12) 
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JE4
=

[
 
 
 
 𝑟 (1 −

2𝑥∗+𝑦∗

𝑘
) −

𝑚𝑧∗

(1+𝑎𝑥∗)2
− 𝑑𝑦∗ −(

𝑟

𝑘
+ 𝑑)𝑥∗ −

𝑚𝑥∗

1+𝑎𝑥∗

𝛿𝑦∗ 𝛿𝑥∗ −
𝑛𝑧∗

(1+𝑏𝑦∗)2
− (𝜎 + 𝜏) −

𝑛𝑦∗

1+𝑏𝑦∗

𝑝𝑧∗

(1+𝑎𝑥∗)2
𝑞𝑧∗

(1+𝑏𝑦∗)2
𝑝𝑥∗

1+𝑎𝑥∗ +
𝑞𝑦∗

1+𝑏𝑦∗ − 2𝛾𝑧∗ − 𝜇]
 
 
 
 

. 

By using the equation|𝜆𝐼 − JE3
| = 0,the characteristic equation𝜆3 + 𝑈𝜆2 + 𝑉𝜆 + 𝑊 = 0 is obtained. By 

using the concept of the Routh-Hurwitz criterion, the equilibrium point 𝐸5 is asymptotically stable under the 

conditions 𝑈 < 0,𝑊 > 0 and 
𝑊−𝑈𝑉

𝑈
> 0 with: 

𝑈 = −(𝑗11 + 𝑗12 + 𝑗13) 

𝑉 = 𝑗11𝑗22 + 𝑗11𝑗33 + 𝑗22𝑗33 + 𝑗13𝑗31 − 𝑗23𝑗32 − 𝑗12𝑗21 + 𝑗12𝑗21𝑗33 

𝑊 = 𝑗11𝑗22𝑗33 + 𝑗12𝑗23𝑗31 + 𝑗13𝑗21𝑗32 + 𝑗11𝑗23𝑗32 − 𝑗13𝑗22𝑗31 

𝑗11 = 𝑟 (1 −
2𝑥∗ + 𝑦∗

𝑘
) −

𝑚𝑧∗

(1 + 𝑎𝑥∗)2
− 𝑑𝑦∗, 

𝑗12 = −(
𝑟

𝑘
+ 𝑑) 𝑥∗, 

 𝑗13 = −
𝑚𝑥∗

1 + 𝑎𝑥∗
 , 

𝑗21 = 𝛿𝑦∗, 

 𝑗22 = 𝛿𝑥∗ −
𝑛𝑧∗

(1 + 𝑒𝑦∗)2
− (𝜎 + 𝜏), 

 𝑗23 = −
𝑛𝑦∗

1 + 𝑏𝑦∗
, 

𝑗31 =
𝑝𝑧∗

(1 + 𝑎𝑥∗)2
, 

𝑗32 =
𝑞𝑧∗

(1 + 𝑏𝑦∗)2
, and 

 𝑗33 =
𝑝𝑥∗

1 + 𝑎𝑥∗
+

𝑞𝑦∗

1 + 𝑏𝑦∗
− 2𝛾𝑧∗ − 𝜇. 

3.4 Simulation and Interpretation of the Model 

In this section, the solution graph is given as an illustration of the analysis of the stability of the 

equilibrium point that has been carried out previously by analytical means. The parameter values in this 

simulation are taken around the parameters of several studies of the predator-prey model, that is [13], [17], 

[21], and  [22] as shown in Table 2 below: 

Table 2. Parameter Values of Simulation Model 

Parameters Simulation 𝑬𝟏 Simulation 𝑬𝟐 Simulation 𝑬𝟑 Simulation 𝑬𝟒 

r 0.2 0.2 0.2 0.2 

k 10 10 50 50 

𝛿 0.005 0.05 0.001 0.1 

d 0.2 0.2 0.2 0.2 

m 0.1 0.3 0.3 0.3 

n 0.1 0.2 0.2 0.2 

σ 0.4 0.2 0.2 0.05 

𝜏 0.2 0.2 0.2 0.2 

𝜇 0.2 0.2 0.2 0.2 

a 0.02 0.2 0.2 0.2 

b 0.02 0.1 0.1 0.1 

p 0.001 0.02 0.2 0.2 

q 1 0.02 0.2 0.2 

γ 0.01 0.4 0.4 0.2 

If the parameter values in Table 2 are substituted into Equation (3), Figure 2 is obtained as follows: 

(13) 
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Figure 2. Growth of Prey and Predator Populations (a) Equilibrium Point 𝑬𝟏, (b) Equilibrium Point 𝑬𝟐, 

(c) Equilibrium Point 𝑬𝟑, (d) Equilibrium Point 𝑬𝟒 

Based on the parameter values in Table 2 for the simulation 𝐸1, the equilibrium point 𝐸1  exists, 

namely (100,0,0)  and is asymptotically stable because the stability conditions 𝐸1, namely
𝛿𝑘

𝜎
< 1  and 

𝑝𝑘

𝜑(1+𝑎𝑘)
< 1 are met. The simulation results 𝐸1as shown in Figure 2 (a) show that the susceptible prey 

population exists while the infected prey and predator populations are heading towards extinction. Based on 

the parameter values in Table 2 for simulation 𝐸2,the equilibrium point 𝐸2 exists, namely(8,0.91,0) and is 

asymptotically stable because the stability conditions 𝐸2,namely𝑎33 < 0, 𝑎11 < −𝑎22,  and𝑎11𝑎22 < 𝑎12𝑎21 

are met. The simulation results 𝐸2 as shown in Figure 2 (b) show that the susceptible prey and infected prey 

populations exist while the predator population is heading towards extinction. Based on the parameter values 

in Table 2 for simulation 𝐸3, the equilibrium point 𝐸3 exists, namely(90.18,0,1.87) and is asymptotically 

stable because the stability conditions 𝐸3 are met, namelyℎ22 < 0, ℎ11 < −ℎ33, and ℎ11ℎ33 > ℎ13ℎ31.The 

simulation results 𝐸3 as shown in Figure 2 (c) show that the population of susceptible prey and predators 

exist while the population of infected prey is heading towards extinction. Based on the parameter values in 

Table 2 for simulation𝐸4,the equilibrium point𝐸4 exists, namely(3.98,0.32,0.76)and is asymptotically stable 

because the stability conditions𝑈 < 0,𝑊 > 0 and 
𝑊−𝑈𝑉

𝑈
> 0 are met. The simulation results 𝐸4 as shown in 

Figure 2 (d) show that the population of susceptible prey, infected prey and predators exist. 

Next, a numerical simulation is given which shows that there is a change in the rate of change 

susceptible prey to infected prey. This simulation was carried out in two cases, namely when the rate of 

change susceptible prey to infected prey decreased to𝛿 = 0.01 and when the rate of change susceptible prey 

to infected prey increased to 𝛿 = 0.65, previously based on Table 2 (Simulation 𝐸4) the value was 𝛿 = 0.2. 

The dynamics of population growth based on the case of changes in the value of the rate of change susceptible 

prey to infected prey is as shown in Figure 3 below: 

(a) (b) 

(c) (d) 
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Figure 3. Growth of Prey and Predator Populations (a)  𝜹 = 𝟎. 𝟎𝟏, (b) 𝜹 = 𝟎. 𝟔𝟓 

Based on Figure 3 (a), when the rate of change susceptible prey to infected prey decreases to 𝛿 = 0.01, 

it can be seen that over time the population of infected prey experiences extinction while the populations of 

susceptible prey and predators continue to exist. Thus, it can be concluded that there is a change in the stability 

of the equilibrium point of the existing population, namely E4, which was initially stable (Figure 2 (d)) and 

becomes unstable when the value of the rate of change susceptible prey to infected prey decreases to 𝛿 =
0.01. 

Based on Figure 3 (b), when the rate of change susceptible prey to infected prey increases to 𝛿 = 0.65, 

it can be seen that over time all populations are heading towards extinction. Thus, it can be concluded that 

there is a change in the stability of the equilibrium point of the existing population, namely E4, which was 

initially stable (Figure 2 (d)) and becomes unstable when the value of rate of change susceptible prey to 

infected prey increases to 𝛿 = 0.65. 

Furthermore, numerical simulations were carried out which showed that there was a change in the 

predator cannibalism coefficient. This simulation was carried out in two cases, namely when the predator 

cannibalism coefficient decreased to 𝛾 = 0.1 and when the predator cannibalism coefficient increased to 𝛾 =
1.2, previously based on Table 2 (Simulation E4) the value was 𝛾 = 0.2. Population growth dynamics based 

on cases of changes in predator cannibalism coefficient values are as shown in Figure 4 below: 

      

Figure 4. Growth of Prey and Predator Populations (a)  𝜸 = 𝟎. 𝟏, (b) 𝜸 = 𝟏. 𝟐 

Based on Figure 4 (a), when the predator cannibalism coefficient decreases to 𝛾 = 0.1, it can be seen 

that over time the infected prey population experiences extinction while the vulnerable prey and predator 

populations continue to exist. Thus, it can be concluded that there is a change in the stability of the equilibrium 

point of the existing population, namely E4, which was initially stable (Figure 2 (d)) and becomes unstable 

when the predator cannibalism coefficient decreases to 𝛾 = 0.1. 

(a) (b) 

(a) (b) 
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Based on Figure 4 (b), when the predator cannibalism coefficient increases to 𝛾 = 1.2, it can be seen 

that over time all populations continue to exist. Thus, it can be concluded that there is no change in the 

stability of the equilibrium point of the existing population, namely E4, when the predator cannibalism 

coefficient increases to 𝛾 = 1.2. 

4. CONCLUSION 

The predator-prey model with cannibalism intervention and disease infection in prey using Holling 

type II response function is in the form of a system of non-linear differential equations as in Equation (3). 

The equilibrium points generated by the model are the equilibrium points of population extinction, susceptible 

prey exists, infected prey extinction, predator extinction and population exist. Based on the identification of 

the stability of the equilibrium point, it is obtained that the equilibrium point of population extinction is 

unstable, which means that over time, there will be no population extinction while the susceptible prey exists, 

the extinction of infected prey, the extinction of predators and the population exists are asymptotically stable 

with conditions, which means that these conditions can occur over time if the conditions are met. Based on 

the numerical simulations, it was found that changes in the parameter values of the rate of change of 

susceptible prey to infected prey and the coefficient of predator cannibalism can cause changes in the type of 

stability of the equilibrium point. Thus, rate of change susceptible prey to infected prey and the coefficient 

of predator cannibalism affects the population of prey and predator. 
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