
September 2025     Volume 19 Issue 3 Page 2243-2262 

BAREKENG: Journal of Mathematics and Its Applications 

P-ISSN: 1978-7227   E-ISSN: 2615-3017 

 
          https://doi.org/10.30598/barekengvol19iss3pp2243-2262 

  
 

2243 
      

 COMPARISON OF EXPONENTIALLY WEIGHTED MOVING 

AVERAGE CONTROL CHART WITH HOMOGENEOUSLY 

WEIGHTED MOVING AVERAGE CONTROL CHARTS AND ITS 

APPLICATION 

Erna Tri Herdiani1*, Mustabsyirah2 

 
1,2 Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Hasanuddin 

Jln. Perintis Kemerdekaan KM.10, Makassar, 90245, Indonesia  

Corresponding author’s e-mail: * herdiani.erna@unhas.ac.id 

 
ABSTRACT                                                                                                 

Article History: The Exponentially Weighted Moving Average (EWMA) control chart is a widely used 

memory-type control chart known for detecting small shifts in process means. The recently 

developed Homogeneously Weighted Moving Average (HWMA) control chart modifies the 

weighting scheme of EWMA, giving more weight to the latest data and distributing smaller 

weights evenly to past data to further improve sensitivity. This paper compares the 

performance of EWMA and HWMA control charts on an iron pipe production process 

dataset. The methodology involves a two-phase analysis: Phase I for establishing in-control 

process limits (with normality testing, parameter estimation, and determination of optimal 

smoothing weights) and Phase II for monitoring new data using the established charts. The 

performance of each chart is evaluated using the Average Run Length (ARL) metric – 

specifically, the ability to quickly detect small shifts (ARL₁) while maintaining a low false 

alarm rate (ARL₀). The results indicate that the HWMA chart consistently achieves a smaller 

ARL₁ than the EWMA chart for small mean shifts without sacrificing in-control ARL, 

implying higher sensitivity to subtle process changes. Consequently, the HWMA control 

chart can detect small deviations in the iron pipe length more rapidly than the EWMA chart. 

These findings align with recent literature and demonstrate practical significance for quality 

control: the HWMA chart would enable earlier detection of process issues, allowing for 

quicker corrective actions in manufacturing. We conclude that the HWMA control chart 

outperforms the EWMA chart in this application, and we recommend its use for processes 

where small shifts in the mean are of critical concern. Additionally, we suggest further 

validation through Monte Carlo simulation and comparisons with other control chart 

methods (such as CUSUM or extended EWMA variants) to reinforce these conclusions for 

broader contexts. 
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1. INTRODUCTION  

Quality control in the industrial field is significant to ensure that the products produced by the company 

have met the standards and consumer expectations [1]. The quality control tool commonly used in the 

industrial field is the control chart. According to [2], the control chart is a tool for visually monitoring and 

assessing whether a process is in statistical quality control, enabling problem-solving and quality-improving 

outcomes. The control chart was first developed by Dr. Walter Andrew Shewhart in 1942 and became known 

as the Shewhart control chart [3]. The Shewhart control chart is a memoryless control chart that only regards 

the current data and does not consider previous data. Shewhart control charts help detect significant process 

mean shifts [4]. However, Shewhart control charts are unable to detect small process mean shifts. Therefore, 

the memory-type control chart provides an alternative to overcome the shortcomings of the Shewhart control 

chart. A memory control chart is designed to identify small shifts in the process mean by considering both 

previous and current data [5]. An exponentially Weighted Moving Average (EWMA) control chart is one 

example of a memory-type control chart. 

Roberts first introduced the EWMA control chart in 1959. Research on the EWMA control chart has 

been widely conducted, including [6], [7], [8], [9], [10], [11], and [12]. The most recent data is connected to 

the earlier data in the EWMA control chart, and each data is assigned a weight. However, according to 

EWMA plotting statistics, the weight value drops exponentially from the most recent data to the oldest data, 

giving more weight to the current data and less weight to the earlier data [7]. To improve the EWMA control 

chart's weight value distribution, Nasir Abbas invented the Homogeneously Weighted Moving Average 

(HWMA) control chart in 2018. The HWMA control chart uses an optimized weighting system to improve 

the performance of classical memory-type control charts for process parameter monitoring. HWMA control 

charts are, therefore, classified as homogeneous memory-type control charts [13]. HWMA control charting 

statistics assign larger weight values to the most recent data, and smaller weight values are homogeneously 

distributed over all previous data [14]. The distribution of HWMA weights can improve the performance 

ability of HWMA control charts compared to other control charts in detecting shifts in process mean [15].  

PT Pacific Angkasa Abadi is a company that produces iron pipes in Gresik, East Java. One of the iron 

pipes produced by PT Pacific Angkasa Abadi is a type of 50×50 mm square black pipe with a target length 

of 6008 mm. The iron pipe produced requires a high level of precision according to the specifications set by 

the company, for example, the length of the iron pipe, which is expected to deliver results according to the 

size the company wants. However, the iron pipe-cutting process is prone to errors that can be caused by 

machine settings or machine damage. Therefore, it is necessary to supervise and monitor or control the length 

of iron pipes produced by PT Pacific Angkasa Abadi to maintain product quality and consumer confidence. 

Based on this description, in this study, the authors research the comparison of the EWMA control chart and 

the HWMA control chart in detecting shifts in the mean process on PT. Pacific Angkasa Abadi iron pipe 

production data. 

2. RESEARCH METHODS 

2.1 Literature Review 

2.1.1 Normality Test 

A normality test is a statistical test useful for ensuring that the data used is a sample from a normally 

distributed population [16]. The Kolmogorov-Smirnov test is one technique for testing statistical normality; 

it incorporates a nonparametric test, meaning that using it doesn't necessitate making any assumptions about 

the distribution of the data being evaluated. Normality testing using the Kolmogorov-Smirnov test is as 

follows [17]. The hypothesis: 

𝐻0 ∶ Data is distributed normally 

𝐻1 ∶ Data is not distributed normally 

Test Statistics: 

 

𝐷𝑐𝑜𝑢𝑛𝑡 = max|𝑆𝑛(𝑥) − 𝐹0(𝑥)| (1) 
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with 𝐷𝑐𝑜𝑢𝑛𝑡 is the largest value of the absolute difference 𝑆𝑛(𝑥) and 𝐹0(𝑥), 𝑆𝑛(𝑥) is empirical cumulative 

frequency distribution, and 𝐹0(𝑥) is a theoretical cumulative frequency distribution. 

Testing Criteria:  

If the value is 𝐷𝑐𝑜𝑢𝑛𝑡 < 𝐷𝑡𝑎𝑏𝑙𝑒 (𝛼;𝑛) (𝛼 = 0.05), then 𝐻0 it is accepted, which means the data is normally 

distributed. 

2.1.2 Exponentially Weighted Moving Average Control Chart 

Roberts first presented the Exponentially Weighted Moving Average (EWMA) control chart in 1959, 

and is an alternative to the Shewhart control chart in terms of detecting small shifts. EWMA control charts 

can be used for individual samples or subgroups with a sample size of 𝑛 > 1. EWMA works by taking the 

last sample as the observed point and adding information to the line of previous sample values to create a dot 

plot that will later be visible on the chart [18]. 

The EWMA control chart can be defined as follows [3]: 

 

𝑍𝑖 = 𝜆�̅�𝑖 + (1 − 𝜆)𝑍𝑖−1 (2) 

 

with 𝑍𝑖 is EWMA statistic value, 𝜆 is the weighting value chosen between 0 and 1 (0 <  λ ≤  1) and 

�̅�𝑖 is the average observation of each sample 𝑖 = 1,2,…𝑛.  

The initial value of EWMA is 𝑍0 can be obtained from the average target value set by the manufacturer, 

so 𝑍0 = 𝜇0 or equal to the average of the observed process, so it becomes 𝑍0 = �̿�. The control limits of the 

EWMA control chart are as follows [3]: 

 

𝐿𝐶𝐿𝑖 = 𝜇0 − 𝐿
𝜎

√𝑚
√

𝜆

(2 − 𝜆)
[1 − (1 − 𝜆)2𝑖] (3) 

𝐶𝐿 = 𝜇0 (4) 

𝑈𝐶𝐿𝑖 = 𝜇0 + 𝐿
𝜎

√𝑚
√

𝜆

(2 − 𝜆)
[1 − (1 − 𝜆)2𝑖] (5) 

 

with 𝐿 is the the control limit width. In the formula, 𝜇0 represents the target process mean. The symbol 𝜎 is 

the population standard deviation, while 𝑚 indicates the number of observations in each sample. The value λ 

is a weighting parameter chosen between 0 and 1, and 𝑖 refers to the sample index.  

Smaller values of 𝜆 will be more sensitive to small shifts, while larger values of 𝜆 will be more sensitive 

to large shifts [14]. Generally, weighting factor values that work well, especially for small process mean 

shifts, are in the interval 0,05 ≤ 𝜆 ≤ 0,25. The most common or most used values in this interval are 

0.05, 0.10, and 0.20. The rule of thumb is to look for smaller shifts with smaller weighting factor values [9]. 

In addition, to determine the weighting factor value to be used for a particular data, it can be done by finding 

the optimum weighting value. [19] concluded that the optimum weight value is the weight with the highest 

number of out-of-control observations because it is considered more sensitive in detecting process shifts. 

2.1.3 Homogeneously Weighted Moving Average Control Chart 

A new type of memory control chart that has gained widespread use is the Homogeneous Weighted 

Moving Average (HWMA) control chart, which is simpler and more effective than the Exponentially 

Weighted Moving Average (EWMA) and Cumulative Sum (CUSUM) control charts. It is better at detecting 

small shifts in a process. HWMA assigns a larger weight to the current sample or most recent process value, 

and a smaller weight is distributed homogeneously or evenly to all previous samples. e.g. 𝑋𝑖𝑗~𝑁(𝜇, 𝜎
2) it is 

a quality characteristic that will be controlled with 𝑖 = 1,2,3,… , 𝑛 and  𝑗 = 1,2,3,… ,𝑚. If the population 

parameters 𝜇 and 𝜎 are known i.e. yaitu 𝜇 = 𝜇0 and 𝜎2 = 𝜎0
2. The plotting statistics for the HWMA control 

chart are as follows [14]: 
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𝐻𝑖 = 𝜆�̅�𝑖 + (1 − 𝜆)�̿�𝑖−1 (6) 

 

where �̅�𝑖 is the sample average for the 𝑖𝑡ℎ. The weighting value (𝜆) is selected between 0 and 1, meaning 

0 < 𝜆 ≤ 1. The average of the previous sample averages (𝑖 − 1) is calculated using the formula: 

 

�̿�𝑖−1 =
∑ �̅�𝑖
𝑖−1
𝑖=1

𝑖 − 1
 (7) 

 

From Equation (2), 𝐻𝑖 is obtained when 𝑖 = 1 that is 

 

𝐻1  = 𝜆�̅�1 + (1 − 𝜆)�̿�1−1 𝐻1 = 𝜆�̅�1 + (1 − 𝜆)�̿�0 𝐻1 = 𝜆�̅�1 + (1 − 𝜆)
∑ �̅�𝑖
1−1
𝑖=1

1−1
  

 𝐻1 = 𝜆�̅�1 + (1 − 𝜆)
∑ �̅�𝑖
0
𝑖=1

0
 

 

Since the expression �̿�0 is undefined, it cannot be used to determine the general form of 𝐻𝑖 for 𝑖 = 1. The 

value of �̿�0 is set as the same as the target mean of 𝑋, which 𝜇0. Thus, the expression applies for 𝑖 = 2,3, … , 𝑛 

as follows: 

When 𝑖 = 2 

𝐻2 = 𝜆�̅�2 + (1 − 𝜆)�̿�2−1 

𝐻2 = 𝜆�̅�2 + (1 − 𝜆)�̿�1 

𝐻2 = 𝜆�̅�2 + [(1 − 𝜆) (
�̅�1
1
)] 

𝐻2 = 𝜆�̅�2 + (1 − 𝜆)�̅�1 

When 𝑖 = 3 

𝐻3 = 𝜆�̅�3 + (1 − 𝜆)�̿�3−1 

𝐻3 = 𝜆�̅�3 + (1 − 𝜆)�̿�2 

𝐻3 = 𝜆�̅�3 + (1 − 𝜆) [
�̅�1
2
+
�̅�2
2
] 

𝐻3 = 𝜆�̅�3 + [(1 − 𝜆)(
�̅�1
2
) + (1 − 𝜆) (

�̅�2
2
)] 

When 𝑖 = 4  

𝐻4 = 𝜆�̅�4 + (1 − 𝜆)�̿�4−1 

𝐻4 = 𝜆�̅�4 + (1 − 𝜆)�̿�3 

𝐻4 = 𝜆�̅�4 + (1 − 𝜆) [
�̅�1
3
+
�̅�2
3
+
�̅�3
3
] 

𝐻4 = 𝜆�̅�4 + [(1 − 𝜆)(
�̅�1
3
) + (1 − 𝜆) (

�̅�2
3
) + (1 − 𝜆) (

�̅�3
3
)] 

 ⋮ 

𝐻𝑛 = 𝜆�̅�𝑛 + [(1 − 𝜆)(
�̅�1
𝑛 − 1

) + (1 − 𝜆)(
�̅�2
𝑛 − 1

) +⋯+ (1 − 𝜆)(
�̅�𝑛−1
𝑛 − 1

)] 

 

𝐻𝑖 can be expressed as follows: 

 

𝐻𝑖 = 𝜆�̅�𝑖 + [(1 − 𝜆) (
�̅�1
𝑖 − 1

) + (1 − 𝜆)(
�̅�2
𝑖 − 1

) +⋯+ (1 − 𝜆)(
�̅�𝑖−1
𝑖 − 1

)] (8) 

 

It can be seen from the description of the HWMA statistical value in Equation (8) that there is an 

average movement of each 𝑖. This average movement is called a moving average. In addition, the weight 

value, namely (1 − 𝜆), is homogeneously or evenly distributed on the previous subgroup value. Therefore, 

𝐻𝑖 is called Homogeneously Weighted Moving Average. 
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Next, the control limit of the HWMA control chart is determined. To get the control limit, the mean 

and variance are required. Meanwhile, the mean of the HWMA statistics (𝐻𝑖) can be determined as follows: 

 

𝐸(𝐻𝑖) = 𝐸(𝜆�̅�𝑖 + (1 − 𝜆)�̿�𝑖−1) 𝐸(𝐻𝑖) = 𝜆(𝐸(�̅�𝑖)) + (1 − 𝜆)(𝐸(�̿�𝑖−1)) 
 

Determine 𝐸(�̅�𝑖) 
 

𝐸(�̅�𝑖) = 𝐸 (
1

𝑚
∑ 𝑋𝑖𝑗
𝑚
𝑗=1 ) =

1

𝑚
((𝐸𝑋𝑖1) + 𝐸(𝑋𝑖2) + ⋯+ 𝐸(𝑋𝑖𝑚)) 

 

Since 𝑋𝑖𝑗 is distributed as normal with mean 𝜇 and variance 𝜎2 then 

 

𝐸(�̅�𝑖) =
1

𝑚
(𝜇 + 𝜇 +⋯+ 𝜇) =

1

𝑚
(𝑚𝜇) = 𝜇 

 

Determine 𝐸(�̿�𝑖−1) 
 

𝐸(�̿�𝑖−1) = 𝐸 (
1

𝑖−1
∑ �̅�𝑘
𝑖−1
𝑘=1 ) ) =

1

𝑖−1
(𝐸(�̅�1) + 𝐸(�̅�2) + ⋯+ 𝐸(�̅�𝑖−1)) 

 

Since 𝐸(�̅�𝑖) = 𝜇 then 

 

𝐸(�̿�𝑖−1) =
1

𝑖−1
(𝜇 + 𝜇 +⋯+ 𝜇) ) = 𝜇 

 

Based on 𝐸(�̅�𝑖) and 𝐸(�̿�𝑖−1) that have been obtained, 𝐸(𝐻𝑖) is 

 

𝐸(𝐻𝑖) = 𝜆𝐸(�̅�𝑖) + (1 − 𝜆)𝐸(�̿�𝑖−1)(𝐻𝑖) = 𝜇 (9) 

 

The variance of 𝐻𝑖 is determined as follows: 

 

𝑉𝑎𝑟(𝐻𝑖) = 𝐶𝑜𝑣(𝐻𝑖, 𝐻𝑖) 

𝑉𝑎𝑟(𝐻𝑖) = 𝐶𝑜𝑣(𝜆�̅�𝑖 + (1 − 𝜆)�̿�𝑖−1, 𝜆�̅�𝑖 + (1 − 𝜆)�̿�𝑖−1) 

𝑉𝑎𝑟(𝐻𝑖) = 𝐶𝑜𝑣(𝜆�̅�𝑖, 𝜆�̅�𝑖) + 𝐶𝑜𝑣(𝜆�̅�𝑖, (1 − 𝜆)�̿�𝑖−1) + 𝐶𝑜𝑣 ((1 − 𝜆)�̿�𝑖−1, 𝜆�̅�𝑖 , ) 

𝑉𝑎𝑟(𝐻𝑖) = +𝐶𝑜𝑣((1 − 𝜆)�̿�𝑖−1, (1 − 𝜆)�̿�𝑖−1) 
 

Since 

 

𝐶𝑜𝑣(𝜆�̅�𝑖 , 𝜆�̅�𝑖) = 𝑉𝑎𝑟(𝜆�̅�𝑖) 

𝐶𝑜𝑣 ((1 − 𝜆)�̿�𝑖−1, (1 − 𝜆)�̿�𝑖−1) = 𝑉𝑎𝑟((1 − 𝜆)�̿�𝑖−1) 

𝐶𝑜𝑣(𝜆�̅�𝑖, (1 − 𝜆)�̿�𝑖−1) = 𝐶𝑜𝑣 ((1 − 𝜆)�̿�𝑖−1, 𝜆�̅�𝑖, ) 

 

then 

 

𝑉𝑎𝑟(𝐻𝑖) = 𝑉𝑎𝑟(𝜆�̅�𝑖) + 𝑉𝑎𝑟 ((1 − 𝜆)�̿�𝑖−1) + 2𝐶𝑜𝑣(𝜆�̅�𝑖, (1 − 𝜆)�̿�𝑖−1) 

𝑉𝑎𝑟(𝐻𝑖) = 𝜆
2(𝑉𝑎𝑟(�̅�𝑖)) + (1 − 𝜆)

2(𝑉𝑎𝑟(�̿�𝑖−1)) + 2(𝜆)(1 − 𝜆)𝐶𝑜𝑣(�̅�𝑖, �̿�𝑖−1) 
 

Determine 𝑉𝑎𝑟(�̅�𝑖) 

𝑉𝑎𝑟(�̅�𝑖) = 𝑉𝑎𝑟 (
1

𝑚
∑ 𝑋𝑖𝑗

𝑚

𝑗=1
) =

1

𝑚2
(𝑉𝑎𝑟(𝑋𝑖1) + 𝑉𝑎𝑟(𝑋𝑖2) +⋯+ 𝑉𝑎𝑟(𝑋𝑖𝑚)) 

 

Since 𝑋𝑖𝑗 is distributed as normal with mean 𝜇 and variance 𝜎2 then  

𝑉𝑎𝑟(�̅�𝑖) =
1

𝑚2
(𝜎2 + 𝜎2 +⋯+ 𝜎2) =

𝜎2

𝑚
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Determine 𝑉𝑎𝑟(�̿�𝑖−1) 

 

𝑉𝑎𝑟(�̿�𝑖−1)   = 𝑉𝑎𝑟 (
1

𝑖 − 1
∑ �̅�𝑘

𝑖−1

𝑘=1
) 

𝑉𝑎𝑟(�̿�𝑖−1)) =
1

(𝑖 − 1)2
(𝑖 − 1)

𝜎2

𝑚
 

𝑉𝑎𝑟(�̿�𝑖−1)   =  
𝜎2

𝑚(𝑖 − 1)
 

 

Determine 𝐶𝑜𝑣𝑎𝑟(�̅�𝑖 , �̿�𝑖−1) 

 

𝐶𝑜𝑣𝑎𝑟(�̅�𝑖, �̿�𝑖−1) = 𝐸(�̅�𝑖�̿�𝑖−1) − 𝐸(�̅�𝑖)𝐸(�̿�𝑖−1) 
 

Since �̅�𝑖 and �̿�𝑖−1 are independent of each other so that 

 

𝐶𝑜𝑣𝑎𝑟(�̅�𝑖, �̿�𝑖−1) = 𝐸(�̅�𝑖)𝐸(�̿�𝑖−1) − 𝐸(�̅�𝑖)𝐸(�̿�𝑖−1) 

𝐶𝑜𝑣𝑎𝑟(�̅�𝑖, �̿�𝑖−1) = (𝜇)(𝜇) − (𝜇)(𝜇) 

𝐶𝑜𝑣𝑎𝑟(�̅�𝑖, �̿�𝑖−1) = 𝜇
2 − 𝜇2 

𝐶𝑜𝑣𝑎𝑟(�̅�𝑖, �̿�𝑖−1) = 0 

 

Based on 𝑉𝑎𝑟(�̅�𝑖), 𝑉𝑎𝑟(�̿�𝑖−1) and 𝐶𝑜𝑣𝑎𝑟(�̅�𝑖, �̿�𝑖−1) that have been obtained, 𝑉𝑎𝑟(𝐻𝑖) is 

For 𝑖 > 1 

 

𝑉𝑎𝑟(𝐻𝑖) = 𝜆
2(𝑉𝑎𝑟(�̅�𝑖)) + (1 − 𝜆)

2(𝑉𝑎𝑟(�̿�𝑖−1)) + 2(𝜆)(1 − 𝜆)𝐶𝑜𝑣(�̅�𝑖, �̿�𝑖−1) 

𝑉𝑎𝑟(𝐻𝑖) = 𝜆
2 (
𝜎2

𝑚
)+ (1 − 𝜆)2

𝜎2

𝑚(𝑖 − 1)
+ 2(𝜆)(1 − 𝜆)(0) 

𝑉𝑎𝑟(𝐻𝑖) =
𝜆2𝜎2

𝑚
+ (1 − 𝜆)2

𝜎2

𝑚(𝑖 − 1)
+ 0 

𝑉𝑎𝑟(𝐻𝑖) =
𝜆2𝜎2

𝑚
+ (1 − 𝜆)2

𝜎2

𝑚(𝑖 − 1)
 (10) 

 

For 𝑖 = 1 

𝑉𝑎𝑟(𝐻𝑖) = 𝜆
2(𝑉𝑎𝑟(�̅�𝑖)) + (1 − 𝜆)

2(𝑉𝑎𝑟(�̿�𝑖−1)) + 2(𝜆)(1 − 𝜆)𝐶𝑜𝑣(�̅�𝑖, �̿�𝑖−1) 

𝑉𝑎𝑟(𝐻𝑖) = 𝜆
2(𝑉𝑎𝑟(�̅�1)) + (1 − 𝜆)

2(𝑉𝑎𝑟(�̿�1−1)) + 2(𝜆)(1 − 𝜆)𝐶𝑜𝑣(�̅�1, �̿�1−1) 

𝑉𝑎𝑟(𝐻𝑖) = 𝜆
2(𝑉𝑎𝑟(�̅�1)) + (1 − 𝜆)

2(𝑉𝑎𝑟(�̿�0)) + 2(𝜆)(1 − 𝜆)𝐶𝑜𝑣(�̅�1, �̿�0) 
 

Since 𝑉𝑎𝑟(�̅�𝑖) =
𝜎2

𝑚
, �̿�0 is a constant, and �̅�1 with �̿�0 are independent of each other, then 

 

𝑉𝑎𝑟(𝐻𝑖) = 𝜆
2 (
𝜎2

𝑚
)+ (1 − 𝜆)2(𝑉𝑎𝑟(�̿�0)) + 2(𝜆)(1 − 𝜆)(0) =

𝜆2𝜎2

𝑚
 (11) 

 

 Based on the mean for 𝐻𝑖 in Equation (9) and the variance for 𝐻𝑖 in Equation (10) and Equation 

(11), the HWMA control limit is 

 

Lower Control Limit:  

𝐿𝐶𝐿𝑖 = 𝐸(𝐻𝑖) − 𝐿√𝑉(𝐻𝑖)  
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𝐿𝐶𝐿𝑖 =

{
 
 

 
 
𝜇 − 𝐿√

𝜆2𝜎2

𝑚
                                          , 𝑖𝑓 𝑖 = 1 

𝜇 − 𝐿√
𝜆2𝜎2

𝑚
+ (1 − 𝜆)2

𝜎2

𝑚(𝑖 − 1)
  , 𝑖𝑓 𝑖 > 1

 (12) 

Central Limit:   

𝐶𝐿 = 𝐸(𝐻𝑖) = 𝜇  

 (13) 

Upper Control Limit:  

𝑈𝐶𝐿𝑖 = 𝐸(𝐻𝑖) + 𝐿√𝑉(𝐻𝑖)  

𝑈𝐶𝐿𝑖 =

{
 
 

 
 
𝜇 + 𝐿√

𝜆2𝜎2

𝑚
                                          , 𝑖𝑓 𝑖 = 1 

𝜇 + 𝐿√
𝜆2𝜎2

𝑚
+ (1 − 𝜆)2

𝜎2

𝑚(𝑖 − 1)
  , 𝑖𝑓 𝑖 > 1

 (14) 

 

If 𝜇 neither 𝜎 is known and must be estimated then the control limits are 𝜇0 replaced by �̂� and 

𝜎0 replaced by �̂�. The predictors of 𝜇 and 𝜎 are [3]: 

Estimator for 𝜇 

 

�̂� =
1

𝑛
∑ �̅�𝑖

𝑛

𝑖=1
 (15) 

 

where 

 

�̅�𝑖 =
1

𝑚
∑𝑋𝑖,𝑗

𝑚

𝑗=1

 (16) 

with �̂� is estimator for 𝜇, 𝑛 is many samples, 𝑚 is any observations, �̅�𝑖 is average of each sample, and 𝑋𝑖,𝑗 is 

observed quality characteristic data. Estimator for 𝜎: 

 

�̂� =
1

𝑛
∑𝑠𝑖

𝑛

𝑖=1

 (17) 

 

where 

 

𝑠𝑖 = √
1

𝑚 − 1
∑(𝑋𝑖,𝑗 − �̅�𝑖)

2
𝑚

𝑗=1

 (18) 

 

with �̂� is estimator for 𝜎 and 𝑠𝑖 is standard deviation for each sample. 

2.1.4 Average Run Length 

One approach for evaluating how well control charts identify process shifts is to look at their average 

run length. On a control chart, the average number of measurement points (ARL) that must be plotted before 

a point indicates an out-of-control condition [18]. The ARL value consists of ARL0 (ARL in control) and 

ARL1 (ARL out of control). With these two types of ARL, the best control chart can be selected, for ARL0, 

the best control chart that has the largest ARL value, while for ARL1, the best control chart with the smallest 

ARL value [20]. In general, ARL0 and ARL1 are expressed as [3]: 
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𝐴𝑅𝐿0 =
1

𝑃(𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 | 𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒)
=
1

𝛼
 (19) 

𝐴𝑅𝐿1 =
1

𝑃(𝑓𝑎𝑖𝑙 𝑡𝑜 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 | 𝐻0 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒)
=

1

1 − 𝛽
 (20) 

 

where 𝐻0 is conditions where the process is in control or statistically controlled, 𝛼 is probability of type I 

error, dan 𝛽 is probability of type II error. 

2.2 Data  

The data used in this research are sourced from the final project publication entitled "Comparison of 

CUSUM and EWMA Control Charts in Quality Control of Iron Pipe Production at PT. Pacific Angkasa 

Abadi”. The data is in production data for the length of iron pipe type black square pipe 50 ×50 mm and the 

target length is 6008 mm. Data collection was carried out for 100 samples every 3 minutes with 4 observations 

at each 𝑖𝑡ℎ sample collection in the period 13 October 2016. The variable used in this research was the length 

of the 50×50 mm square black iron pipe type produced by PT Pacific Angkasa Abadi. 

2.3 Analysis Steps 

The data analysis process carried out in this study is as follows: 

a. The Phase I analysis stage involves creating a control chart using data from 70 samples with 4 

observations each sample. The steps taken in Phase I are as follows: 

i. Perform normality testing on the 50×50 mm black iron pipe production data of Phase I. 

ii. Estimating the parameters 𝜇 and or 𝜎2 . 

iii. Determining the optimum weight of the Phase I control chart.  

iv. Form an EWMA Phase I control chart for some optimum weight values by calculating the 𝑍𝑖, 
LCL, CL, and UCL values. 

v. Form a HWMA Phase I control chart for some optimum weight values by calculating the 𝐻𝑖, 
LCL, CL, and UCL values. 

vi. Revise the control chart if the process from the EWMA and HWMA Phase I control charts 

shows an out-of-control state. 

b. Subsequently, carry out the Phase II analysis stage, which is the monitoring step, employing data 

from 30 samples with 4 observations each sample. The steps taken in Phase II are as follows: 

i. Calculate the EWMA statistical value (𝑍𝑖) for Phase II data.  

ii. Form a Phase II EWMA control chart based on the 𝑍𝑖 value of Phase II data as well as the 

LCL, CL, and UCL values of the controlled Phase I EWMA. 

iii. Calculates the HWMA statistical value (𝐻𝑖) for Phase II data. 

iv. Form a Phase II HWMA control chart based on the 𝐻𝑖 value of Phase II data as well as the 

LCL, CL, and UCL values of the controlled Phase I HWMA. 

c. Evaluate the EWMA and HWMA control chart that have been formed based on the Average Run 

Length value. 

3. RESULTS AND DISCUSSION 

3.1 Phase I Analysis Stages 

Phase I is the process of building or forming EWMA and HWMA control charts using information 

from historical data. The data used in Phase I was the first 70 samples, with 4 observations for each sample. 

Phase I is carried out to estimate the controlled process parameters, which help determine the EWMA and 

HWMA control limit values and are used in Phase II. 
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3.1.1 Normality Test 

Because the HWMA control chart implies that the data is normally distributed with parameters 𝜇 and 

𝜎2, the first step that was done was to do a normality test on the Phase I data. Testing normality on Phase I 

iron pipe production data using the Kolmogorov Smirnov test is as follows: 

Hypothesis: 

𝐻0 ∶ Data is distributed normally 

𝐻1 ∶ Data is not distributed normally 

Testing Criteria:  

If the value is 𝐷𝑐𝑜𝑢𝑛𝑡 < 𝐷𝑡𝑎𝑏𝑙𝑒 (𝛼;𝑛) (𝛼 = 0.05), then 𝐻0 it is accepted, which means the data is normally 

distributed.  

Test Statistics: 

Based on Equation (1), the values of 𝐷ℎ𝑖𝑡𝑢𝑛𝑔 and 𝐷𝑡𝑎𝑏𝑒𝑙  with 𝛼 = 0.05 are: 

Table 1. Kolmogorov Smirnov Phase I Test 

Value Count Table 

Deviation 0.076 0.081 

Table 1 shows that the value 𝐷𝑐𝑜𝑢𝑛𝑡 = 0.076 < 𝐷𝑡𝑎𝑏𝑙𝑒 = 0.081 is accepted, which means that 𝐻0 the 

Phase I iron pipe length data is normally distributed. 

3.1.2 Determination of Optimum Weighting Values 

The HWMA Phase I control chart is created to determine the optimum weighting values once a 

normality test on the iron pipe production data from PT Pacific Angkasa Abadi reveals that the data is 

distributed normally. However, to form HWMA control chart, process parameter estimation is first carried 

out. PT Pacific Angkasa Abadi has set a target value for the length of iron pipe or the expected value in 

production, namely 6008 mm so that the value 𝜇0 = 6008. However, the value 𝜎 is not yet known so it must 

be estimated first. Based on Equation (17), it is obtained �̂� = 2.827. 

To determine the optimum weighting value, several weighting values ranging from 0.01 to 1 were tried 

to see the HWMA control chart, which identified shifting the process mean in PT iron pipe production data. 

Pacific Angkasa Abadi. A control chart that can identify the most significant number of points out of control 

is used to determine the optimum weighting value. After forming the HWMA control chart for 𝜆 = 0.01 

to 𝜆 = 1, the number of points outside the control limits for each weighting value will be obtained as follows: 

Table 2. Number of Out-of-Control HWMA Control Charts based on Weighting 

No 
Weight 

(𝝀) 
Many Out-of -

Control Points 
 No 

Weight 

(𝝀) 
Many Out-of-

Control Points 

1 0.01 1  19 0.19 2 

2 0.02 1  ⋮ ⋮ ⋮ 

3 0.03 3  62 0.62 2 

⋮ ⋮ ⋮  63 0.63 1 

8 0.08 3  64 0.64 1 

9 0.09 4  65 0.65 1 

10 0.1 4  66 0.66 1 

11 0.11 4  67 0.67 0 

12 0.12 3  68 0.68 0 

⋮ ⋮ ⋮  ⋮ ⋮ ⋮ 

18 0.18 3  100 1 0 

    Data Source: data processed 

Table 2 show that the HWMA control chart has the highest quantity of points that are out of control is 

weighting values of 𝜆 = 0.09, 𝜆 = 0.10, and 𝜆 = 0.11, respectively, which is equal to four out-of-control 
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points. Thus, the optimum weighting values for the HWMA control chart were obtained from PT Pacific 

Angkasa Abadi iron pipe production data, and they were 𝜆 = 0.09, 𝜆 = 0.10, and 𝜆 = 0.11, respectively.  

3.1.3 Phase I Exponentially Weighted Moving Average Control Chart 

After obtaining the optimum weight values, the next is to form the Phase I control chart. First, the 

EWMA control chart is formed because a comparison will be made between the EWMA control chart and 

HWMA control charts to determine the control chart with the best performance-detecting process shifts. The 

EWMA Phase I control chart for the optimum weight values of 𝜆 = 0.09, 𝜆 = 0.10 and 𝜆 = 0.11 with 𝜇0 =
6008 and 𝜎̂ = 2.827 is as follows:  

   

                                           (a)                                                       (b)  

 
(c)  

Figure 1. EWMA Phase I Control Chart,  

(a) EWMA for 𝝀 = 𝟎. 𝟎𝟗, (𝒃)EWMA for 𝝀 = 𝟎. 𝟏𝟎 , (c) EWMA for 𝝀 = 𝟎. 𝟏𝟏  

Figure 1 shows that the EWMA control chart for 𝜆 = 0.09, 𝜆 = 0.10, and 𝜆 = 0.11 has 2 out of 

control points, namely the 51st and 55th sample points, respectively. These results indicate that PT Pacific 

Angkasa Abadi's iron pipe production data is not statistically controlled. The Phase I control chart must be in 

control because it is used for monitoring and controlling processes in the future. Therefore, it is necessary to 

improve the EWMA control chart and recalculate the process parameter values and control limits until a 

control chart is obtained with all points in control. 

3.1.4 Revised Phase I Exponentially Weighted Moving Average Control Chart 

Removing the sample points 51st and 55th from the control data is used to revise the EWMA control 

chart. The remaining data used to form the Phase I EWMA control chart is 68 data. Then the revised Phase I 

EWMA control chart is as follows. 
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(a)                                                                                            (b)    

 

(c) 

Figure 2. Revised HWMA Phase I Control Chart  

(a) EWMA for 𝝀 = 𝟎. 𝟎𝟗, (𝒃)EWMA for 𝝀 = 𝟎. 𝟏𝟎 , (c) EWMA for 𝝀 = 𝟎. 𝟏𝟏  

Figure 2 show that the revised EWMA control chart for 𝜆 = 0.09, 𝜆 = 0.10, and 𝜆 = 0.11 respectively 

and it is found that there are no out of control data so that it can be claimed that since the production process 

is under control, Phase II process control can be applied. 

3.1.5 Phase I Homogeneously Weighted Moving Average Control Chart 

From the optimum weighting values that have been obtained, the HWMA Phase I control charts for 

𝜆 = 0.09, 𝜆 = 0.10, and 𝜆 = 0.11 with 𝜇0 = 6008 and �̂� = 2,827 are as follows: 

   
                                                 (a)                                                                                         (b)     

 
(c) 

Figure 3. HWMA Phase I Control Chart 

(a) HWMA for 𝝀 = 𝟎. 𝟎𝟗, (𝒃)HWMA for 𝝀 = 𝟎. 𝟏𝟎 , (c) HWMA for 𝝀 = 𝟎. 𝟏𝟏  
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Figure 3 shows that the HWMA control chart for 𝜆 = 0.09, 𝜆 = 0.10, and 𝜆 = 0.11 respectively, there 

are 4 points that are out of control, namely the 36th, 51st, 55th, and 61st sample points. This indicates that PT 

Pacific Angkasa Abadi's iron pipe production data is not statistically controlled. The Phase I control chart 

must be in control because it is used for monitoring and controlling processes in the future. Therefore, it is 

necessary to improve the HWMA and recalculate the process parameter values and control limits until a 

control chart is obtained with all points in control. 

3.1.6 Revised Phase I Homogeneously Weighted Moving Average Control Chart 

Revised to the HWMA control chart were carried out by removing data that was out of control, namely 

sample points 36th, 51st, 55th, and 61st. The remaining data used to form the Phase I HWMA control chart was 

66 data. So, the revised HWMA Phase I control chart is obtained as follows: 

   
                                                      (a)                                                                              (b)     

 
(c) 

Figure 4. Revised HWMA Phase I Control Chart 

(a) HWMA for 𝝀 = 𝟎. 𝟎𝟗, (𝒃)HWMA for 𝝀 = 𝟎. 𝟏𝟎 , (c) HWMA for 𝝀 = 𝟎. 𝟏𝟏  

Figure 4 shows the revised HWMA control chart for 𝜆 = 0.09, 𝜆 = 0.10, and 𝜆 = 0.11 respectively 

and it is found that there are no out of control data. Therefore, it can be said that the production process is in 

control or has been statistically controlled. 

3.2 Phase II Analysis Stage 

Phase II is carried out to monitor or monitor the process using new data based on control limits obtained 

from Phase I. The data used in Phase II is 30 samples with 4 observations for each sample.  

3.2.1 Phase II Exponentially Weighted Moving Average Control Chart 

The Phase II EWMA control chart for each weight value based on the control limit value of the Phase 

I EWMA control chart in a controlled state is: 
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                                                       (a)                                                                             (b)     

 
    (c) 

Figure 5. EWMA Phase II Control Chart 

(a) EWMA for 𝝀 = 𝟎. 𝟎𝟗, (𝒃)EWMA for 𝝀 = 𝟎. 𝟏𝟎 , (c) EWMA for 𝝀 = 𝟎. 𝟏𝟏 

Figure 5 shows that in the Phase II EWMA control chart for 𝜆 = 0.09, 𝜆 = 0.10, and 𝜆 = 0.11 

respectively, there are no out of control data is found, so it can be said that the production process is in control 

or has been statistically controlled. 

3.2.2 Phase II Homogeneously Weighted Moving Average Control Chart 

Based on the control limit values of the Phase I HWMA control chart in the control state, the Phase II 

HWMA control chart for each weight value is: 

   
                                                       (a)                                                                            (b)     

 
   (c) 

Figure 6. HWMA Phase II Control Chart  

(a) HWMA for 𝝀 = 𝟎. 𝟎𝟗, (𝒃)HWMA for 𝝀 = 𝟎. 𝟏𝟎 , (c) HWMA for 𝝀 = 𝟎. 𝟏𝟏  
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Figure 6 shows that on the HWMA Phase II control chart for  𝜆 = 0.09, 𝜆 = 0.10 and 𝜆 =
0.11 respectively, there are no out of control data is found, so it can be said that the production process is in 

control or has been statistically controlled. 

3.3 Performance Comparison of Exponentially Weighted Moving Average Control Chart and 

Homogeneously Weighted Moving Average Control Chart 

The performance of the control chart cannot be ascertained by the HWMA control chart that has been 

created. As a result, the sensitivity level is determined using the ARL number. The control chart with the 

lesser ARL value is the optimal one, according to the ARL1 value [12] [14]. 

3.3.1 Average Run Length Value of Exponentially Weighted Moving Average Control Chart 

Determine the ARL1 value by using the mean and variance of the EWMA control chart before 

computing the ARL value. The EWMA control chart's ARL1 value formula is described as follows: 

 

𝐴𝑅𝐿1 =
1

1 − 𝛽
 

𝐴𝑅𝐿1 =
1

1 − 𝑃𝑟(𝐿𝐶𝐿 ≤ 𝑍𝑖 ≤ 𝑈𝐶𝐿 | 𝜇 = 𝜇0 + 𝑘𝜎)
 

𝐴𝑅𝐿1 =
1

1 − 𝑃𝑟 (
𝐿𝐶𝐿 − 𝐸(𝑍𝑖)

√𝑉𝑎𝑟(𝑍𝑖)
≤
𝑍𝑖 − 𝐸(𝑍𝑖)

√𝑉𝑎𝑟(𝑍𝑖)
≤
𝑈𝐶𝐿 − 𝐸(𝑍𝑖)

√𝑉𝑎𝑟(𝑍𝑖)
| 𝜇 = 𝜇0 + 𝑘𝜎)

 

𝐴𝑅𝐿1 =
1

1 − 𝑃𝑟

(

 𝐿𝐶𝐿 − 𝜇

√
𝜎2𝜆

(2 − 𝜆)𝑚

≤ 𝑍 ≤
𝑈𝐶𝐿 − 𝜇

√
𝜎2𝜆

(2 − 𝜆)𝑚

|| 𝜇 = 𝜇0 + 𝑘𝜎

)

 

 

𝐴𝑅𝐿1 =
1

1 − 𝑃𝑟

(

 𝐿𝐶𝐿 − (𝜇0 + 𝑘𝜎)

√
𝜎2𝜆

(2 − 𝜆)𝑛

≤ 𝑍 ≤
𝑈𝐶𝐿 − (𝜇0 + 𝑘𝜎)

√
𝜎2𝜆

(2 − 𝜆)𝑛 )

 

 

𝐴𝑅𝐿1 =
1

1 −

[
 
 
 
Φ

(

 𝑈𝐶𝐿 − (𝜇0 + 𝑘𝜎)

√
𝜎2𝜆

(2 − 𝜆)𝑚 )

 −Φ

(

 𝐿𝐶𝐿 − (𝜇0 + 𝑘𝜎)

√
𝜎2𝜆

(2 − 𝜆)𝑚 )

 

]
 
 
 
 

(21) 

 

In Table 3, the ARL values of the EWMA control chart for a shift of 0 to 0.5 are shown based on 

Equation (21): 

Table 3. ARL Value of EWMA Control Chart 

𝒌 
ARL Value of EWMA 

𝝀 = 𝟎. 𝟎𝟗 𝝀 = 𝟎. 𝟏𝟎 𝝀 = 𝟎. 𝟏𝟏 

0 370.398 370.398 370.398 

0.02 316.563 321.530 325.698 

0.04 216.039 226.490 235.711 

0.06 135.330 146.217 156.266 

0.08 83.939 92.935 101.526 

0.10 52.997 59.832 66.531 

0.12 34.355 39.394 44.436 

0.14 22.919 26.603 30.353 

0.16 15.741 18.438 21.225 
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𝒌 
ARL Value of EWMA 

𝝀 = 𝟎. 𝟎𝟗 𝝀 = 𝟎. 𝟏𝟎 𝝀 = 𝟎. 𝟏𝟏 

0.18 11.127 13.115 15.195 

0.20 8.092 9.571 11.135 

0.30 2.459 2.855 3.290 

0.40 1.327 1.456 1.602 

0.50 1.057 1.095 1.144 

Table 3 shows that the greater the shift value used, the smaller the ARL value of the EWMA control 

chart for each weighting. This means that fewer in-control or controlled quantity samples are needed until 

out-of-control or uncontrolled samples are obtained. 

3.3.2 Average Run Length Value of Homogeneously Weighted Moving Average Control Chart 

Similar to the EWMA control chart, find the ARL1 value formula based on the mean and variance of 

the HWMA control chart before computing the ARL value. The following is a description of the HWMA 

control chart's ARL1 value formula: 
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(22) 

 

In Table 4, the ARL values of the EWMA control chart for a shift of 0 to 0.5 are shown based on 

Equation (22): 

Table 4. ARL Value of HWMA Control Chart 

𝒌 
ARL Value of HWMA 

𝝀 = 𝟎. 𝟎𝟗 𝝀 = 𝟎. 𝟏𝟎 𝝀 = 𝟎. 𝟏𝟏 

0 370.398 370.398 370.398 

0.02 178.986 200.075 218.598 

0.04 57.367 71.552 86.073 

0.06 20.922 27.821 35.528 

0.08 9.024 12.383 1.361 

0.10 4.580 6.303 8.429 



2258 Herdiani, et al.  COMPARISON OF EXPONENTIALLY WEIGHTED MOVING AVERAGE CONTROL CHART AND …                                   
  

 

𝒌 
ARL Value of HWMA 

𝝀 = 𝟎. 𝟎𝟗 𝝀 = 𝟎. 𝟏𝟎 𝝀 = 𝟎. 𝟏𝟏 

0.12 2.707 3.646 4.840 

0.14 1.837 2.377 3.080 

0.16 1.407 1.726 2.156 

0.18 1.189 1.378 1.646 

0.20 1.080 1.189 1.356 

0.30 1.000 1.001 1.007 

0.40 1.000 1.000 1.000 

0.50 1.000 1.000 1.000 

Table 4 shows that the greater the shift value used, the smaller the ARL value of the HWMA control 

chart for each weighting, which means that the fewer the in control or controlled quantity samples needed 

until out of control or uncontrolled is obtained. 

3.3.3 Comparison of Average Run Length Value of Exponentially Weighted Moving Average Control 

Chart and Homogeneously Weighted Moving Average Control Chart 

A comparison between the ARL values of the EWMA and HWMA control charts determines which 

control chart is more effective in identifying shifts in the mean process. As seen in Figure 7, this is 

accomplished by using the ARL values that have been determined for each of the EWMA and HWMA control 

charts: 

 

Figure 7. Comparison of ARL Values for EWMA and HWMA 

For every weight value, Figure 7 shows that the ARL value of the HWMA control chart is smaller 

than that of the EWMA control chart. To put it another way, the control chart can identify changes in the 

manufacturing process more quickly since fewer samples are required until an out-of-control signal occurs. 

Consequently, it can be said that the HWMA control chart is more sensitive due to the lower ARL value. This 

paper shows that the HWMA control chart of PT Pacific Angkasa Abadi's iron pipe production has an LCL 

= 6007.35, CL = 6008.00, and UCL = 6008.65, and based on the ARL value shows that it is more sensitive 

than the EWMA control chart.  

The comparative analysis of EWMA and HWMA control charts on the iron pipe production process 

has several practical and theoretical implications. In practical terms, our results suggest that implementing 

the HWMA chart for monitoring pipe lengths will enhance quality control by reducing the detection time for 

subtle process shifts. For the manufacturer (PT Pacific Angkasa Abadi), this means that if the cutting machine 

or process starts to drift slightly (perhaps due to tool wear, minor calibration issues, or environmental factors), 

the HWMA chart will alert operators sooner than an EWMA chart under the same conditions. Early detection 

of such small shifts can prevent the production of out-of-specification pipes, thereby reducing waste and 
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rework and maintaining customer satisfaction with product quality. Given that the Phase II monitoring 

showed the process remained in control, one interpretation is that the control system is effective; however, 

should any small shift begin to develop, an HWMA chart would be a more vigilant guardian of quality. 

Theoretically, our study reinforces existing literature on the performance of memory-type control 

charts. The superiority of HWMA over EWMA in detecting small mean shifts that we observed is in line 

with the findings of the original HWMA paper [14]. These studies also reported substantially lower ARL₁ for 

HWMA compared to EWMA for small shifts, often using simulation or mathematical analysis. Our work 

contributes to this body of knowledge by comparing real industrial data and showing the advantages in 

practice without artificial data generation. Moreover, we followed a two-phase control chart approach, which 

mirrors real-world implementation, including parameter estimation and chart revision, which provides a 

realistic basis for comparison. The outcome that HWMA signaled more points in Phase I suggests that in a 

historical dataset, HWMA can uncover more indications of instability (which could correspond to real small 

shifts or anomalies) that EWMA might miss. This indicates HWMA might be useful in monitoring and 

retrospectively analyzing process history for subtle issues. 

It is also noteworthy to compare our findings with related studies on the same production process. A 

previous study compared CUSUM and EWMA charts on the iron pipe data and found that CUSUM was more 

sensitive than EWMA for small shifts [21]. This is expected since CUSUM, like EWMA, is designed for 

small shifts. Our study did not explicitly include CUSUM. However, given that HWMA outperforms EWMA 

and likely also would outperform CUSUM (based on literature claims), one could infer that HWMA might 

be an even better choice than CUSUM for this process.  

Additionally, a recent study applied an extended EWMA chart to the same pipe data and reported 

improved performance over the standard EWMA [22] [23]. This trend of research – exploring enhanced 

versions of EWMA/CUSUM (whether through modified schemes like HWMA, extended EWMA, or hybrid 

charts) – underscores the importance of refining detection ability for quality control. Our results specifically 

highlight HWMA as a strong candidate in that continuum of improvements. 

One concern that may arise is the complexity of implementing HWMA in an industrial setting. While 

EWMA is well-known and relatively straightforward to compute, HWMA’s formula may appear more 

complex due to averaging past data. However, in practice, HWMA can be implemented recursively as well, 

and the additional computation (maintaining a running average of all past data) is trivial for modern 

computing systems or even programmable logic controllers. Thus, the improved performance does not come 

with an undue burden in calculation or understanding for quality engineers. Training may be needed to 

familiarize staff with interpreting HWMA charts, but the interpretation (points outside control limits indicate 

potential shifts) remains the same as any Shewhart-type chart. 

Our analysis assumed normality and independence of observations. We verified normality for our 

dataset; however, if the process data were significantly non-normal, one might need to apply a normalizing 

transformation or use a robust control chart design. Independence is harder to verify but was assumed based 

on the sampling scheme (taking measurements at intervals likely larger than any process autocorrelation 

time). If autocorrelation were present, it could inflate false alarms for any control chart. Practitioners might 

use time-series models or adjust sampling to mitigate correlation in such cases. Our results are most directly 

applicable under the assumption that those conditions hold. 

While we have demonstrated HWMA’s superiority for small shifts, one should note that the actual 

benefit in a real production environment will also depend on the frequency of such shifts occurring. If the 

process is very stable and shifts are rare, an EWMA chart might suffice. However, in high-precision 

manufacturing like this, even rare small shifts can have a cost, so the extra safeguard of HWMA is justified. 

Another limitation is that we did not consider the effect of parameter estimation error on ARL. In Phase I, 

we estimated μ and σ from 66–68 samples; these estimates carry uncertainty, which can slightly affect the 

realized ARL in Phase II. For fairness, both charts used the same estimates, so the comparison remains fair, 

but the absolute ARL numbers might differ if the true parameters were known. Typically, ARL calculations 

assume known parameters. The fact that our Phase II had no false alarms suggests our estimated limits were 

appropriate. 

One could perform a Monte Carlo simulation study to strengthen the evidence further. For example, 

many process runs can be simulated with a known small shift introduced at a random point, and the run length 

can be recorded until the EWMA and HWMA signal. Comparing the empirical ARL distributions from 

simulation would complement our theoretical ARL calculations and account for any real-world complexities 
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(estimation error, non-normality, etc.). This was beyond the scope of our current paper, but we recommend 

it as future work to confirm the robustness of HWMA’s advantage. Additionally, comparing HWMA with 

other advanced control chart methods (such as the CUSUM, adaptive EWMA, or the newer mixed-memory 

charts) on the same dataset would provide a more complete picture of how HWMA stands relative to all 

options. We focused on EWMA vs HWMA as that was our primary interest. Still, given the existence of 

“progressive” or “extended” EWMA methods, it would be insightful to see if HWMA still holds an edge or 

if combinations of methods could perform even better. 

4. CONCLUSIONS 

After completing Phase I analysis, the iron pipe production process was confirmed to be under 

statistical control. Final estimates of the process mean and standard deviation were used to construct EWMA 

and HWMA control charts. In Phase II, applying these charts to new data showed no out-of-control signals, 

indicating that the process remained stable. ARL analysis revealed that the HWMA chart is more sensitive to 

small shifts in the process mean compared to the EWMA chart. For example, for a shift as small as 0.05σ, 

the HWMA chart signalled much faster. This advantage comes from HWMA’s equal weighting of past data, 

unlike EWMA’s exponentially decreasing weights. Importantly, this increased sensitivity did not lead to more 

false alarms, as both charts had similar ARL₀ values. 

These findings support previous research and demonstrate that HWMA is a more effective tool for 

detecting small shifts in processes like pipe length. HWMA can be adopted to improve quality control, 

allowing for quicker responses to deviations and better protection of product quality. This study also offers a 

practical approach for implementing control charts—covering assumption testing, parameter optimization, 

and limit adjustment. Further validation through simulations (e.g., Monte Carlo studies) under different 

process conditions and across industries is recommended to strengthen the evidence and broaden HWMA’s 

applicability. 

In conclusion, the HWMA control chart is a superior alternative to the traditional EWMA chart for 

detecting small process shifts. By using a more balanced weighting scheme, HWMA provides quicker 

detection without increasing false alarms. Its successful application in this study highlights its practical value 

in enhancing modern quality control systems. 
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